The QSSA in Chemical Kinetics: As Taught
and as Practiced
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Abstract Chemical mechanisms for even simple reaction networks involve many
highly reactive and short-lived species (intermediates), present in small concentra-
tions, in addition to the main reactants and products, present in larger concentrations.
The chemical mechanism also often contains many rate constants whose values
are unknown a priori and must be determined from experimental measurements of
the large species concentrations. A classic model reduction method known as the
quasi-steady-state assumption (QSSA) is often used to eliminate the highly reactive
intermediate species and remove the large rate constants that cannot be determined
from concentration measurements of the reactants and products. Mathematical
analysis based on the QSSA is ubiquitous in modeling enzymatic reactions. In this
chapter, we focus attention on the QSSA, how it is “taught” to students of chemistry,
biology, and chemical and biological engineering, and how it is “practiced” when
researchers confront realistic and complex examples. We describe the main types
of difficulties that appear when trying to apply the standard ideas of the QSSA,
and propose a new strategy for overcoming them, based on rescaling the reactive
intermediate species.

First, we prove mathematically that the program taught to beginning students
for applying the 100-year-old approach of classic QSSA model reduction cannot
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be carried out for many of the relevant kinetics problems, and perhaps even most
of them. By using Galois theory, we prove that the required algebraic equations
cannot be solved for as few as five bimolecular reactions between five species (with
three intermediates). We expect that many practitioners have suspected this situation
regarding nonsolvability to exist, but we have seen no statement or proof of this
fact, especially when the kinetics are restricted to unimolecular and bimolecular
reactions. We describe algorithms that can test any mechanism for solvability. We
also show that an alternative to solving the QSSA equations, the Horiuti-Temkin
theory, also does not work for many examples.

Of course, the reduced model (and the full model, for that matter) can be solved
numerically, which is the standard approach in practice. The remaining difficulty,
however, is how to obtain the values of the large kinetic parameters appearing in
the model. These parameters cannot be estimated from measurements of the large-
concentration reactants and products. We show here how the concept of rescaling the
reactive intermediate species allows the large kinetic parameters to be removed from
the parameter estimation problem. In general, the number of parameters that can be
removed from the full model is less than or equal to the number of intermediate
species. The outcome is a reduced model with a set of rescaled parameters that is
often identifiable from routinely available measurements. New and freely available
computational software (parest_dae) for estimating the reduced model’s kinetic
parameters and confidence intervals is briefly described.

1 Introduction

The quasi-steady-state assumption (QSSA) has become a cornerstone of chemical
kinetic modeling and model reduction since its introduction almost a 100 years
ago [4,5]. Typical kinetic mechanisms describing any reasonably complex chemical
system involve species that have large concentrations, namely the reactants and
products, and species that have vanishingly small concentrations, usually referred
to as reactive intermediates or simply intermediates. The reactive intermediates
have small concentrations because their rates of formation are small compared with
their rates of consumption over the range of species concentrations of interest.
Models that contain highly reactive intermediates usually display a behavior with
two (or more) timescales. The full model exhibits a fast timescale, during which
the highly reactive intermediates change from their starting conditions (often zero)
to quasi-steady values relative to the reactants and products, and a slow timescale,
during which the large-concentration reactants and products evolve. The QSSA is
used to remove the highly reactive, low-concentration species from the model and
produce a reduced model valid on the slow timescale, which is usually the timescale
of interest for analyzing measurements, identifying reduced mechanisms, estimating
model parameters, and designing experiments and industrial reactors. As taught in
introductory examples, the QSSA reduced model usually contains only the reactants
and products. The rate expressions for the production and consumption of reactants
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and products in terms of only the reactants and products are called the reduced
mechanism. Like the QSSA itself, the reduced mechanism is valid over the usual
range of species concentrations exhibited by the chemical system of interest.

The quasi-steady-state assumption is widely used in modeling enzymatic reac-
tions, where the intermediates are various enzyme—substrate complexes. The QSSA
is at the core of most enzyme kinetics models, such as the Michaelis—Menten
kinetics for the basic enzyme reaction [18, 20], the Hill kinetics for cooperative
enzymatic models [11, 18], models for enzyme inhibition processes [18], and the
Goldbetter—Koshland function in models of futile cycles [9, 24].

The model reduction provides several advantages.

1. Model validation. The reduced mechanism allows the model developer to test
the structure of the mechanism against experimental measurements. Since the
reduced mechanism involves only the more easily measured high-concentration
reactants and products, the experimental measurements and therefore the model
validation are streamlined.

2. Parameter estimation. The full mechanism involving the reactive intermediates
involves both large and small rate constants, in which the large rate constants
usually correspond to the reactions that consume the intermediates. The large
rate constants corresponding to intermediate consumption reactions cannot easily
be identified from experimental measurements. To identify these parameters,
measurements of the rapidly evolving, low-concentration intermediates are
required. In the reduced model, however, these large rate constants often
are removed entirely or appear as ratios to other large rate constants. This change
in parametrization of the model facilitates estimating the model parameters
from slow-timescale measurements of only the high-concentration reactants and
products that are typically available.

