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Abstract  Mathematical models of biochemical reaction networks are usually high
dimensional, nonlinear, and have many unknown parameters, such as
reaction rate constants, or unspecified types of chemical kinetics (such
as mass-action, Michaelis-Menten, or Hill kinetics). On the other hand,
important properties of these dynamical systems are often determined
by the network structure, and do not depend on the unknown parameter
values or kinetics. For example, some reaction networks may give rise
to multiple equilibria (i.e., they may function as a biochemical switch)
while other networks have unique equilibria for any parameter values.
Or, some reaction networks may give rise to monotone systems, which
renders their dynamics especially stable. We describe how the species-
reaction graph (SR graph) can be used to analyze both multistability
and monotonicity of networks.
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Introduction

There is great interest in methods that draw conclusions about the
dynamical properties of a chemical reaction network based only on the
network structure, i.e., with limited or absent knowledge about many
kinetic details [6, 24]. Here we will concentrate on the properties of
multistability and monotonicity.

Multistability refers to the capacity of a biochemical system to operate
at several discrete, alternative steady-states, and plays an important role
in cell signaling, division, and differentiation [28, 2, 21].

Monotone systems display well-ordered behavior that excludes the
possibility for chaotic dynamics [18, 26-1]. Moreover, perturbations of
such systems have unambiguous global effects and a predictability char-
acteristic that confers robustness and adaptability [19].

In this chapter we describe some of the main results on the use of
the SR graph of a reaction network to analyze its multistability and
monotonicity properties, as described especially in [8] and [3], respec-
tively. Our focus will not be on presenting the most powerful results in
full generality (for these the reader should consult [8, 3], and also [9, 5]).
Instead, we will concentrate on simpler versions of these results, and will
especially focus on pointing out how these results can be formulated in
an unified language based on the notion of SR graph.

Definitions and Notation

Dynamical systems derived from chemical reaction networks.

A chemical reaction system in which n reactants participate in m
reactions has dynamics governed by the system of ordinary differential
equations

dx
i Sv(z) (1.1)
where z = (21, ..., z,,)! is the nonnegative n-vector of species concentra-
tions, v = (v1,...,Um)" is the m-vector of reaction rates, and S is the
n X m stoichiometric matrix.

Arbitrary orderings can be chosen on the sets of substrates and re-
actions. Further, S is only defined up to an arbitrary re-signing of its
columns, equivalent to a switching of the left and right-hand sides of a
reaction. The equation (1.1) defines a dynamical system on the nonneg-
ative orthant of R™. If we also assume that all species may have some
inflow (which is allowed to be zero) and some outflow which increases
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strictly with concentration, we obtain the related system

dx
i F+ Sv(z) — Q(z) (1.2)
Here F' is a constant nonnegative vector representing the inflow, and the

diagonal function Q(z) = (Q1(x1), ..., Qn(xy,))! represents the outflow or

degradation, and we assume that aa% > 0 for each 3.
For example, for the reaction network

Xi+Xo= X3, 2X1 =Xy, Xo+ X35= X4 (13)

we can choose

-1 -2 0
-1 1 -1

S=17 o 4 (1.4)
0 0 1

where each column of S corresponds to one reaction in the network.
Sometimes the inflow and outflow terms F' and Q(z) are included in the
reaction network as “inflow reactions” X; — 0 and “outflow reactions”
0 — Xj. Here we choose to associate to a reaction network (such as
(1.3)) either the closed system (1.1), or the open system (1.2). Note
that the dynamical properties of these two types of systems may be very
different from each other, and some theorems might apply to only one
or the other of them.

We assume that for each reversible reaction its reaction rate v; can be

decomposed as
+

vi(z) = v’ () —v; (z),
where vf is the rate of the forward reaction, and v;” is the rate of the
reverse reaction.
In biochemical applications, the most common types of reaction rates
are mass-action, Michaelis-Menten, or Hill kinetics. For example, for
the reaction X7 + Xo — X3, we could have

Uf_(l’) = klxla:Q
or
ot (@) = kix1mo
! 14 kox1220
or 9
kla:la:
+ 2
! (x) - ko —i—xQ'
2

for some positive constants ki and ko.



