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These notes are coming from a rough first version of our paper “Multistationarity and nondegenerate
multistationarity of networks with one-dimensional stoichiometric subspace”, available on arXiv. That ver-
sion of that paper contains a simpler and shorter proof of part 3 of our main theorem (Theorem 4.1 here).
However, the proof here is a hands-on case-by-case algebraic approach, which may be valuable in other ways.
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1 Introduction

Multistationarity (i.e. the existence or two or more compatible positive equilibrium points) underlies switch-
ing behavior in biochemical systems, and is a key mathematical feature of systems that generate multiple
outputs in response to different external signals or stimuli [2, 15, 16]. This phenomenon is crucial in im-
portant cell behaviors, including generating sustained oscillatory responses, remembering transitory stimuli,
differentiation, or apoptosis [24, 36, 26, 6, 27].

While the question of determining which reaction networks admit multistationarity is very much open,
many of powerful techniques relating the structure of a reaction network with its capacity for multistationarity
are known. These include tools based on the injectivity of the vector field [10, 11, 12, 22, 35, 25, 3],
degree theory[8, 7], and inheritance, where the multistationarity of a reaction network is inherited from
multistationarity of its substructures [3, 5]. This creates the possibility of “lifting” multistationarity from
idealized network motifs [1] to larger and more realistic networks. There is already a significant amount of
work on cataloguing classes of motifs by their presence or absence of multistationarity. These include all
bimolecular open networks with two reactions (both reactions reversible or irreversible) [?], fully open as
well as isolated sequestration networks in arbitrary number of species and reactions [?], fully open networks
with cyclic DSR graph (CST networks, [14]), and networks with two reactions [21].

Our work adds to the catalog the class of reaction networks with one-dimensional stoichiometric answering
in the affirmative a conjecture posed by Joshi and Shiu:

Conjecture 1.1 (Question 6.1 [21]). A reaction network with one-dimensional stoichiometric subspace and
more than one source complex has the capacity for multistationarity if and only if it has a one-species
embedded subnetwork with the pattern (→,←), and another (possibly the same) with pattern (←,→).

Additionally, we characterize which networks with one-dimensional stoichiometric subspace can have
nondegenerate equilibria. The classification of these networks with nondegenerate equilibria was needed in
our proof of Conjecture 1.1, but it is also important on its own, for example inheritance results only apply
for nondegenerate equilibria. Our classification of nondegeneracy extends and generalizes results from the
literature [21, 31, 23]. In particular we prove a conjecture by Shiu and de Wolff regarding characterization
of nondegenerate multistationarity for networks with one irreversible and one reversible reaction.

Conjecture 1.1 is known to hold for special cases. In particular, the conjecture is true for networks with
two reactions (Joshi and Shiu [21]) and under some technical additional assumptions (Lin, Tang and Zhang
[23]). These are discussed in detail in Section 4.2.

Our results are developed for mass action kinetics, although our proof extends without difficulty to the
more general power law kinetics, an important, used to model a variety of biological phenomena including
genetic circuits and developmental systems [28, 29]. [30].

The paper is structured as follows: general reaction networks terminology is introduced in section [?];
section 3 sets notation for networks with one-dimensional stoichiometric subspace and defines classes of
networks that our main theorem (Theorem 4.1) depend on. The main result, examples, and connection with
literature are presented in section 4, and section ?? contains the proof.

2 Preliminaries

2.1 Reaction networks and kinetics

Throughout the paper {e1, . . . , en} denotes the standard basis of Rn and Rn>0, Rn≥0 denote the subsets of
Rn containing vectors with positive and non-negative entries respectively. The set of n-dimensional vectors
with nonnegative integer entries is denoted by Zn≥0.

We review some standard terminology on reaction networks.
A reaction on a list of species X = (X1, . . . Xn) has the general form

a1X1 + a2X2 + . . .+ anXn → b1X1 + b2X2 + . . .+ bnXn, (1)
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where and a = (a1, . . . , an) and b = (b1, . . . , bn) are vectors in Zn≥0. Entries ai and bi are called stoichiometric
coefficients of species Xi in a and b. The source complex of (1) is a ·X := a1X1 + a2X2 + . . . + anXn, and
b ·X is called the product complex of N . The vector b− a is called the reaction vector of (1).

A reaction network N on a list of species X = (X1, . . . , Xn) is a finite list of reactions on X. We require
that source and product complexes differ for each reaction, and that no reaction is listed multiple times.

Once an order has been chosen for reactions in N , their reaction vectors form the columns of the stoi-
chiometric matrix Γ ∈ Zn×m. The image of Γ is called the stoichiometric subspace of the network.

