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1. Introduction

A chemical reaction network, under the assumption of mass-action kinetics, gives rise to a dynam-

ical system governing the concentrations of the different chemical species [1–11]. We are interested

in studying the inverse problem, i.e., the identifiability of the reaction network and of its reaction

rate constants, given the dynamics of chemical species concentrations.

In modern chemical and biochemical research, it has become very common to collect detailed

information on time-dependent chemical concentration data for large networks of chemical reactions

(see survey papers [12, 13]). In most cases, only the identity of the chemical species present in the

network is known, and the exact structure of the chemical reactions, as well as the reaction rate

constants are unknown; in other cases the set of chemical reactions (i.e. the reaction network) is

also known, and only the reaction rate constants are unknown.

A great variety of computational methods have been developed for the identification of chemical

reaction networks and their reaction rate constants from time-dependent measurements of chemical

species concentrations [14–21]. On the other hand, two different reaction networks might generate

identical dynamical system models, making it impossible to discriminate between them, even if we

are given experimental data of perfect accuracy and unlimited temporal resolution. (Sometimes this

limitation is referred to as the “fundamental dogma of chemical kinetics”, although it is actually

not a well known fact in the engineering or biochemistry communities [13,22,23].) We approach this

issue in section 4 where we describe necessary and sufficient conditions for two reaction networks

to give rise to the same dynamical system model.

Also, we will show that, even if we know the reaction network that gives rise to the chemical

dynamics under study, there might exist multiple sets of reaction rate constants that provide
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perfect fit for the data since they give rise to identical dynamical system models. In section 3 we

will describe necessary and sufficient conditions for the unique identifiability of the reaction rate

constants of a chemical reaction network.

In section 5 we apply some of these results in the case of a reaction network with n species,

that contains all possible reactions among all possible unimolecular and bimolecular complexes.

This reaction network is very important in applications, since it is the default network used if no a

priori information is provided on the reaction network structure [14]. We show that the number of

unknown parameters (reaction rate constants) can be reduced from O(n4) to O(n3) without loss of

generality on the kinetics, by considering dynamically equivalent reduced networks, but no reduced

network with uniquely identifiable rate constants exists.

In section 6 we show how one can use these results to deduce qualitative information on the

dynamics of reaction networks; in particular, we describe an example where we deduce that some

reaction network cannot give rise to multiple positive equilibria for any values of its reaction rate

constants.

2. Chemical reaction networks and mass-action kinetics

A chemical reaction network is usually given by a finite list of reactions that involve a finite set

of chemical species. As an example, consider the reaction network with two species A1 and A2

schematically given in the diagram

(1) 2A1
/ )
A1 + A2o / 2A2i o
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To keep track of the temporal evolution of the state of this chemical system, we define the

functions cA1(t) and cA2(t) to be the molar concentrations of the species A1, A2 at time t. The

chemical reactions in the network are responsible for changes in the concentrations; for instance,

whenever the reaction A1+A2 → 2A1 occurs, the net gain is a molecule of A1, whereas one molecule

of A2 is lost. Similarly, the reaction 2A2 → 2A1 results in the the creation of two molecules of A1

and the loss of two molecules of A2.

To complete the setup, we need to quantify how often every reaction occurs. We will assume that

the rate of change of the concentration of each species is governed by mass-action kinetics [1–11], i.e.,

that each reaction takes place at a rate that is proportional to the product of the concentrations

of the species being consumed in that reaction. For example, under the mass-action kinetics

assumption, the contribution of the reaction A1 + A2 → 2A1 to the rate of change of cA1 has the

form kA1+A2→2A1cA1cA2 , where kA1+A2→2A1 is a positive number called reaction rate constant. In

the same way, the reaction 2A2 → 2A1 contributes the negative value −2k2A2→2A1c
2
A2

to the rate of

change of cA2 . Collecting these contributions from all the reactions, we obtain the following system

of differential equations associated to our chemical reaction network:

ċA1 = −k2A1→A1+A2c
2
A1

+ kA1+A2→2A1cA1cA2 − kA1+A2→2A2cA1cA2(2)

+ k2A2→A1+A2c
2
A2
− 2k2A1→2A2c

2
A1

+ 2k2A2→2A1c
2
A2

ċA2 = k2A1→A1+A2c
2
A1
− kA1+A2→2A1cA1cA2 + kA1+A2→2A2cA1cA2

− k2A2→A1+A2c
2
A2

+ 2k2A1→2A2c
2
A1
− 2k2A2→2A1c

2
A2
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Definitions and notations. We now introduce the standard terminology of Chemical Reaction

Network Theory (see [2, 4, 7]).

