
GLOBAL INJECTIVITY AND MULTIPLE EQUILIBRIA IN UNI- AND
BI-MOLECULAR REACTION NETWORKS
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Abstract. Dynamical system models of complex biochemical reaction networks are high-dimensional,

nonlinear, and contain many unknown parameters. The capacity for multiple equilibria in such sys-

tems plays a key role in important biochemical processes. Examples show that there is a very

delicate relationship between the structure of a reaction network and its capacity to give rise to

several positive equilibria. In this paper we focus on networks of reactions governed by mass-action

kinetics. As is almost always the case in practice, we assume that no reaction involves the collision of

three or more molecules at the same place and time, which implies that the associated mass-action

differential equations contain only linear and quadratic terms. We describe a general injectivity

criterion for quadratic functions of several variables, and relate this criterion to a network’s capacity

for multiple equilibria. In order to take advantage of this criterion we investigate in detail general

conditions that imply non-vanishing of polynomial functions on the positive orthant. In an example

we describe how these methods may be used for designing multistable chemical systems in synthetic

biology.

1. Introduction

A chemical reaction network is usually given by a finite list of reactions that involve a finite set of

chemical species. As an example, consider the reaction network with species X1, X2, . . . , X6 given

in (1), which consists of 20 reactions.

X1 +X2 
 X4, X2 +X3 
 X5, X3 
 2X1, 2X3 
 X6(1)

X1 
 0, X2 
 0, X3 
 0, X4 
 0, X5 
 0, X6 
 0.

To keep track of the temporal variation of the state of this chemical system, we define the functions

x1(t), x2(t), . . . , x6(t) to be the molar concentrations of the species X1, X2, . . . , X6 at time t. The

chemical reactions in the network are responsible for changes in the concentrations; for instance,

whenever the reaction X1 +X2 → X4 occurs, there is a net gain of a molecule of X4, whereas one

molecule of X1 and one molecule of X2 are lost. For each i ∈ {1, . . . , 6}, the reaction Xi → 0 is
1
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called an outflow reaction and it represents the fact that species Xi is continuously removed from

the reactor, whereas 0→ Xi, called an inflow reaction represents the fact that species Xi is fed to

the reactor at a constant rate.

We assume that the rate of change of the concentration of each species is governed by mass-action

kinetics [17], i.e., that each reaction takes place at a rate that is proportional to the product of the

concentrations of the species being consumed in that reaction. For example, under the mass-action

kinetics assumption, the contribution of the reaction X1 +X2 → X4 to the rate of change of x4 has

the form k1x1x2 , where k1 is a positive number called reaction rate constant. In the same way, this

reaction contributes the negative value −k1x1x2 to the rates of change of x1 and x2. Similarly, if

the reaction rate constant of X4 → X1 +X2 is k2, then this reaction contributes k2x4 to the rate of

change of x1 and −k2x4 to the rate of change of x4. The outflow reaction X1 → 0 contributes the

term −k9x1 to the rate of change of x1, whereas the inflow reaction 0→ X1 contributes the constant

quantity k10 to the rate of change of X1. Collecting these contributions from all the reactions, we

obtain the system of differential equations (2) for x = (x1, . . . , x6) ∈ R6
>0.

dx1

dt
= −k1x1x2 + k2x4 + 2k5x3 − 2k6x

2
1 − k9x1 + k10(2)

dx2

dt
= −k1x1x2 + k2x4 − k3x2x3 + k4x5 − k11x2 + k12

dx3

dt
= −k3x2x3 + k4x5 − k5x3 + k6x

2
1 − 2k7x

2
3 + 2k8x6 − k13x3 + k14

dx4

dt
= k1x1x2 − k2x4 − k15x4 + k16

dx5

dt
= k3x2x3 − k4x5 − k17x5 + k18

dx6

dt
= k7x

2
3 − k8x6 − k19x6 + k20

Consider the (vector-valued) rate function r : R6
>0 × R20

>0 → R6 given by the right-hand side of

the system (2). Then (2) can be written

(3)
dx

dt
= r(x,k)
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where x = (x1, . . . , x6) is the vector of species concentrations and k = (k1, . . . , k20) is the vector of

parameters (reaction rate constants).

We say that the system (3) admits two different equilibria for some vector of parameters k if

there exist two distinct vectors of species concentrations x and x′ such that r(x,k) = r(x′,k) = 0.

Therefore, if the function r(·,k) is injective (i.e., one-to-one) for some parameter vector k, then the

system (3) cannot admit multiple equilibria for that k. This connection between global injectivity

and capacity for multiple equilibria has been used before in the context of mass-action systems

[5, 6, 7, 25], general chemical kinetics [1, 2, 10, 9], or even general models of interaction networks

[3]. In this paper we focus on mass-action systems, so r(·,k) is a family of polynomial functions

indexed by the parameter vector k.

The following theorem regarding global injectivity of families of polynomial (or, more general,

power-law) functions was proved in [5] (see also [8] for a formulation which is more similar to the

one below). If x = (x1, . . . , xn) ∈ Rn
>0 and y = (y1, . . . , yn) ∈ Rn we denote xy =

∏n
i=1 x

yi
i .

Theorem 1. Consider a family of maps pk : Rn
>0 → Rn, given by

pk(x) =
m∑
i=1

kix
yizi,

where k = (k1, ..., km) ∈ Rm
>0, and y1, . . . ,ym, z1, . . . ,zm ∈ Rn. The maps pk are injective for all

k ∈ Rm
>0 if and only if det(Jac(pk(x))) 6= 0 for all x ∈ Rn

>0 and all k ∈ Rm
>0, where Jac(pk(x)) is

the Jacobian matrix of pk at x.

