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Abstract. We describe a statistical method for predicting most likely reactions in a bio-
chemical reaction network from the longitudinal data on species concentrations. Such data
is relatively easily available in biochemical laboratories, for instance, via the popular RT-
PCR technology. Under the assumed kinetics of the law of mass action, we also propose the
data-based procedures for (i) estimating the prediction errors and (ii) network dimension re-
duction. The algorithm in (ii) allows in particular for the application of the original algebraic
inferential procedure described in [3] without the unnecessary restrictions on the dimension of
the network stoichiometric space. Simulated examples of biochemical networks are analyzed
in order to assess the proposed methods’ performance.
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1 Introduction

Modern biological research often involves collecting detailed longitudinal data on biochemical
species concentration [5, 19] for the purpose of extracting information on the structure of a
network of biochemical reactions. Typically, it is assumed that the identity of the chemical
species present in the network is known, and the goal of the structure inference is to iden-
tify the species interactions [20] under some pre-imposed dynamics law. This problem is of
particular interest in the context of molecular and systems biology under the law of mass
action dynamics, and as such has received considerable attention in the literature [2, 9, 13,
14, 16, 24–26, 28]. It appears that in many cases one may infer identical mass-action models
for distinct networks even with the experimental data on all species concentration being of
arbitrarily high accuracy (i.e., with no measurement error) and arbitrary temporal resolution
(i.e., with any number of time points). This lack of uniqueness of chemical networks is some-
times referred to as the “fundamental dogma of chemical kinetics” [5–7]. The necessary and
sufficient conditions for two distinct reaction networks to give rise to the same deterministic
mass action model are described in a recent paper [4] where the problem of identifiability of
mass action reaction networks is treated in detail. The key point made in [4] is that, if we
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identify the reactions by their stoichiometric vectors (as discussed in the next section ), it
is possible for different sets of such vectors to span the same positive cones, or at least to
span positive cones that have a non-empty intersection (see, e.g., Figure 1 in [4] for a simple
example). In such cases it is not possible to uniquely identify the spanning reactions, and
hence the corresponding network, from the experimental data via the deterministic model
alone.

Further complicating the identifiability problem is the fact that the experimental measure-
ments for the study of a specific reaction network or pathway are often collected under
many different experimental conditions, which affects the values of reaction rate parameters.
Moreover, the reactions of interest may not be “elementary reactions” for which the reac-
tion rates parameters must be constant, but the so-called “overall reactions” consisting of
multiple elementary reaction steps combined into a single one. The reaction rate parameters
may therefore reflect the concentrations of biochemical species that have not been included
explicitly in the model and are not constant, but rather depend on specific experimental con-
ditions, such as concentrations of enzymes and other intermediate species. Consequently, the
estimated values of reaction rate parameters in the same network obtained in several different
experiments may be quite different numerically, and not readily center around specific values.
However, under the identical set of network reactions, the regions of observed estimate values
should agree with the regions of the stoichiometric space spanned by specific reaction cones.
Given multiple sets of data arising from the same stochastic network, it should therefore be
possible to identify the most likely sets of such cones and hence also the sets of corresponding
reactions.

Based on such geometric considerations a likelihood-based method for reaction sets identifi-
cation was recently proposed in [3]. The method uses the sparse likelihood parametrization
of a multinomial algebraic model (see, e.g., Chapter 1 in [22]), and relies on mapping the
estimated reaction parameters into an appropriate convex region in the span of the network’s
reaction vectors. This approach reduces a network identification problem to a statistical in-
ference problem for parameters of a multinomial distribution, which may then be solved using
classical likelihood methods assisted with some recent ideas on computational analysis of con-
vex polytops (see, e.g., [15]). Despite its attractiveness in many respects, there were two main
deficiencies of the original model presented in [3]. The first was the reliance on a (restrictive)
assumption of full rank of the network’s stoichiometric matrix and the second was the lack of
explicit estimates of the inferential errors. In the proof-of-concept examples given in [3] such
estimates were obtained via simulations from the known true models, but this approach is
clearly not available in practical circumstances when the true networks are, in fact, unknown.