Given a reaction network we define the its SR graph as follows. The SR
graph is a bipartite undirected graph, where the nodes are partitioned
into species nodes and reaction nodes. We draw an edge from a species
node to a reaction node if that species appears in the reaction, i.e., we
draw an edge from species node i to reaction node j if the s;; entry of
the stoichiometric matrix S is not zero. Moreover, if s;; > 0 we say that
it is a positive edge (and will draw it with a solid line), and if s;; < 0
we say that it is a negative edge (and will draw it with a dashed line).
Finally, if the stoichiometric coefficient of a species within a reaction is
2 or more, then we label the corresponding edge with this stoichiometric
coefficient (so if an edge does not have a numeric label, it will follow
that the corresponding stoichiometric coefficient is 1). The SR graph of
reaction network (1.3) is shown in Figure 1.1.

Note that the SR graph in Figure 1.1 contains several cycles'. We
will show that multistability and monotonicity of a network is strongly
related to the types of cycles present in its SR graph. For this we need
to be able to distinguish among several types of cycles.

R, D R, (%)

& —®

Figure 1.1. The SR graph of reaction network (1.3). Positive edges are shown as solid
lines, and negative edges are shown as dashed lines. Note that the graph contains
three cycles, and any two of them have S-to-R intersection. Also, all cycles are o-
cycles.

Consider a cycle that has p edges, and g of them are negative edges.
We say that this cycle is an e-cycle if ¢ = § (mod 2), i.e., the number of
negative edges along the cycle has the same parity as the total number of
edges along the cycle divided by 2. (Note that the total number of edges
along any cycle must be even, because the SR graph is a bipartite graph.)
Otherwise, i.e., if the number of negative edges has different parity from
the total number of edges divided by 2, we say that the cycle is an o-
cycle. For example, the cycle Ro — Xo — R3 — X3 — R — X1 — Ro in
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Figure 1.1 is an o-cycle, since it has p = 6 edges and ¢ = 4 negative
edges, and the numbers ¢ and £ have different parities?.
Another relevant type of cycle is called s-cycle. A cycle C is called an

s-cycle if we have
p/2 p/2

[[oo s = oo
=1 =1

where p is the number of edges of C, and 01,09, ...,0, are the stoichio-
metric coefficients of the edges of C, in the order in which they occur
along C (it’s easy to see that it does not matter where we start along C).
In other words, C is an s-cycle if the two possible ways of multiplying the
stoichiometric coefficients of every other edge of C give rise to the same
result. Obviously, if all the stoichiometric coefficients along a cycle are 1,
then that cycle is an s-cycle, and if exactly one stoichiometric coefficients
along a cycle is #1, then that cycle is not an s-cycle. For example, for the
SR graph in Figure 1.1, the cycle Xo— R3—X3— R — X> is an s-cycle, and
the cycles RQ—XQ—Rl—Xl —RQ and RQ—XQ—Rg—Xg—Rl—Xl —R2
are not s-cycles.

Sometimes not only the types of cycles are important, but also the
way cycles intersect within the SR graph. We say that two cycles have
an S-to-R intersection if the connected components of their intersection
are paths that go from a species node to a reaction node (and not from a
species node to another species node, or from a reaction node to another
reaction node). For example, consider the cycles Ry — X9 — R3 — X3 —
R1—X1— Ry and Ro— Xo— R1—X1— Ry in Figure 1.1. Their intersection
has a single connected component, which is the path Ry — X1 — Ry — X5.
Therefore, these two cycles have an S-to-R intersection.