If a mass-action differential equation system associated to a reaction network has injective right-

hand side for some values of k, then we say that the reaction network is injective for those values

of k.

We may try to use Theorem 1 to analyze the capacity for multiple equilibria for the system

(2) and calculate det(Jac(r(x,k))) = det
(
(∂r(x,k)i/∂xj)i,j∈{1,...,n}

)
. Using the software package

BioNetX [24] we obtain
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det(Jac(r(x,k))) = k5k9k10k17k15k19 + k4k8k9k11k13k15 + 4k6k8k11k13k15k17 x1(4)

+ k2k3k8k9k11k17 x2 + k2k3k9k11k17k19 x2 + k1k3k8k11k15k17 x
2
2

+ k1k3k11k15k17k19 x
2
2 + k3k8k9k13k15k17 x3 + k3k9k13k15k17k19 x3

+ 4k3k7k9k15k17k19 x
2
3 + 4k2k3k7k9k17k19 x

2
3 + 4k1k3k7k15k17k19 x2x

2
3

+ . . .

+ k1k3k8k13k15k17 x2x3 + k1k3k13k15k17k19 x2x3

+ 4k1k4k7k11k15k19 x2x3 + 4k1k7k11k15k17k19 x2x3

− k1k3k5k8k15k17 x2x3 − k1k3k5k15k17k19 x2x3.

The expansion (4) of det(Jac(r(x,k))) contains 93 terms, of which 91 are positive terms (only

16 of which are shown in (4)) and two are negative terms (both are shown on the last line of (4)).

Exactly four positive terms and both negative terms of this expansion contain the x-monomial

x2x3. These terms are written explicitly on the last three lines of (4). For an analysis of the

sparseness of the negative terms, see [19, 20].

Theorem 1 does not allow us to draw any conclusion about the capacity for multiple equilibria

of the network (1), because the expansion of det(Jac(r(x,k))) above has some negative coefficients

(see also Theorem 3.3 in [5]). 1

Given the expression of det(Jac(r(x,k))) above, we conclude that for some values of the param-

eter vector k the function r(·,k) is injective on Rn
>0, while for other values of k the function r(·,k)

is not injective on Rn
>0. Note though that, even if det(Jac(r(x,k))) 6= 0 for some k, Theorem 1

does not guarantee that r(·,k) is injective for that value of k.

Therefore, in this paper we address the following main questions:

Question 1. Given a reaction network, is it true that if det(Jac(r(·,k))) 6= 0 for some values 2 of

k, then r(·,k) is injective on Rn
>0 for those values of k?

1On the other hand, if we remove one or more reactions from network (1), i.e., set some of the ki equal to zero,

then det(Jac(r(x, k))) may become strictly positive on R6
>0 for all values of the new k and Theorem 1 applies. See [5]

for many other examples where Theorem 1 does apply.

2by det(Jac(r(·, k))) we mean the polynomial det(Jac(r(x, k))) regarded as a function of x ∈ Rn
>0.
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and

Question 2. Given a reaction network which is not injective for all values of the reaction rate

vector k = (k1, ..., km), are there any explicit conditions on k1, . . . , km which guarantee that

det(Jac(r(·,k))) 6= 0 on Rn
>0?

Note that Question 1 is similar to the Jacobian conjecture over the field of real numbers, which

says that if a polynomial function f : Rn → Rn has nonsingular Jacobian everywhere, then f is

injective. On the other hand, there is also an important difference, since in Question 1 the domain

of the function r(·,k) is restricted to Rn
>0.

While the real Jacobian conjecture has been shown to be false [26], we will see in Section 2 that

a version of the real Jacobian conjecture holds for quadratic polynomial functions. Therefore, for

all uni- and bi-molecular reaction networks, whenever we can show that det(Jac(r(·,k))) 6= 0 for

some values of k, it will follow that there cannot be any multiple equilibria for those values of k.

In general, note that an affirmative answer to Question 1 makes Question 2 very relevant. Ques-

tion 2 deals with global positivity of polynomials on the positive orthant and is significantly more

difficult than Question 1. A large portion of this paper (Section 3) addresses Question 2 using

methods from the field of geometric programming [30, 14, 15, 16]. Note also that even for networks

for which the answer to Question 1 is negative or unknown, one can still take advantage of an

affirmative answer to Question 2, by applying methods based on homotopy invariance of degree

[10].

2. Global injectivity for quadratic polynomials

The vast majority of reaction networks encountered in applications contain only uni- and bi-

molecular elementary reactions, since the collision of three or more molecules at the same place

and time is very rare [29]. The class of uni- and bi-molecular reactions networks is therefore

very important.3 In this section we prove an equivalence between local and global injectivity for

quadratic polynomial functions on a convex domain, which will imply that for the class of uni- and

bi-molecular reaction networks, the answer to Question 1 is affirmative.

3 By “uni- and bi-molecular reactions network” we mean a finite set of reactions where, for each reaction, the

number of reactant molecules is 2 or less (while the number of product molecules can be any non-negative integer).

For example, 2A→ 3B and A + B → C + 2D are such reactions.
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Note that Theorem 2 applies for a single polynomial function g, while Theorem 1 only applies

for families of functions.

Theorem 2. Let g = (g1, . . . , gn) : Rn → Rn be a polynomial function such that the degree of each gi

is at most two. Then g is injective on some convex open set Ω ⊂ Rn if and only if det(Jac(g(x)) 6= 0

for all x ∈ Ω.