The purpose of the current paper is to enhance the usability of the original model of [3]
for inferential purpose by addressing the above deficiencies. As we describe it below, the
requirement of the full stoichiometric rank may be circumvented by applying a data-driven
pre-processing step which reduces the dimension of the original stoichiometric space. Similarly,
the data may be also used to inform the error estimates of the predictions, with a semi-
parametric method utilizing properties of the stochastic biochemical network models under
the law of mass action. The details of the proposed algorithms, along with examples, are
provided in Sections 3 and 2, respectively. As seen below, we found it convenient to draw on
the computational techniques borrowed from the theory of stochastic kinetics as it allowed us
to better account for both the measurement error and rate parameters variability discussed
above. Further discussion is deferred to Section 4 which also contains a summary of the
paper’s main points and offers some conclusions. The implementations of all the algorithms
discussed is provided as part of the “Bioreactor” software suite and are currently available at
https://neyman.georgiahealth.edu/Bioreactor.html.



2 Algebraic Multinomial Model

In this section we discuss in detail the algorithm for assessing the prediction variability in our
biochemical network inferential procedure. We start by briefly reviewing some of the main
elements of the framework introduced in [3].

Consider a reaction network model with d biochemical species A = {A1, . . . , Ad} and m
possible reactions among them. The set A may be regarded as a basis of Rd (see, for instance,
Feinberg’s lecture notes [11]). Then the particular formal sums of species on either side of a
reaction, called complexes, may also be viewed as vectors of Rd, where the s-th coordinate
of a complex C ∈ Rd is equal to the number of molecules of species As in C. The reaction
vector of a reaction C1 → C2 is the vector C2 − C1 ∈ Rd and the linear subspace of Rd
spanned by all the reaction vectors corresponding to the reactions in a network is called the
stoichiometric subpace of that network. As mentioned above, we consider a reaction network
with m reactions. In what follows, the corresponding set of reaction vectors will be denoted
by R = {R1, . . . , Rm}. As described in [4], the analysis of the reaction networks may be
decomposed into the analysis of sub-networks (or, equivalently, stoichiometric subspaces)
having a single source complex, i.e., forming a cone in the species space Rd. Consequently,
throughout the paper we restrict our attention to such “conic” networks only.

2.1 Multinomial Likelihood

Let Rd denote the collection of all
(
m
d

)
positive cones spanned by subsets of d vectors of R.

Denote by cone(R) the positive cone generated by the reaction vectors in R. Let S be the
partition of cone(R) obtained by all possible intersections of non-degenerate cones in Rd.
Suppose S contains n full-dimensional regions S1, . . . , Sn; throughout we shall refer to these
regions as the building blocks or the partition chambers.

Let ∆m−1 be a probability simplex in Rm and let θ ∈ ∆m−1 be a vector of probabilities
associated with the reactions that give rise to R. We assume that these m reactions have the
same source complex (i.e., form a conic network, see above). Define the polynomial map

g : ∆m−1 → Rn

where

gi(θ) =
∑

C=cone(Rσ(1),...,Rσ(d))∈Rd

vol(C ∩ Si)
vol(C)

θσ(1) · · · θσ(d) (1)

for i = 1, . . . , n. We take1 vol(C∩Si)
vol(C)

= 0 if vol(C) = 0. Define s(θ) =
∑
σ θσ(1) · · · θσ(d) and

p(θ) = (p1(θ) . . . , pn(θ)) = (g1(θ)/s(θ), . . . , gn(θ)/s(θ)). (2)

In this setting, p ∈ Rn is our statistical model for the data, after we substitute θm = 1 −∑m−1
j=1 θj . Note that we may interpret the monomials θσ(1) · · · θσ(d) in (1) as the probabilities

of a given data point being generated by the d-tuple of reactions σ(1), . . . , σ(d). With this
interpretation, the coordinate pi of the map p in (2) is simply the conditional probability that
the data point is observed in Si, given that it was generated by a d-tuple of reactions. Note

1 In general, it may be beneficial to consider various measures vol(·) that are absolutely continuous with
respect to the usual Lebesgue measure. For instance, in our numerical examples in the next section, we
define this measure via gamma densities.



that the map p is rational but, as explained in [3], the model may be re-parameterized into
an equivalent one involving only the simpler, multilinear map (1).
Let ui denote the number of data points in Si. The log-likelihood function corresponding to
a given data allocation is

l(θ) =

n∑
i=1

ui log pi(θ). (3)