We denote by R the set of real numbers, by R+ the set of strictly positive real numbers, and

by R̄+ the set of nonnegative real numbers. For an arbitrary finite set I we denote by RI the real

vector space of all formal sums α =
∑
i∈I

αii for all αi ∈ R. Similarly, we denote by RI
+ the set of

formal sums α =
∑
i∈I

αii in which all αi are strictly positive, and by R̄I
+ the set of sums α =

∑
i∈I

αii

in which all αi are nonnegative. The support of an element α ∈ RI is supp(α) = {i ∈ I : αi 6= 0}.

Definition 2.1. A chemical reaction network is a triple (S ,C ,R), where S is the set of chemical

species, C ⊆ RS
+ is the set of complexes (i.e., the objects on both sides of the reaction arrows), and

R is a relation on C , denoted y → y′ and represents the set of reactions in the network. Moreover,

the set R must satisfy the following three conditions: it cannot contain elements of the form y → y;

for any y ∈ C there exists some y′ ∈ C such that either y → y′ or y′ → y; and the union of the

supports of all y ∈ C is S .

In other words, the second condition above guarantees that each complex appears in at least one

reaction, and the third condition says that each species appears in at least one complex. For the

system (1), the set of species is S = {A1, A2}, the set of complexes is C = {2A1, A1 + A2, 2A2}

and the set of reactions is R = {2A1 
 A1 + A2, A1 + A2 
 2A2, 2A2 
 2A1}, and consists of 6

reactions, represented as three reversible reactions.

Note that we regard the complexes as formal linear combinations of the species; on the other

hand, it will be useful to also think of the complexes as (column) vectors of dimension equal to

the number of elements of S , via an identification given by a fixed ordering of the species. For
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example, the complexes above are 2A1 =

2

0

, A1 + A2 =

1

1

, and 2A2 =

0

2

. Among other

advantages, this abuse of notation provides a convenient way of representing the reaction vectors

y′ − y for all y → y′ ∈ R; these vectors will play an important role in what follows. Moreover,

for convenience, we will often refer to a chemical reaction network by specifying R only, since R

encompasses all the information about the network.

Definition 2.2. A mass-action system is a quadruple (S ,C ,R, k), where (S ,C ,R) is a chemical

reaction network and k ∈ RR
+ , where ky→y′ is the reaction rate constant of the reaction y → y′ ∈ R.

In what follows, we will study mass-action systems only by looking at their structure, i.e. the

network (S ,C ,R), thus deriving conclusions that are independent of the rate constants given by

the vector k.

Mass-action kinetics imposes dynamical constraints on a chemical system, represented by a well-

determined family of ordinary differential equations. Remarkably, using the notations described

above, this system of ODE’s can be summarized in one compact equation. Before stating it we

need to introduce one more notation: given two vectors u =
∑
s∈S

uss and v =
∑
s∈S

vss in RS
+ , we

denote uv =
∏
s∈S

(us)vs , with the convention 00 = 1.

The system of differential equations for the mass-action chemical reaction network (S ,C ,R, k)

is

(3) ċ =
∑

y→y′∈R

ky→y′cy(y′ − y),

where c ∈ RS is the positive vector of species concentrations.



IDENTIFIABILITY OF CHEMICAL REACTION NETWORKS 7

The equation (3) is obtained in the same way we have obtained the system (2). The total rate of

change is computed by summing the contributions of all the reactions in R. Each reaction y → y′

contributes proportionally to the product of the concentrations of the species in its source y, i.e.,

cy, and also proportional to the number of molecules gained or lost in this reaction. Finally, the

proportionality factor is ky→y′ . For example, we can rewrite (2) in the vector form (3) as

ċ1

ċ2

 = k2A1→A1+A2c
2A1

−1

1

 + kA1+A2→2A1c
A1+A2

 1

−1

 + kA1+A2→2A2c
A1+A2

−1

1

(4)

+k2A2→A1+A2c
2A2

 1

−1

 + k2A1→2A2c
2A1

−2

2

 + k2A2→2A1c
2A2

 2

−2

 .

The expression on the right hand side of equation (3) plays an important role in what follows.