Proof. We show that g is not injective on Ω if and only if the determinant of the Jacobian of g

vanishes on Ω. Suppose there exist two distinct points x′,x′′ ∈ Ω such that g(x′) = g(x′′). Let

x = (x′+x′′)/2 and let v = x′′−x′. The vector-valued function G(t) = g(x+ tv) defined for t ∈ R

has coordinates Gi(t) = gi(x + tv), i ∈ {1, . . . , n}, which are polynomials in t of degree at most

two. By hypothesis, gi(x′) = gi(x′′) for all i ∈ {1, . . . , n} and it follows that Gi(−1/2) = Gi(1/2)

for all i ∈ {1, . . . , n}. Since deg(Gi) ≤ 2, it follows that the graph of Gi is either an horizontal line

or a parabola with symmetry axis t = 0. This implies that dGi/dt|t=0 = 0 and therefore

(5) 0 =
dG

dt

∣∣∣∣∣
t=0

= Jac(g)
∣∣
x
v.

Since v 6= 0 we conclude that det(Jac(g)
∣∣
x

) = 0.

The reverse implication is shown similarly. If det(Jac(g)
∣∣
x

) = 0 for some x ∈ Ω then there exists

v ∈ Rn such that Jac(g)
∣∣
x
v = 0. Defining G(t) = g(x + tv) as above, we see from (5) that for

each coordinate Gi, i = {1, . . . , n} of G we have dGi/dt |t=0= 0. Since each Gi is a polynomial

in t of degree at most two, its graph must be symmetric about the vertical line t = 0 and we

have G(t) = G(−t) for all t ∈ R. Since Ω is open, we may choose t > 0 small enough such that

x′ = x − tv and x′′ = x + tv are also in Ω. We then have g(x′) = g(x′′) and therefore g is not

injective on Ω. �

Remark 1. From Theorem 2 it follows by looking at the last three lines of (4) that if

k1k3k8k13k15k17 + k1k3k13k15k17k19 + 4k1k4k7k11k15k19 + 4k1k7k11k15k17k19(6)

≥ k1k3k5k8k15k17 + k1k3k5k15k17k19

then the system (2) has an injective right-hand side, so it cannot have multiple equilibria on R6
>0.

In general, given some quadratic rate function r(x,k), let us denote

(7) fk(x) = det(Jac(r(x,k))).
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We regard fk(x) as a polynomial function of x ∈ Rn
>0 and depending on the vector of parameters

k ∈ Rm
>0.

According to Theorem 2, whenever we can prove that fk 6= 0 on Rn
>0 for some k, it follows that

the dynamical system dx/dt = r(x,k) cannot have multiple equilibria for that k.

The inequality (6) shows a trivial example where we have been able to show that fk 6= 0 on Rn
>0,

because, if (6) is satisfied, then the negative terms in fk are being dominated by the sum of the

positive terms corresponding to the same x-monomial, x2x3.

In the next sections we will see that there are several non-trivial ways for the sum of the positive

terms of fk to dominate the negative terms of fk. For example, we will see that appropriate linear

combinations of the monomials x2
2, x3 and x2x

2
3 dominate the monomial x2x3 for all x2, x3 > 0.

In general, we will focus on finding explicit conditions for a positive linear combination of mono-

mials to dominate another monomial on the whole positive orthant.

3. Polynomial inequalities on the positive orthant

Establishing the positivity of a polynomial on the positive orthant is an important problem

with numerous applications in engineering, economy or biology [4, 16]. In what follows we focus

on polynomials that are positive on the positive orthant and contain a single negative coefficient.

More precisely, if n is a positive integer, x = (x1, . . . , xn), f ∈ R[x] is a polynomial with positive

coefficients and h(x) = xγ11 . . . xγn
n , we ask whether f(x)− h(x) ≥ 0 for all x ∈ Rn

>0.

We will consider the more general case when the exponents of f and h are arbitrary real numbers,

and not necessarily positive integers. A power function h : Rn
>0 → R is given by h(x) = xα for

some α = (α1, . . . , αn) ∈ Rn, where we use the notation xα =
∏n
i=1 x

αi
i . To simplify the exposition,

we slightly abuse the terminology and call power functions monomials, keeping in mind that the

exponents α are allowed to have real (positive, negative, or zero) coordinates instead of the usual

non-negative integer coordinates.

A finite nonnegative linear combination of monomials is called a posynomial [16, 15]. The precise

statement of the problem we consider is the following:

Let α(0), . . . ,α(m),γ ∈ Rn, be fixed vectors. For a given a = (a0, . . . , am) ∈ Rm+1
≥0 , check whether

(8) f(x) =
m∑
i=0

aix
α(i) ≥ xγ for all x ∈ Rn

>0.
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What can be said about the set M of nonnegative vectors a ∈ Rm+1
≥0 for which (8) holds?

While an explicit (closed-form) necessary and sufficient condition for a generic vector a to belong

to M is possible only in special cases (see Proposition 3), the problem of verifying (8) for a given

a ∈ Rm+1
≥0 enjoys nice mathematical properties that make it amenable to numerical approaches.

3.1. Monomials dominated by posynomials. In the next subsection we consider inequality (8)

and we introduce a couple of simplifying assumptions that can be made without loss of generality.

3.1.1. Preliminary assumptions. Inequality (8) holds for some a ∈ Rm+1
≥0 if and only ifα(0), . . . ,α(m),γ

satisfy a geometric condition, as stated in the next proposition.

Proposition 1. Let α(0),α(1), . . . ,α(m),γ ∈ Rn and a0, a1, . . . , am ∈ R>0 such that

(9) f(x) =
m∑
i=0

aix
α(i) ≥ xγ

for all x ∈ Rn
>0. Then γ lies in the convex hull of α(0),α(1), . . . ,α(m), denoted by conv(α(0),α(1), . . . ,α(m)).

Conversely, if γ ∈ conv(α(0),α(1), . . . ,α(m)) then there exist a0, a1, . . . , am ∈ R>0 such that (9) is

satisfied for all x ∈ Rn
>0.