In order to find the data points ui we assume that the reaction network follows the stochastic
law of mass actions (see e.g., [12]) whose stochastic trajectories fluctuate around the ODE
system G(·) of the form

dAO
t /dt = G(γ,AO

t ) (4)

where AO
t are the concentrations of A at time t and γ are unknown coefficients, estimable from

the observed species concentration data. It is important to note that for the conic networks
the ODE operator G(γ,AO

t ) depends on AO
t only through the values of the source species

(see, e.g., (11) below). As described in [3], we assume that such data consists of n sets of
concentrations (trajectories), possibly corresponding to different γ parameters. The estimate
of γ based on the k-th set of concentrations, denoted γ̂k, (k = 1, . . . , J , where J =

∑n
i=1 ui)

is a d-dimensional vector which maps the chemical reaction rates into the species space. Each
γ̂k corresponds therefore to a “data point” in the species space and the collection of all such
points cumulated over the distinct chambers gives the values of ui in (3). Here and elsewhere
in this paper (albeit this does not have to be the case in general) the γ̂k’s are the least-squares
estimates of the ODE coefficients in the deterministic law of mass action model (4), that is,
the linear combinations of the (unknown) reaction rate constants. Given the values γ̂k, the
most likely reaction vectors are inferred based on their maximum likelihood estimators or
MLEs, that is, the values of θ̂ that maximize the likelihood function. More precisely, the
inference problem is to find

θ̂ = argmaxθl(θ) subject to

m∑
i=1

θi = 1 and θi ≥ 0. (5)

Once the above problem is solved, the reactions corresponding to the indices j for which

θ̂j ≈ 0 (6)

may be removed from the collection of the reaction vectors R. Formally, this requires testing
of various statistical hypothesis of the form

H0 : θi1 = 0, θi2 = 0, . . . , θik = 0,

indexed by k-tuples of integers (i1, . . . , ik), k ≤ m. The first issue we consider in the current
paper is how to performing a data-based test of the above hypothesis by inverting the joined
confidence region for θi’s. This requires a method for assessing the variability of θ̂ for given
J data points γ̂.

2.2 Variability Assessment

We propose the following two-step procedure of analyzing the variability of the multivariate
estimate θ̂. In the first step estimate the variability of the data-estimated values γ̂k, treated as
empirically obtained points in the species space and, in the second step, use them to estimate
the variability of the MLE θ̂. The estimates γ̂k, may be, for instance, obtained via a simple and
robust least squares minimization, which turns out in this case to be asymptotically equivalent



to a more computationally expensive likelihood maximization (see, e.g., [8] Chapter 10). The
difficulty lies in the fact that the distribution of γ̂ = (γ̂1, . . . , γ̂d)

> is hard to describe, due
to both the longitudinal nature of the data and its often very complex pattern of stochastic
fluctuations ([8] Chapter 10) around the ODE system (4).
In view of the complicated nature of the underlying probability laws, in order to obtain the
distributions of the least squares estimates (LSEs) we apply the block-bootstrap method (cf.
e.g., [17]) in the semiparametric model

At = AO
t + σ(At−1)εt t = 0, 1 . . . , T. (7)

Here At = (A1t, . . . , Adt)
> is a vector of concentrations of d species A1, . . . , Ad at the equidis-

tant2 times t and AO
t = (AO1t, . . . , A

O
dt)
> is a vector of the corresponding solutions of the ODE

system of d differential equations (4) with rate coefficients γ = (γ1, . . . , γd)
>. Furthermore,

σ(At−1) = Diag(σ1(A1,t−1), . . . , σd(Ad,t−1)) is a d× d diagonal matrix with unknown diag-
onal elements σ(Ait) (i = 1, . . . , d), and εt = (ε1t, . . . , εdt)

> is a random vector with zero
mean, the covariance matrix consisting of unit diagonal entries, and unknown off-diagonal
entries. Note that A0 is a known initial vector and Â0 = A0. Since we use a set of estimates
γ̂k of the differential equation coefficients as inputs in our inferential procedure, the model
(7) includes AO

t , the solution of the ODE (4), as the mean function of the species concen-
tration trajectories. Note that due to the Markov property of the trajectories assumed under
our stochastic chemical kinetics (cf. e.g., [3]), the diagonal elements σi(Ai,t−1), i = 1, . . . , d,
depend only on the species concentrations at the time-points t− 1 and t.
Whereas the quantities AOit, i = 1, . . . , d may be estimated by solving the least squares
problem and substituting γ̂k (k = 1 . . . , n) into the differential equation trajectories, the
non-explicit form of σi(Ai,t−1), i = 1, . . . , d requires a non-parametric approach, offered for
instance, by the Nadaraya-Watson type estimator [21]. Since the Markov property implies
first-order autoregressive processes, the Nadaraya-Watson AR(1) model may be used to esti-
mate the variance functions of the error terms as follows:

σ̂2
i,hi(a) =

(p̂hi(a))−1

T − 1

T∑
t=2

Khi(a−Ai,t−1)(Ait − ÂOit)2, i = 1, . . . , d, (8)

where

p̂hi(a) =
1

T − 1

T∑
t=2

Khi(a−Ai,t−1).

Here Khi(·) = h−1
i K(·/hi), with a kernel smoothing function, K(·) and a pre-specified band-

width value for the i-th trajectory, hi. The nonparametric estimate of the variance function
(8) was recently proposed in [10]. From the estimates ÂO

t and σ̂(At−1), we can obtain the
vector of residual et = (e1t, . . . , edt)

> estimating the errors εt, t = 1, . . . , T . While εt’s have
constant variances, they are likely correlated. In order to account for these correlations, we
consider the block bootstrap, or block resampling, from et (see, e.g., [17]). In our current setup
the resampling procedure above is typically biased, owning it to the bias of the LSEs of the
ODE coefficients, and thus the estimated residuals corresponding to εt in (7) do not have
zero mean. To alleviate this effect we perform a bias correction by replacing the estimated
residuals vector et with its corrected version ebct = et − ēt, where ēt =

∑T
t=1 et/T . The

proposed bootstrap procedure may be then summarized as follows.

Algorithm 1 (Bootstrap Confidence Regions)

2 The extension to non-equidistant time grid is straightforward but, for simplicity, not pursued here.



Suppose J sets of longitudinal concentration measurements at T time points for d species are
obtained, each from a different experiment (i.e., representing a different model trajectory).
Then, we have J observation matrices Ψj = [Aj0, . . . ,AjT ]>, j = 1, . . . , J with (T + 1) rows
and d columns. The algorithm proceeds in two steps.

1. For each Ψj j = 1, . . . , J ;

(a) Based on the entries Ψj, the least-squares estimate γ̂j = (γ̂1,j . . . , γ̂d,j) of the vector
of parameters γj = (γ1,j . . . , γd,j) is obtained. The estimate (γ̂j) is used to obtain
the “plug-in” species concentration estimates ÂO

jt, t = 0, . . . , T from the ODE model

(4). Note that ÂO
j0 = Aj0.

(b) Using the Nadaraya-Watson estimator (8), the estimates of σ̂(Aj,t−1) are obtained,
and the residuals ejt = (e1jt, . . . , edjt)

>, t = 0, . . . , T are computed, where ei0 = 0
and eit = (Ait − ÂOit)/σ̂i(Ai,t−1), t = 1, . . . , T . From et, the bias corrected residuals
are obtained by taking e0

t = et − ēt, t = 1, . . . , T , where ēt =
∑T
t=1 et/T .

(c) The circular block-bootstrap sample e∗jt, t = 1, . . . , T from e0
t is obtained. The sample

e∗jt consists of a set of re-arranged blocks of observations of fixed size b generated from
the ordered and bias corrected residuals e0

jt, t = 1, . . . , T .
(d) The set of resamples A∗jt is obtained by taking

A∗jt = ÂO
jt + σ̂(Aj,t−1)e∗jt, t = 0, . . . , T. (9)

(e) The vector of estimates for the bootstrap trajectories γ̂∗j is calculated using the least
squares method.

(f) The steps (c)–(e) are repeated B times for the j-th observed trajectory, resulting in
the set of resamples γ̂∗jk, k = 1, . . . , B.

2. For k = 1, . . . , B;

(a) Consider Dk, a matrix with J rows and d columns that consists of the bootstrap
estimates γ̂∗jk. i.e., Dk = [γ̂∗1k, . . . , γ̂

∗
Jk].

(b) From the data matrix Dk, u∗i is obtained as “pseudo-data” and used to derive the
corresponding MLE θ̂∗, i.e. a resampling realization of an estimate of θ. This is
done by solving the problem (5) with u∗i in place of ui.