Consider some closed pointed convex cone K C R". We say that an
autonomous dynamical system

&= f(x) (1.5)
is monotone with respect to K if for any two solutions x4 (t) and xo(t) of
(1.5), such that z1(0) — 22(0) € K, it follows that z1(t) — x2(t) € K for
all ¢ > 0. (Note that we assume that solutions z(t) exist for all times
t>0.)

A property relevant to monotonicity is persistence. A dynamical sys-
tem defined on a domain contained within the nonnegative quadrant of
R™ is called persistent if any trajectory with positive initial condition
does not have any w-limit points on the boundary of the nonnegative
quadrant. In other words, the system is persistent if for any solution
x(t) with positive initial condition such that x(¢,) — L for some se-
quence t, — 0o, it follows that all the coordinates of L are positive.
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The main results

Throughout this chapter we assume that the following properties are
satisfied by the reaction network and its reaction rate functions:

Assumption 1. The reaction network does not have one-step catal-
ysis, i.e., if a species appears on one side of a reaction then it does not
appear on the other side of that reaction.

Assumption 2. For each irreversible reaction (and also separately
for the forward and reverse reactions of a reversible reaction), its reaction
rate depends only on the concentrations of the reactants, which are the
species that are being consumed by the reaction. Moreover, the partial
derivatives of the rate function with respect to the concentrations of the
reactants are nonnegative.

Neither one of these two assumptions are very restrictive; on the other
hand, neither one of them is truly necessary for analyzing multistability
(see [9] for details).

In this section we formulate two theorems that use the SR graph of a
reaction network to analyze its multistability and monotonicity proper-
ties.

THEOREM 1.1 (Banaji and Craciun [8]) Consider a reaction network
such that its SR graph satisfies the following two conditions:

(i) all cycles are o-cycles or s-cycles (or both),

(7i) no two e-cycles have an S-to-R intersection.

Then the system (1.2) does not have multiple positive equilibria, and
the system (1.1) does not have multiple positive nondegenerate equilibria
within any affine invariant subspace.

Note that, in the presence of any conservation laws, the relevant mul-
tistability question is not whether there exists a unique equilibrium, but
whether there exists a unique equilibrium within any affine invariant
subspace, since for well-behaved systems we expect that one equilibrium
should exist in every such invariant subspace (see also [13, 17]). Note
that for the system (1.2) there can be no conservation law, due to the
presence of nondegenerate outflow or degradation terms.

Theorem 1.1 does apply for reaction network (1.3) because all cycles
in Figure 1.1 are o-cycles. For more examples see [8, 9].

If there exist conserved quantities, additional analysis is needed to
rule out degenerate equilibria. For mass-action systems, conditions that
exclude the possibility of degenerate equilibria are described in [14]. For
non-mass-action systems such conditions are described in [16, 25].
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Consider now the system

' (wo + Sr(t)), (1.6)
dt

where r; is called the extent of the 4% reaction, j = 1, ..., m. The follow-

ing theorem allows us to analyze the monotonicity of this system (i.e.,

monotonicity in reaction coordinates [3]), and also provides information

on the dynamics of the related system (1.1).

THEOREM 1.2 (Angeli, DeLeenheer and Sontag [3]) Consider a reaction
network such that its SR graph satisfies the following two conditions:
(i) each species node is adjacent to at most two edges,

(ii) each cycle is an e-cycle.

Assume in addition that all stoichiometric compatibility classes are com-
pact sets, that all reaction rates vanish if the concentrations of some of
their reactants are zero, and that all reaction rates are strictly increasing
with respect to the concentrations of their reactant species. Then the sys-
tem (1.6) is monotone with respect to an order induced by some orthant
cone.

Assume moreover that the system (1.1) is persistent, and all reactions
are reversible. Then almost all positive solutions of (1.1) converge to the
set of equilibria, i.e., the measure of the set of possibly non-converging

initial conditions is zero °.
(®) )
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Figure 1.2. The SR graph of reaction network (1.7). Note that the graph contains
one cycle, and it is an e-cycle. Also, note that each species node is adjacent to at
most two reaction nodes.