Proof. Suppose γ /∈ conv(α(0),α(1), . . . ,α(m)). We show that there exists x ∈ Rn
>0 for which

inequality (9) is false. Let M > 0. First we prove that there exists x ∈ Rn
>0 such that for all

j ∈ {0, 1, . . . ,m},

(10) Mxα
(j)
< xγ ,

or equivalently (taking logarithms and letting X = logx), that there exists X ∈ Rn such that

(11) 〈α(j) − γ,X〉 < − logM

for all j ∈ {0, 1, . . . ,m}.

Since γ is not in the convex hull of {α(0),α(1), . . . ,α(m)}, the convex cone C with vertex at γ

generated by the vectors α(0) − γ, . . . ,α(m) − γ is not equal to Rn. Then the normal cone N of C

at γ is not equal to 0, and therefore there exists X̄ such that

〈α(j) − γ, X̄〉 < −ε
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α(0)α(0)

α(2)

α(3)

α(4)

α(5)

γ

α(1)

(a)
C

N

(b)

α(0) α(1) α(2)γ

α(4)

α(5)

α(3)

α(6)

Figure 1. (a) Illustration of the proof of Proposition 1; (b) An example configura-

tion for Lemma 2.

for some ε > 0 and for all j ∈ {0, . . . ,m} (see Figure 1(a)). If we choose X to be equal to X̄

multiplied by a sufficiently large constant, inequality (11) is true.

Finally, setting M = m ·max{a0, . . . , am} and summing (10) over all j one obtains the contra-

diction
m∑
i=0

aix
α(i)

< xγ .

For the converse we use the weighted arithmetic and geometric means inequality (see [27]): if∑m
i=1 λi = 1 for some nonnegative numbers λi, then

m∑
i=1

λiyi ≥
m∏
i=1

yλi
i

for all y1, . . . , ym > 0.

We let λ1, . . . , λm be nonnegative numbers such that
∑m

i=1 λi = 1 and γ =
∑m

i=1 λiα
(i). We

permute the indices such that for some k ≤ m we have λ1, . . . , λk > 0 and λk+1 = 0, . . . , λm = 0.

Then we have

m∑
i=0

xα
(i) ≥

k∑
i=0

xα
(i)

=
k∑
i=0

λi

(
1
λi
xα

(i)

)
≥

k∏
i=1

(
1
λi

)λi

x
Pk

i=0 λiα
(i)

=
k∏
i=1

(
1
λi

)λi

xγ

and therefore inequality (9) is satisfied for a1 = . . . = am =
∏k
i=1 λ

λi
i . �
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Motivated by Proposition 1 we focus on exponentsα(0), . . . ,α(m) and γ such that γ ∈ conv(α(0), . . . ,α(m))

and we consider the set of nonnegative linear combinations of xα
(0)
, . . . ,xα

(m)
that dominate xγ

on Rn
>0.

Definition 1. Let α(0), . . . ,α(m) ∈ Rn and λ ∈ Rm+1
≥0 such that

∑m
j=0 λj = 1, and denote

γ =
∑m

j=0 λjα
(j). Then

M(α(0), . . . ,α(m),λ)

is defined as the set of vectors a = (a0, a1, . . . , am) ∈ Rm+1
≥0 such that

(12)
m∑
i=0

aix
α(i) ≥ xγ for all x ∈ Rn

>0.

Note that, by letting lnx = X,M(α(0), . . . ,α(m),λ) is also defined as the set of a = (a0, . . . , am)

such that

(13)
m∑
i=0

aie
〈α(i),X〉 ≥ e〈γ,X〉 for all X ∈ Rn,

where 〈·, ·〉 represents the usual dot product on Rn.

A couple of simplifying assumptions on α(0), . . . ,α(m),γ can be made as consequences of the

following lemmas. In what follows, if V is a set of vectors, then affspan(V) will denote the affine

span of V.

Lemma 1. If L : affspan(α(0), . . . ,α(m),λ)→ Rn′
is an affine transformation then

M(α(0), . . . ,α(m),λ) ⊆M(L(α(0)), . . . , L(α(m)),λ).

If L is one-to-one, then the inclusion becomes equality.

Proof. Let L = L′ + σ where L′ is some linear transformation and σ ∈ Rn′
, let a = (a1, . . . , am) ∈

M(α(0), . . . ,α(m),λ) and let X ∈ Rn′
be chosen arbitrarily. If we denote γ =

∑m
i=0 λiα

(i) then

(13) yields
m∑
i=0

aie
〈α(i),L′t(X)〉 ≥ e〈γ,L′t(X)〉

or equivalently
m∑
i=0

aie
〈L′(α(i)),X〉 ≥ e〈L′(γ),X〉,
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which implies

e〈σ,X〉
m∑
i=0

aie
〈L′(α(i)),X〉 ≥ e〈σ,X〉e〈L′(γ),X〉,

or equivalently
m∑
i=0

aie
〈L(α(i)),X〉 ≥ e〈L(γ),X〉.

Since L(γ) =
∑m

i=0 λi(L(α(i))), we conclude that a ∈M(L(α(0)), . . . , L(α(m)),λ). �

Lemma 2. Suppose γ =
∑m

i=0 λiα
(i) lies on the boundary of conv(α(0), . . . ,α(m)) and suppose,

without loss of generality, that for some k < m, conv(α(0), . . . ,α(k)) is the smallest face of the

convex polytope conv(α(0), . . . ,α(m)) that contains γ, and that α(k+1), . . . ,α(m) do not belong to

this face. Then

M(α(0), . . . ,α(m),λ) =M(α(0), . . . ,α(k), λ̃)× Rm−k
≥0 ,

where λ̃ = (λ1, . . . , λk).