We denote it by r(R, k); in other words, we have:

(5) r(R, k)(c) =
∑

y→y′∈R

ky→y′cy(y′ − y)

for all c ∈ RS
+ .

3. Identifiability of rate constants given a reaction network and its dynamics

Suppose we are given a reaction network (S ,C ,R) and, by fitting experimental data, we also

know the differential equations (3) that govern the dynamics of the network. Then, we would like

to determine the rate constants of the reactions, i.e., k ∈ RR
+ . We will see that, in general, the

values of k’s that fit the data are not unique. In other words, it might be impossible for us to
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specify the “true” values of the rate constants, no matter how accurate the experimental data is,

because there exist several different k’s that give rise to exactly the same differential equations (3).

For example, note that for the reaction network in (6), both sets of rate constants shown below

produce exactly the same dynamics, given by ċA0 = −9cA0 , ċA1 = ċA2 = 9cA0 .

(6) A0

2A1 3
uukkkk

2A2

3
))SSSS

A1 + A2

3

OO

A0

2A1 4
uukkkk

2A2

4
))SSSS

A1 + A2

1

OO

Let us take a closer look at the mass-action systems in (6). Suppose the rate constants are

unknown, but the differential equations

ċA0 = −kA0→2A1cA0 − kA0→A1+A2cA0 − kA0→2A2cA0 =K0cA0(7)

ċA1 = 2kA0→2A1cA0 + kA0→A1+A2cA0 =K1cA0

ċA2 = kA0→A1+A2cA0 + 2kA0→2A2cA0 =K2cA0

are known, i.e., K0, K1 and K2 are known. The rate constants are then solutions of the (rank 2)

linear system of equations
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−kA0→2A1−kA0→A1+A2 −kA0→2A2 =K0(8)

2kA0→2A1+kA0→A1+A2 =K1

kA0→A1+A2+2kA0→2A2 =K2

which does not have unique solution. (On the other hand, we assume that at least one solution

exists.)

The obstacle that prevents identifiability is therefore the linear dependence of the vectors [−1, 2, 0]t,

[−1, 1, 1]t and [−1, 0, 2]t, i.e., precisely the three vectors of the form y′ − y, where y = A0 and

y → y′ is a reaction (here vt denotes the transpose of v). Should our reaction network had been

2A1 ← A0 → 2A2, the system (8) would have had a unique solution, and the rate constants would

have been determined uniquely.

Definition 3.1. We say that a reaction network (S ,C ,R) has uniquely identifiable rate constants

if r(R, k′) 6= r(R, k′′) for any distinct rate constant vectors k′, k′′ ∈ RR
+ .

Then we have:

Theorem 3.2. Under the mass-action kinetics assumption, a reaction network (S ,C ,R) has

uniquely identifiable rate constants if and only if for each source complex y0 ∈ C , the reaction

vectors {y′ − y0 : y0 → y′ ∈ R} are linearly independent.

Proof. Suppose the reaction vectors {y′ − y : y → y′ ∈ R} are linearly independent for each source

complex y and r(R, k′) = r(R, k′′) for some rate constants vectors k′, k′′. We therefore have
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∑
y→y′∈R

k′y→y′cy(y′ − y) =
∑

y→y′∈R

k′′y→y′cy(y′ − y)

for all c ∈ RS
+ , or

(9)
∑
y∈C

(
∑

{y′:y→y′∈R}

(k′y→y′ − k′′y→y′)(y′ − y))cy = 0

for all c ∈ RS
+. The vector components of the left hand side of (9) are polynomial functions in c,

identically equal to zero on the positive orthant; therefore they must have zero coefficients. This

implies that

∑
{y′:y→y′∈R}

(k′y→y′ − k′′y→y′)(y′ − y) = 0

for all source complexes y ∈ C . Since, for each source complex y ∈ C the vectors {y′− y : y → y′ ∈

R} are linearly independent, we conclude that k′y→y′ = k′′y→y′ for all reactions y → y′ in R.