For example, consider the reaction network

E+S=ES=E+P (1.7)
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A version of this network was analyzed in detail in [3]. Theorem 1.2
does apply to this network, since its SR graph, shown in Figure 1.2, has
the property that its only cycle is an e-cycle, and each species node is
adjacent to at most two edges. Moreover, the network (1.7) is persistent
(see [4]), and all its reactions are reversible.

In general, if there is only one cycle in an SR graph then Theorem 1.1
applies if this cycle is o- or s-cycle (or both), while Theorem 1.2 applies
if the cycle is an e-cycle and no species node is adjacent to more than
two edges. Therefore Theorem 1.1 also applies to network (1.7).

Note also that, if Theorem 1.2 does apply, and in particular if in the
SR graph each species has at most two adjacent edges, then no two cycles
can have an S-to-R intersection (because if a connected component of
the intersection of two cycles is an S-to-R path, then there must be at
least three adjacent edges to the species node at one end of the path).
Therefore, if Theorem 1.2 does apply, and in addition all stoichiometric
coefficients are 1, then the hypotheses (i) and (ii) of Theorem 1.1 also
hold.

Finally, consider the reaction network

A+B=P B+C=0Q, C=2A4, (1.8)

which was also analyzed in [11] under the assumption of mass-action
kinetics.

The network (1.8) is persistent because it admits a positive P-semiflow,
and every minimal siphon contains the support of a P-semiflow (see [4]
for details). Since its SR graph contains an e-cycle and no species node is
adjacent to more than two edges, it follows that Theorem 1.2 does apply
for this network (see Figure 1.3). Note that the cycle A— Ry — B — Ry —
C — R3— A in Figure 1.3 is neither an o-cycle nor an s-cycle, so Theorem
1.1 does not apply. On the other hand, if the kinetics of this network
is mass-action, then deficiency theory [17] guarantees that there is an
unique equilibrium in each stoichiometric compatibility class, and there
also exists a globally defined strict Lyapunov function. This, together
with persistence, guarantees global convergence of all positive trajecto-
ries within a stoichiometric compatibility class to the unique equilibrium
in that class [27].

Discussion

The SR graph was first introduced in [10] for the analysis of mass-
action systems, inspired by the SCL graph of Schlosser and Feinberg
[22, 23]; see also [12, 15]. The case of networks that may contain one-
step catalysis is discussed in [10, 12, 15] for mass-action kinetics, and in
[9] for general kinetics.
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Figure 1.3. The SR graph of reaction network (1.8). The graph contains one cycle,
and it is an e-cycle, and each species node is adjacent to at most two reaction nodes.
Moreover, the cycle is not an s-cycle.

The free software package BioNetX provides algorithms for examining
dynamical properties of biochemical reaction networks [20]. In particu-
lar, this software computes the SR graph of a network, and verifies the
conditions (7) and (7i) from Theorem 1.1.

Monotonicity was also considered in [29], were it was treated in an
algebraic fashion. In [7] conditions are determined in order to character-
ize the set of cones and associated partial orders which make a certain
reaction monotone, and it is established that, under some minor assump-
tions, monotonicity of a network with respect to a given partial order
is equivalent to asking that each individual reaction be monotone with
respect to that same order. This result is also independent of reaction
kinetics.
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Notes

1. In [3] cycles are called “loops”.

2. The original definition of e-cycles and o-cycles in [10] describes these types of cycles in
terms of “c-pairs”: e-cycles have an even number of c-pairs and o-cycles have an odd number
of c-pairs. The two definitions are equivalent for networks that do not have one-step catalysis,
which are our main focus here. Compare also with Lemma 4.4 in [3].

3. Often much more can be said if the system (1.1) is persistent; see [3] for details.
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