Finally, the resampling estimate of the distribution of θ̂ ∈ ∆m−1 is calculated based on the B
values θ̂∗.

In order to provide a good approximation to the bootstrap distribution, as measured e.g., by
the jackknife-after-bootstrap (JAB) method (cf. [18]), the number B of bootstrap resamples
needs to be sufficiently large. To perform this bootstrap procedure for the j-th set of trajec-
tories, the bandwidth of i-th species hij for the variance function in (8) and the block size b
need to be selected. These are important tuning parameters, as their values may profoundly
affect the quality of the final estimates. In all examples below, we take the Gaussian kernel
smoothing function K(·) with the block size b = T/10 and hij = (4/3)5sAij(T + 1)−1/5 for
all i and j, where sAij is the standard deviation of the concentrations Aij0, . . . , AijT . These
values are based on [27] and seem to work well in our numerical examples below. Whereas
more elaborate selection methods are also available, their discussion is outside our current
scope. We illustrate the performance of Algorithm 1 with the following two examples.

Example 1. Consider the following network of four biochemical species A0, . . . , A3

A0 → A1, A0 → A1 +A2, A0 → A2 +A3, and , A0 → 2A3. (10)



In the particular case of (10), the ODE system (4) becomes

dAi/dt = γiA0 i = 0, . . . , 3. (11)

where the parameters γi, i = 0 . . . 3 are linear combinations of the true reaction rate constants.
In this example our choice of theses rate constants yields γ = (−1.1, 0.5, 0.8, 0.7)>.
In order to asses the performance of our Algorithm 1, we simulated both the experimental
and the validation data as the points on the species trajectories of the stochastic network
(10) fluctuating around the deterministic system (11). All the data was obtained using the
standard discrete event stochastic simulator [12]. In order to obtain the bootstrap estimates of
the distribution of LSEs γ̂ in (10), the first part of Algorithm 1 with B = 1000 resamples was
applied to the single simulated set of T=20 species concentrations collected on the regular time
grid. The bootstrap distribution of each component of γ̂ was then compared with the empirical
distribution based on the independently simulated set of n = 1000 mutually independent, full
trajectories. The results are presented in Figure 1 as two sets of density plots. As may be
readily seen, in terms of their shape, modality and variance, the bootstrap estimates (b) are
seen to agree rather well with the empirical counterparts (a). The quantile-to-quantile plots
(c) also indicate good agreement, except for slight residual bias of the block bootstrap, seen
in the first and the last plot. This bias effect is, however, within the simulation study margin
of error. ut

In the next example we analyze the second part of Algorithm 1, concerned with the confidence
bounds for θ̂, the MLE solving the optimization problem (5).

Example 2. Consider the same network (10) of four biochemical species A0, . . . , A3 but with
an additional superfluous reaction A0 → A2. The new network, containing both real and
superfluous species interactions, is therefore

A0

A1 +A2

��

A1 __ 2A3OO A2??

A2 +A3

��

(12)

In order to assess the performance of the second part of Algorithm 1, we again used the data
generated from the J independent stochastic trajectories of the true network (10). However,
unlike in the previous example, now different sets the rate parameters were used for different
trajectories, in order to simulate the experimental heterogeneity. This was achieved by draw-
ing J sets of rates from the product of independent gamma random variables Γ (α = 1.5, λ =
1). For each of the J trajectories the corresponding estimates γ̂ were calculated, based on
independent sets of T = 20 longitudinal datapoints. As described in Section 2.1, each of these
J values of γ̂ ∈ R4, treated as a point in the appropriate building block, contributed to the
multinomial likelihood function (3).
Two scenarios, with J = 10 and J = 20 were considered, yielding the MLE values θ̂ =
(0.06, 0.43, 0.22, 0.29, 0.00) and θ̂ = (0.25, 0.29, 0.10, 0.36, 0.00), respectively. Based on
the data from these scenarios, Algorithm 1 with B = 1000 bootstrap resamples was used to
identify the confidence regions for θ̂. The results are summarized in Table 1 below where the
marginal bootstrap means and marginal 95% confidence bounds for both scenarios are given.