3. Model solution. The evolution of species concentrations is usually described by
sets of nonlinear ordinary differential equations (ODEs) that must be solved
numerically. Because of the large and small rate constants, the full model’s ODEs
are often stiff. Even in fortuitous cases in which the large rate constants were
somehow available, early ODE solvers often failed to produce accurate solutions
for the stiff equations generated by the full model. ODE solvers have improved
to the point that even reasonably stiff ODEs corresponding to large, complex
chemical mechanisms can be solved accurately. Simplifying the mechanism and
reducing the stiffness may, however, lead to a large decrease in the required
computation time.

The QSSA method has a long history and a prominent place in the education of
chemists, biologists, and chemical and biological engineers. Although the validity
of the QSSA model as an approximation to the full mechanism has been studied
extensively [6, 10,20, 21], some fundamental questions about the method have not
been addressed. In this chapter, we first explore the following unanswered question:
for what class of chemical reactions can the standard procedure for applying the
QSSA actually be carried out? The answer to even this basic question is surprising.
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We prove in Sect.2 that the classic QSSA method cannot be carried out for
chemical reactions as simple as those with second-order kinetics involving only
three intermediates and two reactants and products. In Sect.3, we consider two
simple alternatives to the classical reduction method of the QSSA to overcome this
limitation. We show that neither of these simple alternatives is sufficient for model
reduction. In Sect. 4, we consider the numerical solution of the full and reduced
models, and show how to rescale the species and parameters to obtain a tractable
parameter estimation problem. In Sect. 6, we draw conclusions from this study and
comment on future research directions.

2 The QSSA and Its Limitations

2.1 The QSSA Method

Reaction networks can involve the formation and consumption of intermediate
species, which sometimes are transitory, highly reactive, and unlikely to exist out-
side the reaction mixture. The quasi-steady-state assumption in based on the rapid
equilibration of these species. A slow-timescale model can be derived by setting
the net rate of formation of these intermediates to zero. This results in a system of
algebraic equations, which, if solved, provides expressions for the concentrations
of the intermediates in terms of the reactant and product concentrations. Finally,
this permits the construction of reaction-rate expressions for the stable reactants and
stable products in terms of the reactant and product concentrations only.

We identify prospective highly reactive intermediates using characteristics such
as a high rate of consumption, short lifetime, short induction time, or low concen-
trations. To see if a model reduction is appropriate for a given chemical mechanism,
we also need to see how well the approximate solution obtained using the QSSA
describes the exact solution. A detailed discussion of the selection of species in the
QSSA and a list of references on this topic are given in [19].

We illustrate the QSSA approach using the following simple reaction network:

kl kz
A = 2B, B— C (1)
k1

The corresponding system of differential equations is
C"A = —kch + k_1CI23,

C"B = 2k1CA - Zk_lcé - szB,

¢c = kacs. (2)
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Suppose that k, > kj, so that the consumption rate of B is large compared
with its rate of production; B is a highly reactive intermediate and a candidate for
elimination. Setting the production rate of B to zero gives

Ry = 2kyca — 2k_yc — kacg = 0. 3)

The reduced model for this example is obtained by solving this equation for cg
and substituting into the differential equations for A and C in (2). Here we select
the single nonnegative solution for cg, but multiple nonnegative roots of QSSA
algebraic systems are possible in general. In those cases, one usually selects the
solution that leads to the reduced model which best fits the available data [23]. We
call this procedure the standard approach to applying the QSSA. We obtain the
system of differential equations

2

—ky + ﬂk% + 16k1k_1ca

4k,

—kz + \/k% + 16k1k_1C’A

4k_; ’

éa = —kica + k4

éC:kZ'

“)

which corresponds to the simple reaction

- k —ky + ,lkz + 16k k_ica
AL 2, =2 2

2 4k_;

Here, the 7 on top of the reaction arrow denotes a reaction rate function (and
not a reaction rate constant). A comparison of the solutions to the differential
equations (2) and (4) is depicted in Fig. 1. The rate constants used in the simulation
were k; = k—; = 1, k; = 100 and the initial conditions were c5(0) = 1, cg(0) =
cc(0) = 0. The two solutions are very close; the QSSA hypothesis for B is
legitimate. Another lesson that is learned from model reduction by the QSSA is
that complex kinetics (see the ca dependence in the reaction rate 7) can emerge
from nothing more complicated than a few first- and second-order reactions when
reactive intermediates are involved.

A key fact that allowed us to apply the QSSA was the possibility of explicitly
solving equation (3) using a finite number of operations of addition, subtraction,
multiplication, division, and radicals; explicit solutions of this kind are usually
referred to as solutions expressible by radicals. While we are always able to solve
quadratic equations explicitly, solutions expressible by radicals do not always exist
for higher-degree polynomial equations. The next section reviews classical results
that address this issue.
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Fig. 1 The concentrations ca and c¢ with and without applying the QSSA to the intermediate B

2.2 Solvability by Radicals

It has been known since 1824, from the work of Niels Abel [1], that there is
no formula expressible by radicals for the solution of the general fifth-degree
polynomial equation. Around 1830, Evariste Galois produced his celebrated theory
that gives a definitive answer to the question of solvability by radicals for any
polynomial equation. In particular, this theory shows that the general polynomial
equation of degree n cannot be solved using radicals for any n > 5.