Proof. Figure 1(b) depicts a set of exponents α(i) as in the hypothesis of Lemma 1. The inclusion

M(α(0), . . . ,α(m),λ) ⊇M(α(0), . . . ,α(k), λ̃)× Rm−k
≥0

is clear. For the reverse inclusion, let a = (a1, . . . , am) ∈ M(α(0), . . . ,α(m),λ) and let X ∈

Rn be chosen arbitrarily. The hypothesis implies that there is a supporting hyperplane H of

conv(α(0), . . . ,α(m)) that contains α(0), . . . ,α(k),γ, and α(k+1), . . . ,α(m) lie on the same side of

H. If H has normal vector n then we have

〈α(i) − γ,n〉 = 0 for i ∈ {0, . . . , k}(14)

〈α(i) − γ,n〉 < 0 for i ∈ {k + 1, . . . ,m}.(15)

Using (13), for any t > 0 we have

m∑
i=0

aie
〈α(i)−γ,X+tn〉 ≥ 1,

or, taking into account (14),

k∑
i=0

aie
〈α(i)−γ,X〉 +

m∑
i=k+1

aie
〈α(i)−γ,X〉et〈α

(i)−γ,n〉 ≥ 1.
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Using (15) and making t → ∞ we obtain
∑k

i=0 aie
〈α(i)−γ,X〉 ≥ 1, or

∑k
i=0 aie

〈α(i),X〉 ≥ e〈γ,X〉.

Since X was chosen arbitrarily, we have (a0, . . . , ak) ∈M(α(0), . . . ,α(k), λ̃), as desired. �

Remark 2. In the inequality (12) that defines the setM(α(0), . . . ,α(m),λ), the dimension of x is n.

Lemma 1 implies that, in fact, M(α(0), . . . ,α(m),λ) can be defined by a similar inequality where

the dimension of x is equal to the dimension of affspan(α(0), . . . ,α(m)). Therefore, without loss of

generality we can assume that the dimension of affspan(α(0), . . . ,α(m)) equals the dimension n of

x.

For example, since (2, 2) = 0(0,−2) + (1/2)(3/2, 1) + (1/2)(5/2, 3), the set

M((0,−2), (3/2, 1), (5/2, 3), (0, 1/2, 1/2)) consists of vectors a = (a0, a1, a2) such that

a0y
−2 + a1x

3/2y + a2x
5/2y3 ≥ x2y2 for all (x, y) ∈ R2

>0,

or equivalently

a0x
−1y−2 + a1x

1/2y + a2x
3/2y3 ≥ xy2 for all (x, y) ∈ R2

>0.

Making t = x1/2y, the inequality above is equivalent to

a0t
−2 + a1t+ a2t

3 ≥ t0·(−2)+(1/2)·1+(1/2)·3 = t2 for all t ∈ R2
>0,

and therefore M((−1, 2), (1/2, 1), (3/2, 3), (0, 1/2, 1/2)) =M(−2, 1, 3, (0, 1/2, 1/2)). Note that

dim(affspan{(0,−2), (3/2, 1), (5/2, 3)}) = 1.

Remark 3. Lemma 2 states that the monomials whose exponents α(i) do not lie on the face of

conv(α(0), . . . ,α(m)) that contains γ do not play any useful role in satisfying inequality (8), i.e. if

we remove them from the left-hand side of (8) , the inequality is still true. We can take advantage

of this fact and assume that no such monomial exists, or in other words, that γ is contained in the

interior of conv(α(0), . . . ,α(m)).

In the light of these remarks, for the remainder of this section we will consider the inequality (8)

(or the set M(α(0), . . . ,α(m),λ)) for exponents that satisfy the following constraints:

(i) the affine span of {α(0), . . . ,α(m)}is full dimensional,(16)

(ii) γ is contained in the interior of conv(α(0), . . . ,α(m)).
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3.1.2. Geometric programming approach. With the notation introduced so far, recall thatα(0), . . . ,α(m) ∈

Rn, λ ∈ Rm+1
≥0 such that

∑m
i=0 λi = 1, and γ =

∑m
i=0 λiα

(i). Denoting α(0) = α(0)−γ, . . . ,α(m) =

α(m) − γ, inequality (8) can be written equivalently

(17) f(x) = f(x)x−γ =
m∑
i=0

aix
α(i) ≥ 1 for all x ∈ Rn

>0,

and it follows that a = (a1, . . . , am) ∈M(α(0), . . . ,α(m),λ) if and only if

(18) inf
x∈Rn

>0

m∑
i=0

aix
α(i) ≥ 1

Finding the infimum of a posynomial on the positive orthant is a special case of a class of

optimization problems called geometric programs ([30, 14, 15, 16]). Classical (and more general)

results in geometric programming imply that the geometric program (18) has a unique positive

solution. For completeness, we provide a short proof of this fact in Theorem 3 below. Recall that

we have made simplifying assumptions on the posynomial f , which we restate in Theorem 3.

Theorem 3. If a posynomial f(x) =
∑m

i=0 aix
α(i)

with ai > 0 for all i ∈ {0, . . . ,m} is such that

(i) the span of {α(0), . . . ,α(m)} is full dimensional,

(ii) the origin is contained in the interior of conv(α(0), . . . ,α(m));

then infx∈Rn
>0
f(x) is attained for a unique x in the positive orthant.