Fig. 1. (a) Marginal empirical distributions of LSE γ̂ = (γ̂0, γ̂1, γ̂2, γ̂3)> obtained under the true model with
γ = (−1.1, 0.5, 0.8, 0.7)>; (b) Matching marginal bootstrap distributions of γ̂ = (γ̂0, γ̂1, γ̂2, γ̂3)> obtained
with B = 1000 resamples; (c) Quantile plots for the matched pairs of (a) and (b) distributions compared
against the equal quantile line (dashed).



Table 1. Bootstrap means and 95% confidence bounds (CB) for θ estimates based on J = 10 and J = 20
data points.

J = 10 J = 20
Reactions Mean 95% CB Mean 95% CB

A0 → A1 0.09 [0.02,0.15] 0.21 [0.05,0.38]
A0 → A1 +A2 0.34 [0.20,0.52] 0.34 [0.18,0.55]
A0 → A2 +A3 0.23 [0.12,0.37] 0.10 [0.05,0.19]
A0 → 2A3 0.34 [0.19,0.54] 0.34 [0.18,0.57]
A0 → A2 0.00 [0.00,0.00] 0.00 [0.00,0.00]

As seen from the results in Table 1, the marginal confidence bounds for θi values corresponding
to the first four (true) reactions all exclude zero value when J = 10 and J = 20, despite
otherwise high uncertainty in the interval estimates due to relatively small sample size J . By
the usual inversion of the confidence bound, the null hypothesis H0i : θi = 0 for i = 1, . . . , 4
is therefore rejected at α = 5% significance level. In contrast, the marginal 95% confidence
bound for the fifth reaction probability θ5 contains zero (in fact is concentrated at zero, at
least up to two significant digits) and hence the null hypothesis H05 : θ5 = 0 is not rejected at
α = 5% level (nor, for that matter, at any level α ≥ 1%). Consequently, the bootstrap analysis
of the MLE confidence bounds suggests that, based on the observed data, the superfluous
reaction should be removed from the network (12).

2.3 Dimension Reduction

The important assumption of the algebraic multinomial model (1)–(2), is that the span of the
“true” reaction vectors is maximal, i.e., equals to d, the total number of species in the network.
This is equivalent to the assumption of invertibility of the true network stoichiometric matrix
and clearly holds for the network (10) considered in the examples above. If the stoichiometric
matrix of the true network is not invertible, the multinomial likelihood method based on (5)
may fail to meaningfully evaluate the reaction probabilities (in the sense of their significance
assessment (6)). A simple example is as follows.

Example 3. Consider the network consisting of three possible reactions

A0

A1

��

2A0OO

A2

��

(13)

with the true trajectory generating reactions

A0 → A1 and A0 → A2. (14)

Note that in the above network the cone spanned by the true reaction vectors ([−1, 1, 0]
and [−1, 0, 1]) has dimension two, while the space spanned by the species has dimension
three. Figure 2 illustrated this clearly with the cloud of 500 data points simulated from



Fig. 2. The γ̂ data points generated for the network {A0 → A1, A0 → A2} obtained by the stochastic
simulation procedure described in Example 1. Note that the points remain close to the positive cone
spanned by the two reaction vectors. This cone has dimension two, while the space spanned by the species
has dimension three.

the true reactions (14) via the method described in Example 2. As shown in Figure 2, the
simulated data set of γ̂ remains close to the plane A0 + A1 + A2 = 0 determined by the
stoichiometric vectors. Analyzing the likelihood estimates (5) based on J = 500 points we
find the estimated probabilities as θ̂ = (0.09, 0.16, 0.79). In this case the MLE, being forced
into the three-dimensional species space, gives highest estimated probability value to the
superfluous reaction A0 → 2A0, which is clearly undesirable.

In order to extend the algebraic model (1)–(2) (and, consequently, also the bootstrap method
of Algorithm 1) to networks with true stoichiometric space of reduced rank, we need a pre-
processing step projecting the network model onto the appropriate species subspace. Whereas
there are several possible ways of accomplishing this, we suggest below a particularly simple
procedure based on the geometry of the γ̂ points, reminiscent of the idea for the iterative
angular principle component (see, e.g., [1]). The web-based implementation of the algorithm
is available at https://neyman.georgiahealth.edu/Bioreactor.html

Algorithm 2 (Dimension reduction)

1. Initialize the network N as equal to the full candidate reaction network, and denote by S
the stoichiometric subspace of N .

2. Let k = dim(S). Replace the data points γ̂ by their orthogonal projections onto S, written
in terms of the orthonormal basis of S.