Here, we introduce a few notions and theorems that will allow us to use the results
of Galois theory. For an excellent overview of the subject, see [15]. The notions and
facts about groups and fields presented below are standard and can be found in most
textbooks on abstract algebra; see, for example, [14].

Consider the general polynomial equation of degree n,

apx"+...+a;x+ay=0, (5)

with arbitrary coefficients ao,...,a, in a field F. For our purposes, F' will be
the field generated by the coefficients of a polynomial whose roots we want to
find. According to the overview of the QSSA in the previous section, we need
to solve for the concentrations of intermediates in terms of the concentrations of
nonintermediates. Thus our coefficients are not simply elements of the field Q
of rational numbers; they may be polynomial expressions involving variables that
represent concentrations of the nonintermediate species. Consequently, our field will
be the smallest field that includes all these variables. This field is usually denoted
by Q(cy, ..., c), the set of quotients of real polynomials in the variables ¢y, ..., ¢,
representing the concentrations of the nonintermediate species. For instance, in the
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example represented by Eq.(2), to find the concentration cg we solved 2k ca —
2k_1c]§ — kycg = 0, viewed as an equation in cg with coefficients in Q(ca).

If the roots of Eq. (5) are not in F', there always exists a larger field that contains
all these roots; let us denote these roots by Xy, ..., Xo,. The set of polynomials
with variables x, ... x, and coefficients in the field F is denoted by F[x, ..., x,].
A polynomial Q in F[xy,..., x,] that vanishes at the point (X1, . .., Xo,) is called
a relation among the roots of (5). Recall that the symmetric group S, is the group of
all permutations of n distinct elements.

Definition 1. The Galois group of the algebraic equation (5) over the field F is
the subgroup of the symmetric group S, consisting of the permutations of the roots
(xo1, - - ., Xon) that preserve all the relations among these roots.

Galois theory introduces the key notion of a solvable group; for a detailed
description of this notion, see [14]. The following theorem is the main result
regarding solvability of algebraic equations by radicals.

Theorem 1. An algebraic equation of the form (5) is solvable by radicals if and
only if its Galois group is solvable.

Therefore, the question of whether or not the solution of an algebraic equation
can be made explicit using radicals is equivalent to checking a certain property of
a group involving the coefficients of the equation. Most modern computer algebra
software can handle the latter problem; we find the software package Maple [17]
particularly suitable for this task.

It can be shown that the Galois group of the general polynomial equation of
degree n with arbitrary coefficients is S,. In view of Theorem 1, the nonsolvability
by radicals of the general polynomial equation of degree >5 is then explained by
the following result.

Theorem 2. The symmetric group S, is solvable if and only if n < 5.

Before concluding this section, we shall mention another algebraic notion that
we will use. Roughly speaking, a Groebner basis replaces a system of polynomial
equations for n variables by a “nicer” one which has the same set of solutions as
the first. For example, if the original system has a finite number of solutions (which
will usually be the case for systems arising from chemical kinetics), we can choose
a Groebner basis where one of the equations is a univariate polynomial in one of the
variables. This way, we are able to address the problem of the explicit solvability of
the initial multivariate polynomial system by using Galois theory on the univariate
polynomial in the Groebner basis. A standard reference on Groebner bases is [7].

2.3 Nonsolvable Examples

As we saw above, a key step in the standard QSSA approach is solving a certain
system of polynomial equations. But this is not always possible, and thus we are
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confronted with an important limitation of this approach to applying the QSSA.
In what follows, we present two chemical reaction networks where the standard
QSSA approach cannot be used because of the nonsolvability by radicals of the
resulting systems of algebraic equations.

The first example consists of the following mechanism:

2Y = 2B,
Y+ B — Z + A
Z + B = 2X,
A+ X — Y + B,

27 —> 2A,

whose dynamics is given by the equations

¢a = kocpey — kacacx + stcé,

(g = 2k16’% — 2k_1C]23 — kocgey — ksegez + k_3(,’>2( + kscacx,
¢x = 2ksepez — 2k_3c)2( — kacacx,

Cy = _ZkIC% + Zk_1C]23 — kacgey + kyqcacx,

¢z = kocgey — ksegez + k_3C)2( — stcé. (6)
To obtain fast equilibration of X, Y, and Z, we choose k1, k_3, ks to be “large”,
k_1, k4 to be “small”, and kj, k3 to be of order O(1). Then the species X, Y, and

Z are fast intermediates, and are candidates for the QSSA approach. Therefore, we
need to solve the following system of algebraic equations for cx, cy, and cz:

2k3CBCZ — 2k_36’)2( — k4CACX = 0,
—2k1(3% + 2k_16’]§ — kchcY + k4CACX =0,

kocgey — ksegez + k_3(,’>2( — 2k5(3% =0. 7

We have used the software package Maple to generate a Groebner basis of this
algebraic system. To facilitate the computation, we chose all the “large” reaction
constants to be equal to K, the “small” ones equal to k, and all other reaction
constants to be 1. An element of this basis was then found to be the univariate
polynomial