Conversely, suppose for some source complex y0 the vectors {y′ − y0 : y0 → y′ ∈ R} are linearly

dependent. Then
∑

y0→y′∈R

αy0→y′(y′ − y0) = 0 for some real numbers αy0→y′ , not all zero. We

can choose k′, k′′ ∈ RR
+ such that k′y0→y′ − k′′y0→y′ = αy0→y′ for all reactions y0 → y′ ∈ R and

k′y→y′ = k′′y→y′ for all reactions y → y′ ∈ R with source y 6= y0. Then the two rate constant vectors

k′ and k′′ are distinct, but equation (9) shows that r(R, k′) = r(R, k′′). �

Remark. Note that if there are k′, k′′ ∈ RR
+ such that r(R, k′) = r(R, k′′), then this implies that

for any k ∈ RR
+ there exists k̃ ∈ RR

+ such that r(R, k) = r(R, k̃).
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4. Identifiability of the reaction network given the dynamics

In the preceding section we have shown that, given a reaction network and the differential

equations that determine its dynamics, it might be impossible to identify its rate constants uniquely.

Now we will argue that, given the dynamics, it might be impossible to identify the reaction network

uniquely (see [22, page 66]). For instance, let us consider the following example:

(10) A0

2A1 1/6
uukkkk

2A3

11/18

))SSSS

A1 + A2

2/9

OO

A0

2A2 1/9
uukkkk

2A3

1/3

))SSSS

A1 + A3

5/9

OO

Although they are distinct, these two reaction networks give rise to the same differential equa-

tions:

ċA0 = (−2
9
− 1

6
− 11

18
)cA0=− cA0 ċA0 =(−5

9
− 1

9
− 1

3
)cA0 = −cA0(11)

ċA1 = (
2
9

+ 2(
1
6
))cA0 =

5
9
cA0 ċA1 =

5
9
cA0 =

5
9
cA0

ċA2 =
2
9
cA0 =

2
9
cA0 ċA2 = 2(

1
9
)cA0 =

2
9
cA0

ċA3 = 2(
11
18

)cA0 =
11
9

cA0 ċA3 = (
5
9

+ 2(
1
3
))cA0 =

11
9

cA0

We conclude that, in this case, no matter how accurately we fit our experimental data, we cannot

determine uniquely the chemical reaction network that generates the observed dynamics, because

there exist multiple networks that produce exactly the same differential equations.
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In the light of this fact, it is natural to ask: when can two different reaction networks generate

the same differential equations? Whenever this is true, we will call these two reaction networks

confoundable. An answer to this question is given in Theorem 4.4.

Example (10) illustrates well what happens in general. From equations (11) we see that the two

networks shown in (10) produce the same dynamics because the vector [−1, 5/9, 2/9, 11/9] can be

written as



−1 −1 −1

1 2 0

1 0 0

0 0 2




2/9

1/6

11/8

 ,

and as 

−1 −1 −1

1 0 0

0 2 0

1 0 2




5/9

1/9

1/3

 .

Denote K = [0, 5/9, 2/9, 11/9]. Then

[−1, 5/9, 2/9, 11/9] = K −A0=
2
9
(A1 + A2 −A0) +

1
6
(2A1 −A0) +

11
8

(2A3 −A0) =

=
5
9
(A1 + A3 −A0) +

1
9
(2A2 −A0) +

1
3
(2A3 −A0).

Therefore, confoundability is due to the nonempty intersection of the convex cones generated by

the reaction vectors in the two networks; this is illustrated in Figure 1.

In order to formulate Theorem 4.4 we need the following definitions:
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Definition 4.1. Let (S ,C ,R) be a chemical reaction network. Define the following family of

functions:

Dyn(R) =
{

r(R, k) : k ∈ RR
+

}
.

Recall that, as defined in (5), r(R, k)(c) =
∑

y→y′∈R

ky→y′cy(y′ − y) for all concentration vectors

c ∈ RS
+ .

Definition 4.2. Two chemical reaction networks (S ,C ′,R′) and (S ,C ′′,R′′) are called confound-

able if Dyn(R′) ∩Dyn(R′′) 6= ∅.

In other words, two reaction networks are confoundable if they produce the same mass-action

differential equations for some choice of the rate constants. In that case, we cannot distinguish

between the two reaction networks by fitting experimental data. Note that the source complexes

y ∈ C appear as exponents of c in the polynomials of Dyn(R), and no other complexes have this

property; therefore, Dyn(R) specifies them uniquely. This implies that, if two chemical reaction

systems are confoundable, then their source complexes must be the same.

Motivated by the discussion of the example (10), we introduce the following definition.

Definition 4.3. For a reaction network (S ,C ,R) and y0 ∈ C we denote by

ConeR(y0) =

 ∑
y0→y′∈R

αy0→y′(y′ − y0) : αy0→y′ > 0 for all y0 → y′ ∈ R

 ,

the open convex cone generated by the set {y′ − y0 : y0 → y′ ∈ R}.