3. Construct the list L of all (k− 1)-dimensional subspaces generated by subsets of reaction
vectors and compute the minimum αmin of all dihedral angles formed by disjoint pairs of
subspaces in L.

4. For each subspace s ∈ L, compute the average of the angles between each data vector γ̂
and its orthogonal projection on s.

5. Identify the subspace s∗ which realizes the minimum average angle (say, δ) obtained in
Step 4.

6. For a fixed threshold factor ε, if δ < ε · αmin then discard the reactions whose reaction
vectors do not lie in s∗. Update N to be the network formed by the remaining reactions,
and S to be the stoichiometric subspace of N , and go back to Step 2. If δ ≥ ε ·αmin then
stop.

One can show that Algorithm 2 successfully determines the linear subspace that is spanned
by the true reaction vectors, provided that the true values of the reaction rate constants do
not have very different orders of magnitude, and that the measurement error for the γ̂ values
is not too high. An example of Algorithm 2 follows.

Example 4. Extend the network (12) in Example 2 to the following one

A0

A1 +A2

��

A1 __ 2A3OO A2??

A2 +A3

��
2A2

��

(15)

and suppose that the true reactions are

A0 → A1 +A2, A0 → A2 +A3, and A0 → 2A3. (16)

Two sets of J = 10 and J = 20 network trajectories for (15), are simulated from (16) as
in Example 1. By design the data points are therefore confined to the proximity of a three-
dimensional subspace of the four-dimensional real vector space with basis {A0, A1, A2, A3}. In
both scenarios Algorithm 2 stops after two iterations as illustrated below by the output from
the “Bioreactor” software (https://neyman.georgiahealth.edu/Bioreactor.html). The matrices
below represent the reaction vectors in (15) as rows. In the initial matrix ‘Rays’ they are
ordered clockwise, starting from the top-left in (15).

Rays :

−1 1 0 0

−1 0 2 0

−1 0 0 2

−1 0 1 0

−1 0 1 1

−1 1 1 0

Discarded:
−1 1 0 0

−1 0 1 0
Possible:

−1 0 2 0

−1 0 0 2

−1 0 1 1

−1 1 1 0

As seen, the dimension reduction algorithm has correctly concluded that the data points in
the simulation should belong to the hyperplane 2A0 + A1 + A2 + A3 = 0 and that the true
reactions are among the four vectors included in this hyperplane, namely

A0 → 2A2, A0 → 2A3, A0 → A2 +A3, A0 → A1 +A2.



The dimension reduction algorithm produces a new set of data points that lie in the stoichio-
metric subspace S of the “reduced” network above and are written in coordinates correspond-
ing to the orthonormal basis of S. For these new data points, the algebraic multinomial model
(3) may be applied to estimate probabilities θ̂, as before. Note, however, that θ̂ estimated
from the projected data points should now be interpreted as (conditional) probability in the
reduced space.
The confidence bounds for the probabilities in the reduced space may be obtained by using
Algorithm 1, but with the additional pre-processing via Algorithm 2 applied to each resample.
The results for the current example, based on B = 1000 resamples are summarized in Table 2
below. As seen from the results summary the first three reactions in Table 2 have their

Table 2. Means and 95% confidence bounds (CB) for θ obtained using the dimension reduction method
for J = 10 and 20 data points.

J = 10 J = 20
Reactions Mean 95% CB Mean 95% CB

A0 → A1 +A2 0.38 [0.26,0.54] 0.40 [0.27,0.57]
A0 → A2 +A3 0.18 [0.11,0.27] 0.18 [0.10,0.27]
A0 → 2A3 0.44 [0.30,0.59] 0.42 [0.29,0.59]
A0 → A1 0.00 [0.00,0.00] 0.00 [0.00,0.00]
A0 → A2 0.00 [0.00,0.00] 0.00 [0.00,0.00]
A0 → 2A2 0.00 [0.00,0.00] 0.00 [0.00,0.00]

respective 95% confidence bounds for θ separated from zero, which indicated that they should
be considered significant in the network model (12). In contrast, the confidence bounds for
the remaining reactions cannot be separated from zero (in fact, are concentrated at zero)
up to two significant digits, suggesting that they are superfluous. This is consistent with the
specified true network (16).