Proof. Let [0,∞] be the standard compactification of the positive real line. We may extend f

continuously to a function F : [0,∞]n → [0,∞]. Indeed, let y = (y1, . . . , yn) ∈ ∂[0,∞]n. Since

0 ∈ conv(α(0), . . . ,α(m)), there exists ε = (ε1, . . . , εn) in the interior of conv(α(0), . . . ,α(m)) such

that εi > 0 if yi = ∞ and εi < 0 if yi = 0. Let (δ0, . . . , δm) ∈ Rm+1
>0 such that

∑m
i=0 δi = 1 and

ε =
∑m

i=0 δiα
(i). The weighted arithmetic and geometric means inequality [27] yields

f(x) =
m∑
i=0

aix
α(i)

=
m∑
i=0

δi

(
ai
δi
xα

(i)

)
≥

m∏
i=1

(
ai
δi

)δi
x

Pm
i=0 δiα

(i)
=

m∏
i=1

(
ai
δi

)δi
xε.

Our choice of ε implies that limx→y f(x) ≥
∏m
i=1

(
ai
δi

)δi
limx→y x

ε =∞. Defining F (∂[0,∞]n) =∞

produces the desired extension of f. Let M > 0 be such that [0,M ] ∩ f(Rn
>0) 6= ∅. Since F is

continuous we have F−1([0,M ]) ⊂ [0,∞]n is closed. Since F (∂[0,∞]n) =∞, we have F−1([0,M ]) ⊂

[a, b]n for some a, b ∈ (0,∞). Therefore infRn
>0
f = inf [a,b]n f = f(xmin) for some xmin ∈ [a, b]n.
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It remans to show that the minimum point xmin is unique. Letting X = lnx, this is equivalent

to proving that

g(X) =
m∑
i=0

e〈α
(i),X〉

has a unique minimum on Rn. We show that this is the case by proving that g is strictly convex.

Indeed, a short computation shows that the Hessian of g is

Hg(X) =
m∑
i=0

e〈α
(i),X〉α(i) ⊗α(i)t

where we assume that α(i) is a column vector, α(i)t denotes the transpose of α(i) and “⊗” represents

the Kronecker product of two matrices [21]. To check that Hg(X) is positive definite, we let Y ∈ Rn

be an arbitrary row vector and we have

(19) Y Hg(X)Y t =
m∑
i=0

e〈α
(i),X〉Y (α(i) ⊗α(i)t)Y t =

m∑
i=0

e〈α
(i),X〉〈α(i),Y 〉2

where the last equality is a consequence of the mixed-product property of the Kronecker product

[21]:

Y (α(i)⊗α(i)t)Y t = Y (α(i)⊗α(i)t)(1⊗Y t) = Y (α(i)1⊗α(i)tY t) = (Y α(i))(α(i)tY t) = 〈α(i),Y 〉2.

It follows from (19) that Y Hg(X)Y t ≥ 0, with equality if only if Y is orthogonal to all α(i),

i ∈ {0, . . . ,m}. Since α(0), . . . ,α(m) span the whole Rn, no such nonzero Y exists. �

Remark 4. A geometric program is not necessarily a convex optimization problem, since a posyno-

mial is not necessarily a convex function. However, making the change of variable X = lnx, as we

have done in the proof of Theorem 3, leads to a convex optimization problem, which can be solved

numerically.

3.2. The case of affinely independent exponents.

Proposition 2. Consider affinely independent α(0), . . . ,α(m) ∈ Rn and λ ∈ Rm+1
≥0 such that∑m

i=0 λi = 1. Then the set M(α(0), . . . ,α(m),λ) does not depend on the particular choice of

α(0), . . . ,α(m), or on the number n.



INJECTIVITY AND MULTIPLE EQUILIBRIA IN UNI- AND BI-MOLECULAR REACTION NETWORKS 15

Proof. Let β(0), . . . ,β(m) ∈ Rn′
be another affinely independent (m+1)-tuple of dimension n′. Then

there exists an invertible affine transformation L : affspan{α(0), . . . , α(m)} such that β(i) = L(α(i))

for all i ∈ {1, . . . ,m} and the conclusion of the proposition follows from Lemma 1. �

In view of Proposition 1 we may state the following definition.

Definition 2. For any affinely independent α(0), . . . ,α(m) ∈ Rn and for λ ∈ Rm+1
≥0 such that∑m

i=0 λi = 1 we denote

M(λ) =M(α(0), . . . ,α(m),λ).

Remark 5. If τ is a permutation of {0, . . . ,m} and τ(λ) denotes the vector (λτ(0), . . . , λτ(m)) then

M(λ) =M(α(0), . . . ,α(m),λ) =M(α(τ(0)), . . . ,α(τ(m)), τ(λ)) =M(τ(λ)).

Remark 6. Let {e1, . . . , em} denote the standard basis of Rm. The set {0, e1, . . . , em} is affinely

independent and therefore

M(λ) = {(a0, . . . , am) ∈ Rm+1 | Fλ(x) ≥ 0 for all x = (x1, . . . , xm) ∈ Rm
>0},

where Fλ : Rm
>0 → R, Fλ(x) = a0 + a1x1 + . . .+ amxm − xλ1

1 xλ2
2 . . . xλm

m .

If α(0), . . . ,α(m) are affinely independent, the following result gives an explicit necessary and

sufficient condition for a linear combination of monomials xα
(0)
, . . . ,xα

(m)
to dominate xγ on the

whole positive orthant Rn
>0, given that γ is in the convex hull of {α(0), . . . ,α(m)}.

Proposition 3. For any λ ∈ Rm+1
≥0 such that

∑m
j=0 λi = 1 we have:

M(λ) = {(a0, a1, . . . , am) ∈ Rm+1
≥0 |

m∏
i=0

(
λi
ai

)λi

≤ 1}.

Proof. From Remark 3, we may permute the coordinates of λ such that, for some k ≤ m, λ0, . . . , λk

are positive and λk+1, . . . , λm are zero. Let λ̃ = (λ0, . . . , λk) ∈ Rk+1
>0 .