(For more information on convex cones and their generating sets see [24].) Then we have:
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Theorem 4.4. Under the mass-action kinetics assumption, two chemical reaction networks (S ,C ′,R′)

and (S ,C ′′,R′′) are confoundable if and only if they have the same source complexes and ConeR′(y)∩

ConeR′′(y) is nonempty for every source complex y.

Proof. Dyn(R′)∩Dyn(R′′) 6= ∅ if and only if there are rate constant vectors k′ and k′′ for R′ and

R′′ respectively, so that
∑

y→y′
1∈R′

k′y→y′
1
cy(y′1 − y) =

∑
y→y′

2∈R′′

k′′y→y′
2
cy(y′2 − y) for all c ∈ RS

+. We

rewrite this as

(12)
∑
y∈C

(
∑

{y′
1:y→y′

1∈R′}

k′y→y′
1
(y′1 − y)−

∑
{y′

2:y→y′
2∈R′′}

k′′y→y′
2
(y′2 − y))cy = 0

for all c ∈ RS
+. The vector components of the left hand side of (12) are polynomial functions

in c, identically zero on the positive orthant, therefore having zero coefficients. Then (12) is

equivalent to
∑

{y′
1:y→y′

1∈R′}

k′y→y′
1
(y′1 − y)−

∑
{y′

2:y→y′
2∈R′′}

k′′y→y′
2
(y′2 − y)=0 for each source complex y,

i.e., ConeR′(y) ∩ ConeR′′(y) 6= ∅ for all source complexes y. �

Theorem 4.4 gives a necessary and sufficient condition for two reaction networks R′, R′′ to be

capable of producing the same dynamics for some choice of their two sets of rate constants. Note

that the proof of the theorem actually says more: the two reaction networks are unconditionally

confoundable, i.e., Dyn(R) = Dyn(R′′), if and only if ConeR′(y) = ConeR′′(y) for all source

complexes y. If two reaction networks are unconditionally confoundable, then, no matter what the

rate constants of one network are, there is a set of rate constants for the other one that give the

same dynamics. This allows the reduction of the number of reactions in a network, without loss of

generality of its dynamics, by considering only reactions that correspond to a set of generators of

each cone ConeR(y). This fact will be illustrated by an example in the next section.
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5. Applications: modeling unimolecular and bimolecular reaction networks

Suppose we are given experimental results for known chemical species A1, . . . , An, but we don’t

know what the reactions are; suppose, however, that all complexes are of the form Ai, 2Ai or Ai+Aj .

Since we are able to observe the dynamics, it is natural to try to construct a corresponding reaction

network model that takes into account all the possible reactions, even if for some reactions the

rate constants will turn out very small or zero. However, since we know from section 4 that there

might be multiple reaction networks that produce the same dynamics, we might as well look for a

model that has a minimal number of reactions. This is helpful from a practical point of view since

it significantly reduces the number of parameters (i.e., reaction rate constants) involved.

For example, consider the case of 3 species, A1, A2, A3. The “full” network is composed of

reactions

(13) {Ai → Aj}i6=j , Ai → Aj + Ak, Ai + Aj → Ak, {Ai + Aj → Ak + Al}{i,j}6={k,l},

where i, j, k ∈ {1, 2, 3}. In other words, we are allowing all reactions involving unimolecular and

bimolecular complexes, except for the trivial reactions y → y. (Note that reactions that do not

conserve mass, such as Ai → Ai + Aj , may account for the existence of chemical species that

are present in great excess, and whose dynamics can be neglected since their concentrations are

practically constant; in other words, these reactions could be understood as Ai + X → Ai + Aj ,

where the concentration of X is practically constant. See [2, 7] for more details.)

Let us count the reactions in this model. Since we allow all the possible reactions between the

unimolecular or bimolecular complexes, except for y → y, any complex is a source in N−1 reactions,

where N is the number of complexes. Therefore the total number of reactions is N(N − 1). There

are 3 unimolecular complexes; for the bimolecular complexes Ai +Aj there are two cases, according
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to whether i is equal or different from j, and we count
(
3
2

)
= 3 complexes Ai + Aj with i 6= j and

3 complexes 2Ai. Therefore N = 9 and the full network (13) has 9 · 8 = 72 reactions.

