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Abstract—Bistability plays a key role in important biological
processes, such as cell division, differentiation, and apoptosis.
Examples show that there is a very delicate relationship between
the structure of a reaction network and its capacity for bistable
behavior. We describe mathematical methods that discriminate
between networks that have the capacity for bistability and
those that do not, as well as algorithms derived from these
methods. We have implemented some of these algorithms in the
software package BioNetX. We present results obtained by using
this package to analyze random samples from a comprehensive
database of reaction networks.

I. INTRODUCTION

A chemical reaction network is usually given by a finite list
of reactions that involve a finite set of chemical species. As
an example, consider the reaction network with two species
A1 and A2 schematically given in the diagram (1).

2A1
/ (
A1 +A2o 2A2h o (1)

To keep track of the temporal variation of the state of this
chemical system, we define the functions cA1(t) and cA2(t)
to be the molar concentrations of the species A1, A2 at time
t. The chemical reactions in the network are responsible for
changes in the concentrations; for instance, whenever the
reaction A1 + A2 → 2A1 occurs, there is a net gain of a
molecule of A1, whereas one molecule of A2 is lost. Similarly,
the reaction 2A2 → 2A1 results in the the creation of two
molecules of A1 and the loss of two molecules of A2.

We will assume that the rate of change of the concentration
of each species is governed by mass-action kinetics [12], i.e.,
that each reaction takes place at a rate that is proportional
to the product of the concentrations of the species being
consumed in that reaction. For example, under the mass-
action kinetics assumption, the contribution of the reaction
A1 + A2 → 2A1 to the rate of change of cA1 has the form
kA1+A2→2A1cA1cA2 , where kA1+A2→2A1 is a positive number
called reaction rate constant. Collecting these contributions
from all the reactions, we obtain the following system of
differential equations:

ċA1 = −k2A1→A1+A2c2
A1 + kA1+A2→2A1cA1cA2 + (2)

+ k2A2→A1+A2c2
A2 − 2k2A1→2A2c2

A1 + 2k2A2→2A1c2
A2

ċA2 = k2A1→A1+A2c2
A1 − kA1+A2→2A1cA1cA2 −

− k2A2→A1+A2c2
A2 + 2k2A1→2A2c2

A1 − 2k2A2→2A1c2
A2

We now introduce the standard terminology of Chemical
Reaction Network Theory (see [12], [5] for more details). We
denote by R the set of real numbers, by R+ the set of strictly
positive real numbers, and by R̄+ the set of nonnegative real
numbers. For an arbitrary finite set I we denote by RI , RI+
and R̄I+ the sets of formal sums α =

∑
i∈I αii with αi ∈ R,

αi ∈ R+ and αi ∈ R̄+ respectively. The support of an element
α ∈ RI is supp(α) = {i ∈ I : αi 6= 0}.

A chemical reaction network is a triple (S, C,R), where S
is the set of chemical species, C ⊆ R̄S+ is the set of complexes
(i.e., the objects on the left or right side of reaction arrows),
andR is a relation on C, denoted y → y′ and represents the set
of reactions in the network. Moreover, the set R must satisfy
the following three conditions: (i) it cannot contain elements
of the form y → y; (ii) for any y ∈ C there exists some
y′ ∈ C such that either y → y′ or y′ → y; (iii) the union of
the supports of all y ∈ C is S .

For the network (1), the set of species is S = {A1, A2},
the set of complexes is C = {2A1, A1 +A2, 2A2} and the set
of reactions is R = {2A1 
 A1 + A2, 2A2 
 2A1, 2A2 →
A1 + A2}, and consists of 5 reactions, represented as two
reversible reactions and one irreversible reaction.

Note that we regard the complexes as non-negative linear
combinations of the species; on the other hand, it will be
useful to also think of the complexes as (column) vectors
of dimension equal to the number of elements of S, via an
identification given by a fixed ordering of the species. For
example, the complexes above are

2A1 =
[
2
0

]
, A1 +A2 =

[
1
1

]
, and 2A2 =

[
0
2

]
.

This slight abuse of notation provides a convenient way of
representing the reaction vectors y′ − y for all y → y′ ∈ R.