P(cz) = 32k*c§ K — 4k>cfcx — 2k cpea+

(—k*cied —2k2ceg — 16k K eped)ez+
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(32k*K?cyex + 4k*cach — 64kK2ch + 4k*Kcicg)ca+

(8K*k*chep + 48k* K cicl) e+

(32K3cy — 16K°k*cicy + 8K k*cs — 256kK cg)cy—

64K k*ciepey+

(—128K°k*c; + 256 K ch)cg+

512K7c
Any cz that comes from a solution of the system (7) must also be a root of P.
However, using Maple, we found that the Galois group over Q(ca, cg, k, K) of the
equation P(cz) = 0 is Sg. Hence, according to Theorem 1, ¢z cannot be found

explicitly in terms of cs and cg. Therefore, the QSSA equations are not solvable
this case.

Remark 1. To simplify the computations, we set all reaction rates equal to K, k, or
1 in the above calculations. On the other hand, if it were possible to find explicit
formulas using radicals for the general set of parameters ky, k_1, k2, k3, k—3, k4, k5,
then the same formulas would apply for the special case of the parameters K, k, 1,
which, according to the computations above, is impossible.

The second example is a real chemical mechanism for the photochemical
decomposition of propanone,

CH3COCH3 — C2H6 + CO.

The following mechanism was proposed in [25]:

CH;COCH; ké CH;CO' +  CH,
N
CHicO' 5 CH, +  co
CH, + CH;COCH; —> CH, + "CH,COCH;,
CH, + CHZ % C2Hs.
CH,  + "CH,COCH; —%  CH;CH,COCHS,
"CH,COCH; + 'CH,COCH; —% CH;COCH,CH,COCH;,
"CH,COCH; % CH,CO +  CH,
CHiCO' 4+ CH;CO' %  CH;COCOCH;.
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To simplify the notation, we write

C. Pantea et al.

A = CH3COCHj3;, B = CO, C = C;Hg, D = CHy4, E = CH3CH,COCH3;,

F = CH3;COCH,CH,COCH3, G = CH,CO,

H = CH3COCOCH;, X = CH3CO’, Y = CHj, Z = "CH,COCH;.

The corresponding system of differential equations is

Ca
C"B
C"C
C"D
CE
Cp
¢
CH
ex
Cy

¢z

= —kica + k_icxey — kzeacy,
= kacx,

= k46’%,

= kscacy,

= kscycez,

= kéc%,

= kycz,

= kgcf(,

= kch — k_lcxcy — k2CX — Zkgc)Z(,

®)

= kica + kaex — k_1cxey — kacacy — 2k4c,2{ —kscyez + kqez,

= k3CACY — k5CYCz — Zk(JC% — k7Cz.

The prospective QSSA intermediates are the radicals X, Y, and Z. The algebraic
system in cx, cy, and ¢z is

kch — k_1CXCY — kZCX — 2k86’>2( = 0, (9)

kica + kocx —k_jcxey — kseacy — 2k46’% —ksceyez +kyez =0,

k3CACY — k5CYCz — Zk(JC% — k7Cz =0.

If we choose all reaction rate parameters to be 1, then this system has a Groebner
basis that contains the following univariate polynomial in cz:

R(cz) = —cf\ + cg + (5cf\ — 402)62 + (—12cf\ — 402 + cf\ + 5ci)c§ +

(—16¢ + 16¢x — 2ca + 8cp)cy + (4 + 42¢3 — 4ca — 8cix + dep)cy +

(44c; +20)c; + (44 + 8ca + 20c3)cy + 48], + 24¢5.
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As in the previous example, the Galois group of the polynomial R(cz) over the field
Q(ca) is Sg. Therefore cx, cy, and ¢z cannot be expressed in terms of ca, i.e., the
QSSA approach is not solvable in this case.

2.4 Challenges in the Characterization of Systems
to Which the Standard QSSA Procedure Can Be Applied

The method described in the previous section can be extended to an algorithm for
checking whether the standard QSSA procedure can be applied to a generic system.
With all rate constants regarded as symbolic entries, Groebner bases are computed
using appropriate monomial orderings, and univariate polynomials are obtained for
each intermediate. If all corresponding Galois groups are solvable, we conclude
that the standard QSSA procedure may be applied. If at least one such group is not
solvable, then the standard QSSA procedure cannot be carried out.

On the other hand, calculations of Groebner bases are combinatorially explosive
even for polynomials over real numbers, and are even more computationally expen-
sive over fraction fields with several variables. Therefore, for large enough networks,
the computation may not terminate. Moreover, even if the computation terminates
and the standard QSSA procedure can be applied, constructing the actual equations
of the reduced model may involve further complications, including convoluted
algebraic expressions whose signs need to be analyzed, and the possibility of
multiple nonnegative roots of the QSSA algebraic system.

Setting some rate constants to simple numerical values, as we have done above,
can reduce dramatically the computational size of the problem. However, while this
easier problem may be computationally tractable, it is only informative if one of the
resulting Galois groups is not solvable. In that case we can conclude that the QSSA
procedure cannot be applied to the system with general reaction rates. On the other
hand, even if all resulting Galois groups are solvable for some fixed reaction rate
values, we cannot conclude that the system with general reaction rates is solvable.