On the other hand, a “reduced” network that covers all the possible dynamical systems produced

by the full network can be obtained by using only the reactions corresponding to generating rays of

each cone ConeR(y), for all sources y, as explained at the end of section 4. Diagrams corresponding

to each of the three different types of sources are given in the Figure 2. The lines joining the source

complex with all other complexes represent the reactions; the thick lines are extreme rays of the

corresponding cone, and therefore they give the reduced reaction network

Ai → 2Ai 2Ai → Ai Ai + Aj → 2Ai(14)

Ai → Aj 2Ai → 2Aj Ai + Aj → 2Aj

Ai → Ak 2Ai → 2Ak Ai + Aj → 2Ak

Ai + Aj → Ai

where (i, j, k) are a permutation of (1, 2, 3) and the expression Ai + Aj assumes i < j. Note that

this choice of reduced network is not unique: except for the case of unimolecular source y we can

choose different generators for ConeR(y). For example, the reaction Ai + Aj → Ai can be replaced

by Ai+Aj → Aj , the reaction Ai+Aj → 2Ak can be replaced by Ai+Aj → Ai+Ak and 2Ai → 2Aj

can be replaced by 2Ai → Ai + Aj .

In the case shown in Figure 2(a) the minimal set of reactions (i.e., reactions whose vectors

generate ConeR(A1)) is unique. Moreover, Theorem 3.1 guarantees that the rate constants of these
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reactions are uniquely determined, since these three vectors are linearly independent. In the case

shown in Figure 2(b) the minimal set of reactions is not unique; however, given any minimal set of

reactions, the corresponding rate constants are uniquely determined, by Theorem 3.1. Interestingly,

in the case shown in figure 2(c), the choice of the minimal set of reactions is not unique, and no

matter which minimal set of reactions is chosen, the rate constants are not uniquely determined, also

by Theorem 3.1. In other words: no dynamically equivalent subnetwork has uniquely identifiable

rate constants in this case. This fact must be taken into account whenever we try to design a

numerical procedure to estimate the rate constant vector k from experimental data.

Even if the minimal set of reactions is not unique, its cardinality is always the same. Specifically,

in our case it contains 3(3+3+4)=30 reactions, which is a significant reduction from 72 reactions

in the full network.

A version of the computation above works in general, in the case of n species. There are

(n + n(n−1)
2 + n) complexes and therefore there are (2n + n(n−1)

2 )(2n + n(n−1)
2 − 1) reactions. A

reduced model can be constructed by generalizing the reaction network (14). Namely, for source

complexes Ai we choose the reactions Ai → 2Ai and Ai → Aj for all j 6= i; for source complexes

2Ai, we choose the reactions 2Ai → Ai, 2Ai → 2Aj , for all i 6= j; and for source complexes Ai + Aj

with i < j we choose the reactions Ai + Aj → 2Ak for all k ∈ {1, . . . , n}, and also the reaction

Ai + Aj → Ai. To check that these three sets of reactions do indeed generate the corresponding

cones, we describe a simple algebraic computation. For example, for the unimolecular source A1

we need to check that the n reaction vectors in the reduced network
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A1 =



1

0

0

0

...

0



, A2 −A1 =



−1

1

0

0

...

0



, A3 −A1 =



−1

0

1

0

...

0



, . . . , An −A1 =



−1

0

0

...

0

1



,

conically generate all the other reaction vectors with source A1, namely,

(15)



−1

∗

∗

2

∗

∗



,



−1

∗

1

∗

1

∗



and



0

∗

∗

1

∗

∗


where “*” represent vertical sequences of zeros, possibly empty. The first vector corresponds to

reactions A1 → 2Ai, i 6= 1, the second to A1 → Ai + Aj , where i 6= j are different from 1 and

the third one represents reactions A1 → A1 + Ai, i 6= 1. It is easy to see that this is indeed true:

for example, the third vector in (15) is Ai = [0, . . . , 1, . . . , 0]t = A1 + Ai − A1 so it belongs to

ConeR(A1) for any i; then Ai +Ai−A1 and Ai +Aj −A1 (the first and the second vectors in (15))

are also in ConeR(A1).

The number of reactions in the reduced network is n2 + n2 + n(n−1)
2 (n + 1) = 2n2 + n(n2−1)

2 ;

therefore, we reduced the number of reactions under consideration from O(n4) to O(n3).
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6. Transfer of properties: an SR Graph example

Some of the results discussed in section 4 can be used to deduce dynamical properties of a

reaction network by studying another network. More precisely, if two reaction networks R′, R′′

have the property that Dyn(R′) ⊆ Dyn(R′′) then dynamical properties of R′ can be inferred from

looking at the (possibly simpler) network R′′. Such properties are therefore transferred from R′′

to R′.