We may now define mass-action systems and the set of dif-
ferential equations that governs mass-action kinetics. First we
introduce a useful notation. Given two vectors u =

∑
s∈S uss

and v =
∑
s∈S vss in R̄S+, we denote uv =

∏
s∈S(us)vs , with

the convention 00 = 1.
A mass-action system is a quadruple (S, C,R, k), where

(S, C,R) is a chemical reaction network and k ∈ RR+ , where
ky→y′ is the reaction rate constant of the reaction y → y′ ∈
R. The system of differential equations for the mass-action
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system (S, C,R, k) is

ċ(t) =
∑
y→y′

ky→y′c(t)y(y′ − y) (3)

where c ∈ RS is the nonnegative vector of species concentra-
tions. For example, the ODE system (2) may be written using
the vector-based formula (3), as shown in equation (4) below.»

ċA1

ċA2

–
= k2A1→A1+A2c2A1

»
−1
1

–
(4)

+kA1+A2→2A1cA1+A2

»
1
−1

–
+ k2A2→A1+A2c2A2

»
1
−1

–
+k2A1→2A2c2A1

»
−2
2

–
+ k2A2→2A1c2A2

»
2
−2

–
.

The special structure of the differential equation system (3)
constrains its solution to an affine subspace of RS . Indeed, let
S denote the stoichiometric subspace of the chemical reaction
network (S, C,R), i.e., the span of its reaction vectors, S =
span{y′ − y | y → y′ ∈ R}. For any initial condition c0,
integrating (3) yields

c(t) = c0 +
∑
y→y′

(∫ t

0

κy→y′c(s)yds
)

(y′ − y),

and therefore c(t) ∈ c0 + S for all times t. The invariant set
(c0 + S)∩RS+ is called the stoichiometric compatibility class
for initial condition c0.

If we view a reaction network (S, C,R) as a directed graph
Γ with vertices given by the complexes in C and edges given
by the reactions in R, then we say it is weakly reversible if
this directed graph Γ has strongly connected components [12].

II. THE JACOBIAN METHOD

Let (S, C,R, k) be a mass-action system where all the
species have corresponding outflow reactions, i.e., there is an
“outflow” or “degradation” reaction s → 0 for all s ∈ S.
The Jacobian Method ([5]) gives a necessary condition for
existence of multiple positive equilibria for the system of
differential equations (3).

We say that a biochemical reaction network (S, C,R) does
not have the capacity for bistability if for any choice of
reaction rate constants k ∈ RR+ the corresponding mass-action
system (S, C,R, k) gives rise to differential equations (3) that
have at most one positive equilibrium.

Let p(c, k) be the negative vector of polynomials on the
right hand side of (3), or more precisely,

p(c, k) = −
∑
y→y′

ky→y′c(t)y(y′ − y).

Then (S, C,R) does have the capacity for bistability iff for
some positive vector k ∈ RR+ of the reaction rate constants,
there exist two distinct vectors of concentration values c and c̃
such that p(c, k) = p(c̃, k) = 0. Therefore, if p(·, k) is injec-
tive for all positive choices of the reaction rate constants vector
k, then (S, C,R) does not have the capacity for bistability. The
Jacobian Method investigates the injectivity of the polynomial
function p(·, k) and relates it to the positivity of coefficients
in the expansion of the determinant of the Jacobian of p(c, k),

regarded as a function of c, and with fixed but unspecified
parameter vector k. The main result is the following theorem
([5, Theorem 3.3]):

Theorem II.1. Let (S, C,R) be a reaction network that
contains outflow or degradations reactions for all species. If
all the coefficients in the expansion of

det
(
∂p

∂c
(c, k)

)
(5)

are positive, then (S, C,R) does not have the capacity for
bistability.

Example. Consider the reaction network

X 
 A+ C → B → A+ Y (6)

augmented to include the outflow reactions A → 0, B →
0, C → 0, X → 0 and Y → 0 (and may also include
some inflow reactions 0 → A, 0 → B, etc). The expansion
of the determinant of the Jacobian (5) for the correspond-
ing mass-action system is k2k4k9k7k8cC + k2k6k9k7k8cC +

k3k6k9k7k1cC + k4k5k9k2k8cA + k4k5k9k3k1cA + k4k5k9k7k1 +

k5k6k9k2k8cA + k5k6k9k3k1cA + k5k6k9k7k1 + k3k6k9k7k8cC +

k4k5k9k3k8cA + k4k5k9k7k8 + k5k6k9k3k8cA + k5k6k9k7k8,

where we denoted k1 = kX→A+C , k2 = kA+c→X , k3 =
kA+C→B , k4 = kB→A+Y , k5 = kA→0, k6 = kB→0, k7 =
kC→0, k8 = kX→0, k9 = kY→0. All the coefficients of this
multivariate polynomial happen to be positive (actually equal
to 1). Therefore Theorem II.1 applies, and the mass-action
system (6) does not have the capacity for bistability.