2.4 Measurement Error Effect

Throughout the paper we have assumed so far that the data on the trajectory is measured
without errors. In order to assess the robustness of our Algorithm 2 against that assumption,
we performed yet another simulation study, similar to the one in [3], in which the zero-mean
Gaussian noise with varying standard deviation was added to a set of stochastic trajectories
At, t = 1 . . . , T corresponding to each species for the reaction network (15). Here we again
used (15) as the hypothesized network and generated trajectory data from two different
models of two and three reactions, respectively

2D : A0 → A1 +A2, A0 → A2 +A3, (17)

3D : A0 → A1 +A2, A0 → A2 +A3, A0 → 2A3. (18)

From the trajectories with added noise, the LSE vector (γ̂0, γ̂1, γ̂2, γ̂3) was obtained as in
previous sections (i.e., J = 20 and T = 20) and Algorithm 2 was applied as before. The
scenario was repeated in batches of 500 for each value of the standard deviation on the
regular grid from 0 to .5. To reduce the computational overhead, we have assumed that the
reactions with θ̂i ≤ 0.005 were identified as false. The result of this experiment is presented
in Figure 3 in terms of the standard deviations (SDs) of the added Gaussian noise, plotted
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Fig. 3. The rate of recovery of the correct reactions (17) and (18) out of the network (15) as a function of
the size of the Gaussian noise (in SD units) added to the trajectories.

versus the rates of correct reactions recovery (based on the batches of size 500). As seen from
the plots, with SD up to 0.2, the maximum likelihood algorithm with dimension reduction
was still able to recover the correct set of reactions at a remarkably high rate. However, the
success rate drastically dropped down afterwards for both 2- and 3-dimensional case (17)–(18)
and decreased rapidly to zero for SD above 0.3 or so (in fact, in our simulations the dimension
reduction stopped to occur above that noise level). Since in our example the noise of SD 0.2
represents about 20% data value distortion, the dimensions reduction algorithm is seen as
reasonably robust even in the presence of a relatively high measurement noise.

3 Summary and Discussion

The current paper expands on the likelihood-based algebraic statistical model, proposed re-
cently in [3] for inferring biochemical reaction networks. The model allows us to infer the
most likely network structure from the multiple sets of concentration data. The model pro-
vides a statistical solution to the (deterministic) non-identifiability problem caused by the
fact that the different chemical reaction networks may give rise to exactly the same reaction
rate equations. The attractiveness of the algebraic statistical method is in its ability to take
advantage of the algebraic and geometric structure of the network rather than merely the
observed experimental values of the network species, as is commonly the case in network
inference models based on graphical methods, like, for instance, Bayesian or probabilistic
boolean networks (cf. [23]).
The present paper addresses some of the deficiencies of the original model described in [3]
by providing an algorithm for reliable error bounds identification on the predicted network
structure and by removing the restrictive assumption about the stoichiometric subspace of



the true network being fully-dimensional. As a result, a new non-parametric block-resampling
procedure is proposed, allowing one to obtain confidence intervals for the reaction parameters
and hence to assess the model predictions variability and precision. The approach proposed
is versatile in the sense that it relies on relatively few assumptions about the reaction net-
work, beyond the usually assumed stochastic law of mass action and the Markovian property.
However, the drawback of the developed method, stemming from this very versatility, is its
reliance on the empirical distribution of the data and, consequently, the computationally in-
tensive resampling with proper parameter tuning and data pre-processing. The pre-processing
dimension-reduction step is needed in order to alleviate the high computational cost as well
as remove the somewhat restrictive assumption of a full rank of the stoichiometric matrix.
Overall, both in the examples provided as well as in other similar numerical experiments
not reported here, we have found that the full algorithm presented in this paper (with the
pre-processing step for dimension reduction) has performed very well, being able to recover
the true network structure with high accuracy as long as the level of noise present in the
concentration data was not too large (in our examples, less than 20%). Albeit these results
are encouraging, further and more extensive studies, as well as more theoretical developments,
are needed to further assess the statistical algebraic method’s true practical applicability to
large biochemical networks and to real experimental data. In future work, we intend to address
these and other outstanding issues, such as linear independence of the reaction vectors and
practical ways of performing the volume computations for large sets of reactions.

Availability. All algorithms described are implemented as part of the “Bioreactor” software
suite available at https://neyman.georgiahealth.edu/Bioreactor.html.
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