We illustrate these considerations in what follows. Denote by R′ the reaction network shown on

the left side of (16) and by R′′ the reaction network shown on the right side of (16).

(16)
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5
kkkkkk
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)SSSSSS

A2

i
SSSSSS

In this example, in addition to regular reactions, we are allowing inflow and outflow for all the

species, and we model this in terms of special “reactions” 0→ Ai and Ai → 0 (see [7] for a detailed

discussion of inflow and outflow reactions in the context of mass-action kinetics).

It is easy to see that ConeR′(0) = ConeR′′(0), ConeR′(Ai) = ConeR′′(Ai) for all i ∈ {0, 1, 2, 3},

and ConeR′(2Ai)=ConeR′′(2Ai) for all i ∈ {1, 2, 3}; therefore Dyn(R′) = Dyn(R′′). We will show
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that R′ cannot have multiple equilibria for any value of its rate constants, by showing that R′′ has

this property. Our tool will be the SR graph theorem, whose hypotheses are satisfied by R′′ but not

by R′. Therefore, this reduction allows us to extend the applicability of the SR graph Theorem.

The SR (Species-Reactions) graph is a bipartite graph introduced in [8]; its set of nodes consists

of species and reactions (each reaction or pair of reversible reactions appear in a single node). The

edges of the graph connect species nodes and reaction nodes as follows: if a species appears in a

reaction, then there is an edge joining the corresponding species and reaction nodes; moreover, that

edge is labeled with the complex in which the species appears. The two SR graphs associated to

the reaction networks R′ and R′′ are depicted in Figures 3 and 4, respectively. (See [6] for more

examples.)

A little more terminology is needed in preparation for the SR graph result. A c-pair (complex

pair) is a pair of edges that meet at a reaction node and have the same label. A cycle of the

SR graph that contains an odd number of c-pairs is called an o-cycle (odd cycle), whereas cycles

that contain an even number of c-pairs are called e-cycles (even cycles). In particular, cycles with

no c-pairs are e-cycles. The stoichiometric coefficient of an edge is the coefficient of the adjacent

species in the complex label of the edge. Cycles for which alternately multiplying and dividing the

stoichiometric coefficients along its edges gives the result 1 are called s-cycles. We say that two

cycles split a c-pair if there is a c-pair that lies in the union of the sets of edges of the two cycles,

but not in their intersection.

The SR graph is used in [8] to discriminate between chemical reaction networks that can admit

multiple equilibria and those that cannot. Our present purpose is to determine the capacity for

multiple equilibria of the reaction network R′, and we will use the following result ( [8, Corollary

7.2]):



IDENTIFIABILITY OF CHEMICAL REACTION NETWORKS 21

Theorem 6.1. Let R be a reaction network such that all the cycles of its SR graph are o-cycles or

s-cycles, and no two e-cycles split a c-pair. Then the mass-action dynamical system associated to

R cannot have multiple positive equilibria, for any value of the rate constant vector k.

The SR graph of R′ in Figure 3 fails to satisfy the hypothesis of this theorem. For example,

the cycle that goes through the nodes A0, A0 
 2A1, A1 and A0 → A1 + A2 does not contain any

c-pairs, so it is not an o-cycle, but it is also not an s-cycle: the stoichiometric coefficients of its

edges are 1, 2, 1, 1 and the result of the alternate multiplication and division is 2 or 1/2, depending

on which edge one starts. Therefore Theorem 6.1 does not apply, and we are not able to draw an

immediate conclusion on the existence of multiple equilibria for R′. However, the hypotheses of the

theorem are trivially satisfied by the SR graph of R′′ which has no cycles. We conclude that R′′

cannot have multiple equilibria and extend this conclusion to R′, because Dyn(R′) = Dyn(R′′).
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Figure 1: Cones corresponding to the reaction networks in (10).
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(a)

(b)

(c)

Figure 2: ConeR(y) for the three possible types of source complexes in (14): (a) reactions with source

A1; (b) reactions with source 2A1; (c) reactions with source A1 + A2.
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Figure 3: The SR graph of R′.
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Figure 4: The SR graph of R′′.