Note that we required that R contains the outflow reactions
s → 0 for all species s ∈ S . This guarantees that the stoi-
chiometric compatibility class of any positive initial condition
is the whole positive orthant, RS+. This is not necessarily the
case if some species are not in the outflow (since there might
be conserved quantities, e.g., mass conservation).

In that case, the formulation of the bistability question
changes significantly. The relevant question becomes: can
there be bistability within the same stoichiometric compat-
ibility class? It turns out that, given a reaction network
(S, C,R) which may have some “entrapped” species (i.e.,
species that are not in the outflow and do not decay) it may
still be possible to extract information about its capacity for
bistability by applying the Jacobian Method to the augmented
network (S, C̃, R̃) obtained from (S, C,R) by adding all the
(missing) outflow reactions. Indeed, according to [7], even
if some or all species are not in the outflow, the same
Jacobian Method described above (applied for the augmented
network (S, C̃, R̃)) still implies that (S, C,R) does not have
the capacity for multiple nondegenerate equilibria within any
stoichiometric compatibility class. Moreover, under some mild
additional assumptions, the nondegeneracy restriction may
be removed completely [9]. For example, if (S, C,R) is
weakly reversible, then the Jacobian Method can be applied to
rule out the capacity for bistability within any stoichiometric
compatibility class, even if R contains only some or none of
the outflow reactions ([9]). It is actually enough to check that a
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properly chosen projected subnetwork is weakly reversible ([9,
Theorem 8.2]) or at least is “normal” (see [9] for definitions
and examples).

III. THE DETERMINANT OPTIMIZATION METHOD

If some of the coefficients in the expansion of the determi-
nant (5) are negative, then the Jacobian Method is inconclu-
sive. In that case one can use the Determinant Optimization
Method ([5, Theorem 4.1]):

Theorem III.1. Consider some reaction network N =
(S, C,R) (augmented to include the set of inflow and outflow
reactions for all species). For η ∈ RR+ let Tη : RS → RS be
defined by Tη(δ) =

∑
y→y′∈R ηy→y′(y · δ)(y − y′), and let

f(η) = det(Tη). Suppose that for some η∗ ∈ RR+ we have

f(η∗) < 0, (7)∑
y→y′∈R

η∗y→y′(y − y′) ∈ RS+. (8)

Then N does have the capacity for bistability.

Remark. Note that if some vector η∗ ∈ RR+ satisfies (7) and
(8), then λη∗ also satisfies (7) and (8) for any positive number
λ. Therefore, if there is some η∗ that satisfies (7) and (8) and
has all coordinates positive, then there is some η∗∗ that satisfies
(7) and (8) and has all coordinates positive and of total sum
1. Then the criterion in Theorem III.1 can be implemented by
solving the polynomial optimization problem (9)–(12), with
linear constraints on a compact domain:

minimizef(η) (9)

subject to the constraints

ηy→y′ ≥ ε ∀y → y′ ∈ R, (10)∑
y→y′∈R

ηy→y′ = 1, (11)∑
y→y′∈R

ηy→y′(ys − y′s) ≥ ε, ∀s ∈ S, (12)

where ε is some very small positive number. Note that, from
the point of view of applying Theorem III.1, it is enough to
find some vector η∗ satisfying (10)–(12) and such that f(η∗) <
0 (i.e., we don’t need to find the global minimum, as we are
just interested in knowing if the minimum is negative).

An alternative to solving this nonlinear optimization prob-
lem is given by the following linear optimization criterion ([5,
Theorem 4.2]):

Theorem III.2. Consider some reaction network N =
(S, C,R) (augmented to include the inflow and outflow re-
actions). Suppose that there is a set of n reactions {y1 →
y′1, . . . , yn → y′n} (where n is the number of species) such
that

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) < 0, (13)

and there exist positive numbers η1, . . . , ηn such that
n∑
i=1

ηi(yi − y′i) ∈ RS+. (14)

Fig. 1. Percentages of reaction networks enumerated in [11], which were
found to not have capacity for bistability by using the Jacobian Method, even
if we augment the network with inflow and outflow reactions for all species.