3 Alternatives to Solving the QSSA Equations

3.1 Eliminating Reactions Involving Intermediates

The goal in QSSA model reduction is usually not to evaluate the concentrations of
the intermediates but to eliminate them from the reduced model. We next investigate
whether there is a general method to remove them short of solving for them.
Consider first an example in which this elimination can be done:
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We do not assume any simple form for the rate expressions. If B is an intermediate,
we set its production rate to zero and obtain

Rp = ri(ca) — r2(cg) = 0.

This relationship defines cg as an implicit function of ca, but we assume that the
algebraic complexity of the function r, prevents solving this equation explicitly. For
this simple example, knowing only that r,(cg) = ri(ca) is sufficient. In fact, the
production rates of A and C using r, = r; are expressible by

Ra = —11(A), Rc =ri(A),

and we have eliminated B and any large rate constants from the model without
solving explicitly for cp as a function of ca, i.e., cg(ca).
But now consider a slightly more complex example:

A~ 2B, 25D, B+C->E
If we say B is an intermediate again, we have

RB = 2r1(cA) — 27‘2(63) — r3(cB, Cc) =0.

In general, this equation implicitly defines a function cg(ca, cc), but we again
assume that we cannot solve for this function explicitly. The production rates of
the reactants and products are as follows:

Ra = —r1(ca), Rc = —r3(cB, cc), Rp = ra(cp), Rg = r3(cp, cc).

To eliminate B from the model, we require 7, and r3. But the QSSA relation provides
only the relation 2r; — 2r, — r3 = 0. We can remove r; or r3 from the model using
this equation, but not both. We require the function cg(ca, cc) to substitute into r,
and r3 in order to remove B from the reduced model in this example. Eliminating
reactions is not a general procedure. If the number of reaction rate expressions in
which intermediates appear exceeds the number of intermediates, we do not obtain
enough equations to eliminate the intermediates. In the preceding example, we have
one intermediate (B), but it appears in two reaction rate expressions (72, r3).

The generalization of this idea of elimination to sets of reactions is known as
the Horiuti—-Temkin theory [13,22]. We shall not discuss this generalization further
here, because the second simple example shows that the Horiuti—-Temkin theory is
insufficient in general to eliminate the reaction rates containing intermediates as
required to apply the QSSA.
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3.2 Solving the Full or Reduced Model Numerically

Since we cannot solve the algebra of the QSSA and we cannot eliminate all reaction
rates containing intermediates, we consider next the numerical solution of the full
model. A simple approach is to set the rate constants corresponding to consumption
of the intermediates large and solve the full model. We assume that the ODE
solver can provide accurate solutions given any choice of large rate constants.
Alternatively, one can replace the differential equations for the intermediates with
the algebraic equations that result from setting their production rates to zero. This
procedure produces a set of differential-algebraic equations (DAEs) in place of the
ODE:s of the full model. The procedure for generating and numerically solving these
DAE models is known as computational singular perturbation (CSP). A discussion
of the CSP method is provided in [16,26,27]. Whether one is numerically solving
the full model or the reduced, slow-timescale DAE model, it is generally assumed
that all kinetic parameters are known.

To illustrate the issues that arise when the large rate constants are not all known,
we consider the following example:

2

AN B B2 c 5D (10)

with the full model

ca = —kica,

ég = kica — kacg — 2k3c]23,

éc = kacs,

ép = k3C]23.
The production rate of B is given by

Ry = kica — kacp — 2ksch. (11)
Setting this production rate to zero and solving for cg gives the QSSA result,

2 /kr
= ———————Ca},
P /Tt Bea

We then express the production rates in terms of the concentrations of only the
reactants and products (A, C, and D)

C ,3 =8k1k3/k§

Ra = —kica, (12)
2k

— /——Ca,
1+ /14 Bea

Re = 13)
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Fig. 2 Numerical solutions of the full model and QSSA approximation. Left: ca, g, cc, cp versus
time. Middle: Rc versus ca. Right: Rp versus ca. (@) ky = 1, k, = 10%, k3 = 2 x 10%, B
16 x 1072, R¢ versus cy is linear. (b) k; = 1, k; = 10%, k3 = 2 x 10, B = 16. Neither R¢ nor
Rp is linear with ¢ 4. (€) k; = 1, k, = 10, k3 = 2 X 10°, B = 16 x 10°. Rp, versus c, is linear

1 —14 /1 + Bea
RD:—kl —F——— | CA
2 1+ 1+ Bea

If we were unable to solve the algebra, and instead tried the simple approach of
setting all rate constants for consumption of intermediates large, we would set k;
and k3 large. But this does not specify the value of 8. If we examine the two limiting
cases of § large and B small, we obtain the production rates

(14)

B —0, B — oo,
Ra = —kica, Ra = —kica,
RC = kch, RC = 0,



The QSSA in Chemical Kinetics: As Taught and as Practiced 433

1
RD =0, RD = Ekch
corresponding to the two reduced mechanisms
kl kl 1
A— C (B—0), A — ED (B — ). (15)

Some relevant numerical results for the example (10) are shown in Fig. 2. Notice
that neither the limit k, > k3 nor k3 > k; can describe the behavior of the QSSA
model for the intermediate range of S shown in Fig.2b. We see that the QSSA
treatment of the full model remains valid, but we cannot obtain the correct behavior
by simply setting rate constants large. We need to know the relative sizes of some
large rate constants; in this case, we need k3/ k%. It is a simple matter to estimate the
parameters k; and 8 from measurements of C and D, but it is not a simple matter to
know the form of the production rates of C and D given in Egs. (13) and (14). The
knowledge of the form of the production rates is the primary benefit of the standard
QSSA in this simple example.