Lemma 2 implies that M(λ) = M(λ̃) × Rm−k. Since by convention we have 0/0 = 00 = 1, it

follows that (λi/a)λi = 1 for all i ∈ {k + 1, . . . ,m} and for all a ∈ R. Therefore the conclusion of

the proposition is equivalent to

M(λ̃) = {(a0, a1, . . . , ak) ∈ Rk+1
≥0 |

k∏
i=0

(
λi
ai

)λi

≤ 1}.
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Let α(0), . . . ,α(k) be affinely independent vectors and let γ =
∑k

i=1 λiα
(i). The weighted arith-

metic and geometric means inequality yields

(20)
k∑
i=0

aix
α(i)

=
k∑
i=0

λi

(
ai
λi
xα

(i)

)
≥

k∏
i=1

(
ai
λi

)λi

x
Pm

i=0 λiα
(i)

=
k∏
i=1

(
ai
λi

)λi

xγ .

It follows that if
∏k
i=0

(
λi
ai

)λi

≤ 1, then
∑m

i=0 aix
α(i) ≥ xγ and therefore {(a0, a1, . . . , ak) ∈

Rk+1
≥0 |

∏k
i=0

(
λi
ai

)λi

≤ 1} ⊂ M(λ̃).

For the reverse inclusion let (a0, a1, . . . , ak) ∈M(λ̃) and note that, since α(0), . . . ,α(k) are affinely

independent, α(1) − α(0), . . . ,α(k) − α(0) are linearly independent and there exists x0 ∈ Rn
>0 such

that for all i ∈ {1, . . . , k} we have

(α(i) −α(0)) · lnx0 = ln
(
ai
λi
· λ0

a0

)
, or equivalently

ai
λi
x0
α(i)

=
a0

λ0
x0
α(0)

.

Then the inequality in (20) becomes equality for x0 and, since (a0, a1, . . . , ak) ∈M(λ̃), we have

k∏
i=1

(
ai
λi

)λi

x0
γ =

k∑
i=0

aix0
α(i) ≥ x0

γ

and therefore
∏k
i=1

(
λi
ai

)λi

≤ 1. �

4. Examples

While the results discussed in the previous section apply to general polynomial inequalities, in

this section we discuss some examples of how one can use them to study the capacity for multiple

equilibria of reaction networks. We revisit network (1) and we let r(x,k) denote the right-hand side

of the corresponding mass-action differential equations (2). Since the only x-monomial contained

in negative terms of the expansion (4) of det(Jac(r(x,k))) is x2x3, we collect x-monomials in (4)

and write

det(Jac(r(x,k))) = K0,0 +K1,0x2 +K0,1x3 +K2,0x
2
2 +K1,1x2x3 +K0,2x

2
3 +K1,2x2x

2
3(21)

+ terms containing x-variables other than x2 and x3.

Here Ki,j is the coefficient of xi2x
j
3 within the x-polynomial det(Jac(r(x,k))). The Ki,j ’s are k-

polynomials which can be computed easily using the software package BioNetX. If we assume that all

the outflow rates k9, k11, k13, k15, k17, k19 are equal (which is a common assumption in a chemostat



INJECTIVITY AND MULTIPLE EQUILIBRIA IN UNI- AND BI-MOLECULAR REACTION NETWORKS 17

1 x2 x2
2

x3

x2
3

x2x3

x2x
2
3

Figure 2. Monomials relevant in the positivity analysis of polynomial (4).

[13] or a continuous stirred-tank reactor (CSTR) [5]), then, by changing units, we may also assume

that this constant equals 1. Then we have

K0,0 = (1 + k2)(1 + k4)(1 + k5)(1 + k8)(22)

K1,0 = (1 + k8)(k1 + k3 + k1k4 + k1k5 + k2k3 + k1k4k5)

K0,1 = (1 + k2)(k3 + 4k7 + k3k5 + k3k8 + 4k4k7 + k3k5k8)

K2,0 = k1k3(1 + k8)

K1,1 = k1(k3 + 4k7 + k3k8 + 4k4k7 − k3k5 − k3k5k8)

K0,2 = 4k3k7(1 + k2)

K1,2 = 4k1k3k7.

Example 1. If k5 = 10 and ki = 1 for all i 6= 5 then we obtain K1,1 = −10 and (21) becomes

det(Jac(r(x,k))) = 88 + 48x2 + 60x3 + 2x2
2 − 10x2x3 + 8x2

3 + 4x2x
2
3(23)

+ terms containing x-variables other than x2 and x3.

Then, according to Proposition 3, it follows that

(24) 4x2x
2
3 + 48x2 > 10x2x3 for all x2, x3 > 0
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since we have
(

1/2
4/10

)1/2( 1/2
48/10

)1/2

< 1.

Also, note that, as shown in Figure 2, there are several other possible choices of positive mono-

mials that dominate the negative monomial K1,1x2x3 (shown using different colors in Figure 2),

such as

(25) 60x3 + 2x2
2 + 4x2x

2
3 > 10x2x3 for all x2, x3 > 0

since we have
(

1/3
60/10

)1/3( 1/3
2/10

)1/3( 1/3
4/10

)1/3

< 1.

In general, if a negative monomial is contained in the interior of the convex hull of a single set of

positive monomials then Proposition 3 provides a necessary and sufficient condition for injectivity,

in terms of a single inequality between the monomial coefficients.

Also, if a negative monomial is contained in the interior of the convex hull of several sets of positive

monomials (as is the case in Figure 2) then we can obtain sufficient conditions for injectivity by

combining several inequalities between monomial coefficients.