Then N does have the capacity for bistability.

Note that there is a direct connection between the inequality
(13) and the Jacobian Method computation: each number on
the left-hand side of (13) must equal the coefficient of a
monomial in the expansion of the determinant (5) (see [5]
for more details). Therefore, a simple way to check if this
inequality can be satisfied is to compute the determinant (5).
Example. If we apply the Determinant Optimization Method
to the network

S + E 
 SE 
 S + P, 2S 
 P +R, (15)

we notice that there are several negative monomials. Each such
monomial corresponds to a set of n = 5 reactions that satisfy
(13). The linear inequalities (14) are satisfied for one of these
sets, and we conclude that the network (15), augmented with
inflow and outflow reactions for all species, does have the
capacity for bistability.

The problem of counting the number of negative monomials
in these determinant expansions is discussed in detail in [16],
[17]. Related bistability criteria based on degree theory are
described in [10]. These and other related criteria have been
implemented by J. W. Helton and collaborators and are avail-
able at http://www.math.ucsd.edu/∼chemcomp/.

IV. RESULTS

We have implemented the Jacobian Method and the Deter-
minant Optimization Method in the software package BioNetX
[19]. We discuss the results obtained by running this code
on a random sample of networks from the comprehensive
uni- and bi-molecular reaction network databases described
in [11]. Empty spaces in the tables in Figures 1 and 2
correspond to cases where either there are no such networks,
or the number of such networks is too large to be able to
enumerate all of them (see [11] for details). Note that by
adding the corresponding percentages in Figures 1 and 2
we can also compute the percentages of reaction networks
enumerated in [11] for which neither the Jacobian Method
nor the Determinant Optimization Method is conclusive. For
example, this percentage is low (3.6%) for the case of 5 species
and 2 reactions, but high (33%) for the case of 2 species and
5 reactions. In general, the percentage of reaction networks
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Fig. 2. Percentages of reaction networks enumerated in [11], which were
found to have capacity for bistability by using the Determinant Optimization
Method, assuming that all species are in the inflow and in the outflow.

for which neither one of these two tests in conclusive is low
for “sparse” networks (i.e, networks that have a low ratio of
reactions to species), and could be high (20-40%) for “dense”
networks (i.e, for networks that have a high ratio of reactions to
species). On the other hand, it turns out that a high percentage
of the “dense” networks do have capacity for bistability (see
Figure 2).

V. CONCLUDING REMARKS

We have described some mathematical and computational
methods for discriminating biochemical reaction networks that
have the capacity for bistability from others that do not. Our
main focus was on two such methods, called the Jacobian
Method (which can be used to rule out capacity for bistability
for some networks) and the Determinant Optimization Method
(which can be used to show that some networks do have ca-
pacity for bistability) [5]. We are making available a software
package that implements both methods [19]. By running this
software on large reaction network databases we conclude that
the combination of both methods is a powerful tool, and is
especially effective in ruling out the capacity for bistability
for sparse networks. On the other hand, for dense networks
we show that a very large percentage of networks does have
capacity for bistability, if we assume that all species are in the
inflow and in the outflow.

Other methods for analyzing bistability (which we have
not described here) are based on graph-theoretical, algebraic,
or topological tools. For example, a very powerful method
is based on deficiency theory [12], [13], [14], [18], and is
implemented in the Chemical Reaction Network Toolbox [15].
Related results have also been obtained recently for stochastic
models [1].

In other recent work, graph-theoretical methods have been
developed based on the Jacobian Method [6], [8], or its gen-
eralizations [4], [2], [3]. These generalizations apply not only
for mass-action systems but also for more general chemical
kinetics such as Michaelis-Menten or Hill laws.

Other generalizations of the Jacobian Method have been
described in [10], [16], [17]. For example, the core determi-
nant method [16] has very interesting connections with the
Jacobian Method. This method is applicable to systems that
are not necessary mass-action; on the other hand, for mass-

action systems the Jacobian Method may be conclusive in
cases where the core determinant method is not (network (6)
is one such example).

In future work we intend to analyze in more detail the
relationships between some of these methods, and to extend
our software package BioNetX [19] to include additional
algorithms, e.g., ones derived from the graph-theoretic criteria
described in [3].
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