4 Rescaling Intermediates, and Parameter Estimation
from Data

Since solving for the intermediates in closed form is not always possible, in this
section we explore an alternative procedure of rescaling the intermediates. The
choice of how to rescale is not unique, but we show in the next section how to
automate the procedure for any kinetic model; a primary benefit is that the rescaling
procedure often provides a tractable parameter estimation problem as well. For
illustrative purposes, consider again the previous example, but assume that we are
unable to solve the algebra to determine cg from setting Rg = 0. Instead, we
introduce a rescaled B concentration, denoted ¢z, by writing

Cz = szB.

Note that this choice is not unique. Setting Rg = 0 then adds an algebraic equation
to the other species’ differential equations. The reduced DAE model is

ca = —kica,
0= kch —Cz — 2K3C%,
Cc = ¢z,

C"D = K3C%.
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Fig. 3 Measurement of the 1
concentration of C versus
time and prediction of the
concentrations of A, B, and C
from the rescaled model using
optimal parameter estimates

0.8 g

Notice that the rescaling removes the two potentially large kinetic parameters k, and
k3 and introduces one new scaled parameter, K3 = k3/ k%. Without concentration
measurements of reactants and products, we have no idea about the size of K3; the
low concentration of the intermediate B tells us only that k3 or k, or both are large,
and it is silent regarding the ratio k3/ k3.

Next, we attempt parameter estimation using both the full and the reduced
models. Consider the data set with measurement noise depicted in Fig. 3. To make
the parameter estimation problem challenging, we assume that only species C can
be measured conveniently at the fairly slow sampling rate (A = 0.34) shown in the
figure. This data set was generated from the full model using k1 = 1.0, k, = 100,
and k3 = 2 x 10%, and the initial conditions cag = 1.0 and cgy = cco = ¢po = 0.0.
Note that these choices correspond to the intermediate case (b) in Fig. 2.

Normally distributed measurement noise (zero mean, standard deviation = 0.03)
was added to the cc of the full model to create the measurement set. Attempting to
estimate k1, k7, k3 of the full model from these data is hopeless. An optimizer would
find a set of infinitely many estimates with approximately constant k,/k2, and all
points in this set would fit the measurements equally well. This lack of identifiability
of parameters plagues all overly complex models using realistic measurement sets.

The estimates obtained for the parameters k1, K3 of the reduced model are shown
in Fig. 4. Notice that the parameters are well determined and that the approximate
95 % confidence interval is small and contains the “true” parameters used to
generate the data.! The method used to generate the confidence interval is discussed
in standard texts [3, 19]. The values of the estimates and the plus/minus interval (the
bounding box of the ellipse shown in Fig.4) are

"Note that these are not quite the true parameter values, because we used the full model rather than
the reduced model to generate the data.
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Fig. 4 Optimal parameter estimates kAl and 123 (®©) based on the measurements of species C
in Fig. 3, approximate 95 % confidence interval (line), and parameter values used to create the
measurements (+)
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As we can see, applying the QSSA to the full model provides a validated reduced
model that is useful for other scientific studies and for engineering design purposes.

5 A Reparametrization of the QSSA Model

Recall the rescaling of intermediates presented in the previous section, where two
kinetic parameters k, and k3 were replaced by a single new parameter K3. In this
section, we show how this rescaling procedure can be performed for any set of
QSSA differential-algebraic equations, and highlight some interesting properties of
the rescaled model.

Let (S) denote a system of DAEs corresponding to a QSSA model with unknown
kinetic parameters and with variables x, ..., x,,. Suppose that the first m variables,
X1, ...,Xn, correspond to nonintermediate chemical species, and that the variables
Xm+1,- - -, Xy correspond to intermediate species. We assume that (S) fulfills the
following assumption, which is satisfied by most QSSA systems encountered in
practice: for any ¢ > 0, if x;(¢), ..., X, (¢) are known, then the n —m + 1 algebraic
equations of (S) have unique nonnegative solutions for x,,+1(¢), ..., x,(t) (note
that, as illustrated in Sect. 2.3, these solutions may not be expressible by radicals).
As a consequence, a solution of (S) is determined by specifying only the first m
coordinates of the initial condition vector.
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In what follows, we devise a simpler model (S) of (S) with variables X1, ..., X,
that captures the dynamics of the nonintermediate species xi, ..., X,. More pre-
cisely, (S) will satisfy the following two properties:

(i) (S) has fewer parameters than (S);

@) If (x1(¢),...,x,(2)) and (x((¢),...,X,(t)), t > 0, are solutions of (S) and
(S) with x;(0) = % (0) forall i € {1,...,m}, then x;(t) = X;(¢) for all
ie{l,...,mjandallt > 0.