On the other hand, note that we cannot simply add the inequalities (24) and (25) to conclude

injectivity for larger values of k5 (corresponding to larger absolute values of K1,1), since they contain

the common term 4x2x
2
3. In future work we intend to study optimal methods of combining such

inequalities, and also consider the case of two or more negative monomials.

Example 2. Suppose we are interested in conditions on k that imply that det(Jac(r(x,k))) 6= 0 for

all x ∈ R6
>0. Then, according to Theorem 2, it will follow that r(·,k) is injective on R6

>0 for those

values of k, and, as we noted in the introduction, this rules out the capacity for multiple equilibria

of (2) for those values of k. Note that both of the negative terms in (4) contain the x-monomial

x2x3. Moreover, according to Figure 2, the exponent of the monomial x2x3 is in the convex hull

of the exponents of other monomials in det(Jac(r(x,k))). Then, according to Proposition 1, this

monomial may be dominated by a linear combination of other monomials in det(Jac(r(x,k))). For

example, a sufficient condition for injectivity of r(·,k) is

(26)
(

1/2
K2,0/K1,1

)1/2( 1/2
K0,2/K1,1

)1/2

< 1,

i.e., 4K2,0K0,2 > K2
1,1. In terms of the reaction rates ki this inequality becomes

(27) 16k1k
2
3k7(1 + k2)(1 + k8) > k2

1(k3 + 4k7 + k3k8 + 4k4k7 − k3k5 − k3k5k8)2.
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Since we only need to dominate the negative summands in the coefficient K1,1 of x2x3 (whose sum

is k3k5 + k3k5k8 = k3k5(1 + k8)), a simpler sufficient condition for the injectivity of r(·,k) is

(28) 16k1k
2
3k7(1 + k2)(1 + k8) > k2

1k
2
3k

2
5(1 + k8)2,

i.e.,

(29) 16k2k7 > k1k
2
5(1 + k8).

On the other hand, since (1, 1) = 1
4(0, 0) + 1

4(2, 0) + 1
2(1, 2), then, according to Proposition 3,

another sufficient condition for injectivity of r(·,k) is

(30)
(

1/4
K0,0/K1,1

)1/4( 1/4
K2,0/K1,1

)1/4( 1/2
K1,2/K1,1

)1/2

< 1,

i.e.,
1
64

<
K0,0K2,0K

2
1,2

K4
1,1

or K4
1,1 < 64K0,0K2,0K

2
1,2. As above, since we only need to dominate the negative summands in

K1,1x2x3, another condition for injectivity of r(·,k) in terms of the coordinates of k is

k4
1k

4
3k

4
5(1 + k8)4 < 64(1 + k2)(1 + k4)(1 + k5)(1 + k8)k1k3(1 + k8) 16k2

1k
2
3k

2
7,

or equivalently,

k1k3k
4
5(1 + k8)2 < 1024(1 + k2)(1 + k4)(1 + k5)k2

7.

There are two more similar inequalities that represent sufficient conditions for injectivity of r(·,k),

corresponding to the two other ways of choosing exponents that may dominate x2x3 shown in

Figure 2. Note also that, while the sufficient conditions for injectivity in terms of Ki,j are relatively

simple, they may become complicated when written in terms of ki’s, because the Ki,j ’s are in

general high degree polynomials in ki’s.

Example 3. Finally, suppose we are trying to create a multistable system based on the reaction

network (1) and, in a setting often encountered in synthetic biology [23, 28], we have some freedom

in choosing the size (i.e., order of magnitude) of some parameter kj in the system (2). Then we need

to make sure that such a choice of k leads to a reaction rate function r(·,k) which is not injective,

i.e., det(Jac(r(·,k))) does change its sign on R6
>0 for this value of k. For example, suppose that we

know that ki = O(1) for i 6= 5, and that we have biochemical tools that allow us to assume that
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k5 >> 1. Then, by looking at the equations (22) we conclude that, under these assumptions, we

will have K1,1 < 0, and that there will be no terms in the expansion of det(Jac(r(x,k))) that can

dominate K1,1x2x3 on the whole positive orthant R6
>0, because k5 does not appear in any set of

Ki,j ’s corresponding to a set of monomials that may dominate the monomial x2x3. On the other

hand, K1,1x2x3 also cannot dominate all other terms in the expansion of det(Jac(r(x,k))). Then

it follows that det(Jac(r(·,k))) has both positive and negative values on R6
>0, so it must vanish

somewhere on R6
>0. Therefore, r(·,k) is not injective on R6

>0.

This is not the case if we consider the same scenario with k3 instead of k5, because k3 does appear

in a set of Ki,j ’s corresponding to monomials that may dominate the monomial x2x3 (see (22) and

Figure 2). In other words, it follows that if we are trying to create a multistable system based on

the reaction network (1) and we have the biochemical means to increase either k3 or k5, we must

choose k5.

5. Discussion

The global inequalities discussed in this paper may also be used for designing sufficient conditions

for injectivity and uniqueness of equilibria using the P-matrix criteria developed in [1, 3]. These

methods can also be used in the design of Lyapunov functions for the study of boundedness and

persistence [11] and global stability [12] of mass action systems. We have also described how one

can use methods developed in this paper for the design of functional modules in systems biology

and synthetic biology.

Note also that Theorem 2 may be used even if such inequalities do not actually hold on the

whole positive orthant Rn
>0, but only on some set Ω ⊂ Rn

>0, where n is the number of species.

Then, it follows that r(·,k) is injective on any convex open set Ω′ ⊂ Ω, so the system (2) cannot

have multiple equilibria on any such domain Ω′. In particular, these methods are amenable to the

use of interval analysis [18, 22], and may allow us to derive information about the dynamics of a

mass-action system given only approximate measurements of parameter values.
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