In other words, condition (i) specifies that the outputs X1, . . ., x,, from (S) and (S)
corresponding to nonintermediates are the same.

5.1 Rescaling of the Intermediates

Our strategy is to consider rescalings of intermediates
Xi =a;x;fori e{m+1,...,n} (16)

that are “optimal” in the sense that the rescaled DAE system has the minimum
number of parameters that can be obtained by any reparametrization of the
form (16). More precisely, the «; are chosen such that some monomials with
unknown coefficients in (S) are replaced by monomials with coefficient 1 in the
reparametrized system (S), and this is achieved for as many monomials as possible.

To illustrate, suppose that the DAE system (S) has intermediate variables
X,¥,z,w,u and suppose that the monomials of (S) involving the intermediate
variables are

kixy, kazw, k3yz, kaxw, kswu, and keyu.

Note that these monomials might contain more factors corresponding to noninter-
mediate variables, but, since these factors do not play a role in our analysis, we will
neglect them.

Since the kinetic parameters k1, . .., k¢ are unknown positive constants, we treat
them as (linearly independent) symbolic indeterminates. Letting

X=oax, y=8y, z=yz, w= 306w, u = nu,

the monomials become

k k k k k k
LR, T, o P, — X, Wi, — . (17)

y8 By Tad” U 6n B
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Let C denote the vector of the logarithms of the six coefficients in the monomials
above, and let Ink, v, and ¥ denote the 6 x 1 and 5 x 1 vectors and the 6 x 5 matrix,
respectively, in the equality

[Ink; ] [11000] e (Ink, | [M;-v
Ink,| |00110 n g Ink, | | M,-v
Ink;| |01100 Inks | | Ms-v
C = Ink—Wy = — - — . s
Y =k, | 10010 11’:1? Inks | | My-v (18)
Inks| |0001L ||} nks| | Ms-v
[inke | (01001 LM {nke| [ Me-v]

where M; denotes row j of W. The maximum number of zero coordinates for the
vector C equals rank ¥ = 4.

Since My, M,, M3, and M5 are linearly independent, we can make the corre-
sponding coordinates of C equal to zero (and therefore make the coefficients of the
first two monomials in (17) equal to 1). We have

_lnkl_ i Ml -V ] _lnkl_ [ lnkl
lnkz M2 -V hlkz lnkz
C = lnk3 _ M3 -V _ 11’1](3 _ lnk3
Inky (M + My — Ms)-v Inky Ink; +Ink, —Inks
ll’lks M5'V ll’lk5 ll’lks
| In kg | | (M) + M5 — My) -V | | In kg | | Ink; +1Inks —Inky |

The new monomials
Xy, zw, ¥z, Kixw, wu, and Kryu (19)
contain only two parameters,

kaks keka
Ky = 45 and K, = 54
LT ok, R =

In general, the number of new parameters is equal to the number of old parameters
minus the rank of W.

Remarks.

1. The reparametrized system (S) indeed satisfies the desired properties (i) and
(if). Condition (i) is true, as explained above. Also, the differential equations for
¥1...., %, in (S) are exactly the same as the corresponding differential equations
forxy,..., x, in (S); therefore, for identical initial conditions, the solutions must
coincide, i.e., X; = x; fori € {1,...,m}.
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2. Our example shows that the optimal scaling is not always obvious, and that, in
general, the number of parameters that can be eliminated may be smaller than
the number of intermediates present in the system.

3. Note that, in some cases, even after reducing the number of parameters as
described above, we might not obtain a system with uniquely identifiable
parameters. This may be the case even if there are no intermediate species; see
[8] for examples. In future work, we will analyze this issue in more detail.

5.2 Equivalence of Reparametrizations

As explained above, the reparametrization (19) is optimal with respect to the number
of parameters that it removes. However, this reparametrization is not the only one
that is optimal. Similarly to the way M;, M,, M3, and M5 determined an optimal
reparametrization in the previous section, any choice of linearly independent rows
of W determines another optimal reparametrization.

Recall that the new parameters K and K> in (19) are products of powers (positive
or negative) of the original parameters k1, . . . , k¢. This is true for any reparametriza-
tion. Interestingly, any two optimal reparametrizations of a system (S), with
parameter sets denoted P and P, are parameter-set equivalent, i.e., any element
of Pisa product of powers of elements of P and vice versa.

For example, if we choose v in (18) such that the second, fourth, fifth, and sixth
coordinates of C are zero (using the fact that M,, My, M5, and M, are linearly
independent), we have

[Ink, | [(My+Ms—Ms)-v] [Ink,| [Inks+Inks—Inks |
In kz Mz -V In kz In kz
C— Inks | | (Ma+ Mg—Ms)-v| _ |Inks| |Inky+Inks—Inks
In k4 M4 -V In k4 In k4 ’
ll’lks M5 -V lnk5 ll’lks
_11’1 k6_ L M6 -V i _ln k6_ L In k6 i

and the new monomials are
Kixy, Kyzw, yz, Xw, wu, and yu,
where

- kiks - kaks
By =% and By = 255
DT ke B2 =0

Note that K 1 =1/K; and 152 = K,/ K3, and the two reparametrizations are indeed
parameter-set equivalent.
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5.3 Propanone Example

We shall now illustrate the usefulness of the reparametrization discussed in this sec-
tion by estimating parameters for the photochemical decomposition of propanone.
A representative data set was generated from the full model described by (8) using
ki = 1072, k_y = 107, ky = 10°, k3 = 10%, k4 = 5 x 10*, ks = 10%, kg = 10!,
k7 = 107" kg = 10° cap = 1, B0 = cco = Cpo = Cr0 = CRy = CGo =
cHo = ¢xo = Cyo = czo = 0. These parameter values were chosen so that the
major products and reactants A, B, C, D, and H would be present in larger amounts
than the minor species E, F, and G, and the reactive intermediates X, Y, and Z
would be present in much smaller quantities. Normally distributed measurement
noise (zero mean, variance = 107°) was added to ca, cg, cc, €D, CE, CF, CG, and ¢y
to create the measurement set. Similarly to the example represented by Eq. (10),
estimating all nine parameters of the full model would result in infinitely many
parameter sets which fit the data equally well. The reparametrized DAE model had
six (rescaled) parameters ki, K_1 = k_;/(k2k3), K4 = k4/k?, K5 = ks/(kskq),
K¢ = k¢/ k%, and Kg = kg/ k%, which were estimated using the software package
parest_dae to obtain a good fit to the measurement data and to obtain reasonably
small 95 % confidence intervals containing the “true” parameters used to create
the measurement data. Figure 5 shows the fit between the measurement data and
the estimated solution. The Estimated values of the rescaled parameters and their
corresponding confidence intervals are

ki [0.0099] [0.0017] ki [0.01 ]
K_, 98.4 82 K_, 100
1§4 _ | 503 | | 039 Ki| _| 5
Ks 101 503 |’ Ks 100
Ks 993 76 K 1000
| Ks | | 996 | | 68 | | Ks | | 1000 |

Note that the confidence interval for the parameter K_, is the largest in a relative
sense, indicating that this parameter is the least well determined by this experiment.
If this uncertainty were deemed too large, one could then apply experimental
design methods to determine the optimal experiment to be performed next in order
to provide more information about this parameter [2, 19]. This example shows,
however, that although estimation of all of the parameters of the full model is not
possible, reparametrization of the corresponding DAE model allows us to identify
all of the parameters of the reparametrized DAE model. The reduced model is
perfectly adequate for predicting the concentrations of all measurable species. If
one were interested in identifying all of the full model’s rate constants, different
experiments using measurements of the QSSA species would be required.
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Fig. 5 Measurements of major and minor species and predictions of all species by the reduced
DAE model. Top left: concentrations of major species ca, ¢g, cc, Cp, cy versus time. Top right:
concentrations of minor species cg, Cf, g versus time. Bottom: concentrations of reactive interme-
diates cx, cy, ¢z versus time

6 Conclusions

The 100-year-old approach of classic QSSA model reduction, as taught in intro-
ductory courses, cannot be carried out for many relevant kinetics problems. We
have proved that the algebra cannot be solved for even as few as five reactions
involving five species (with three intermediates) with nothing more complex than
bimolecular mass action kinetics. If any readers can find simpler nonsolvable
examples, the authors would like to know about them. We have also analyzed
a chemical mechanism taken from the literature and shown that it cannot be
reduced by the classical approach. We have described algorithms that can test any
mechanism for solvability. We have shown that the alternative approach of the
Horiuti—Temkin theory also does not achieve the requirements of model reduction.

The first goal of this chapter was simply to make instructors aware of the
limitations of trying to apply the QSSA in this way. Students should probably
be told of these limitations when they are introduced to the approach. A second,
longer-term goal was to promote the idea of rescaling the low-concentration species
rather than solving for them. Although the choice of the rescaled parameters is
not unique, the minimum number of rescaled parameters remaining in the reduced
model is unique, and all reduced models with this minimum number of rescaled



The QSSA in Chemical Kinetics: As Taught and as Practiced 441

parameters are equivalent. We expect that in most large enough examples, one
cannot solve the QSSA equations explicitly using radicals. Moreover, even when
one can solve them explicitly, it may still be preferable to use rescaling in order
to identify key combinations of parameters which can be identified from data. The
result of the procedure can be a reduced (DAE) model with rescaled parameters that
are identifiable from standard measurements. Calculations using the open source
software package parest_dae that estimates parameters and confidence intervals
for DAE models were presented. This package makes use of the recently released
SUNDIALS implicit ODE solver IDAS [12].

Looking to the future, as ab initio methods for predicting rate constants become
more capable, we may be able to reduce the number of large rate constants
and functions of these large constants that must be estimated from measure-
ments. Model validation studies may then be carried out numerically with the full
model, rather than by inspecting the reduced model’s structural dependence on
large-concentration reactants and products. Further research and tool development
supporting both rate constant prediction and numerical model validation should
prove highly useful to scientists developing and using complex chemical models.
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