The vector of concentrations of X1, . . . , Xn is denoted by x ∈ Rn≥0. In deterministic spatially homogeneous
models the time evolution of concentration is commonly modelled with mass action kinetics, where the
reaction rate of a → b is given by κxa := κxa11 . . . xann . Here κ is a positive constant that depends on the
reaction, called the rate constant of the reaction.

A reaction network N with an assignment of rate constants κ = [κ1, . . . , κm] is called a mass action
system and is denoted by (N , κ). The set of ODEs

The time evolution of the concentration vector x is governed by the ODE system of (N , κ) :

dx

dτ
= Γr(x(τ)). (2)

τ denotes the time variable, and r(x) = [r1(x), . . . rm(x)]t is the vector of reaction rates (i.e. the rate vector).
Note that x(τ) stays nonnegative for any τ ≥ 0 (see for example [34] volpert? it has section ”Positiveness of
the solution”

2.2 Compatibility classes and multistationarity

Integrating (2) with respect to time we have

x(τ) = x(0) + Γ

∫ T

0

r(x(s))ds,

in other words the solutions of (2) are constrained to affine sets of the form

(η + im Γ) ∩ R≥0,

where η ∈ Rn≥0. These are called compatibility classes.
A positive equilibrium, or positive steady state of a mass action system (N , κ) is a point x∗ ∈ Rn>0 such

that
Γr(x∗) = 0.

Roughly speaking, multistationarity refers to the existence of two or more positive equilibria. Note
however that when the dimension of the stoichiometric space is smaller than the number of species we
typically obtain a continuum of equilibria. With dynamics being constrained to compatibility classes, the
relevant multistationarity question is at the level of each compatibility class.

Definition 2.1. (Capacity for MPE). We say that a reaction network N has the capacity for multiple
positive equilibria (MPE) if there exist an assignment of rate constants κ such that the reaction system
(N , κ) has two or more positive equilibria belonging to the same compatibility class of N .

Example 2.2. Consider the reaction network 1

N1 = {X1 +X2 → 2X1 + 2X2, X1 +X2→0, 0→ X1 +X2.} (3)

10 = 0X1+0X2 denotes the zero complex, which may be interpreted as a placeholder for the exterior of the environment where
the reactions take place, or for species that we do not include in our model. For example (3) may represent the biochemically
realistic network X1 + X1 → 2X3, 2X3 → X1 + X2, where X3 is so abundant that it is considered constant for all practical
purposes, and not included in the model.
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Letting κ1 and κ2 denote the rate constants of the two reactions, under mass action equilibrium points
satisfy the equation

Γr(x) =

[
1 −1 1
1 −1 1

]κ1x1x2

κ2x1x2

κ3

 = 0,

or (κ1 − κ2)x1x2 + κ3 = 0; this curve is called the steady state manifold of mass action system (N1, κ). The
stoichiometric subspace of N1 is one-dimensional and compatibility classes are cosets of imΓ = span([1, 1]t)
intersected with the positive quadrant, i.e. line segments of the form x2 − x1 = T (Figure 1(a)). Positive
equilibria in the compatibility class x2 − x1 = T are obtained by solving the system

(κ1 − κ2)x1x2 + κ3 = 0, x2 − x1 = T.

This has no positive solutions for κ1 > κ2 and exactly one solution when κ1 < κ2. The stoichiometric class

x2−x1 = T contains no equilibrium points or exactly one equilibrium point (
−T+

√
T 2− 4κ3

κ1−κ2
2 ,

T+
√
T 2− 4κ3

κ1−κ2
2 ).

Reaction N1 does not have the capacity for MPE.

Example 2.3. The reaction network

N2 = {2X1 +X2→3X1, X1→X2} (4)

is a subnetwork of a bistable network for modeling apoptosis [18] and is one of the simplest networks with
bistability [19, 4].

Assigning rate constants κ1 = κ2 = 1 to reactions above, equilibria are computed by solving the equation

Γr(x) =

[
1 −1
−1 1

] [
x2

1x2

x1

]
= 0,

and the steady state manifold of (N2, κ) in the positive orthant is x1x2 = 1. The stoichiometric subspace
is one-dimensional, spanned by [1,−1]t and compatibility have the form x1 + x2 = T . Positive equilibria in
the compatibility class x1 + x2 = T are obtained by solving the system

x1x2 = 1, x1 + x2 = T.

This gives x2
1−Tx1 +1 = 0; there are no positive equilibria if T < 2, one positive equilibrium (x1, x2) = (1, 1)

if T = 2 and two positive equilibria (T+
√
T 2−4
2 , T−

√
T 2−4
2 ) and (T−

√
T 2−4
2 , T+

√
T 2−4
2 ) if T > 2 (Figure 1(b)).

N2 has the capacity for MPE.

Nondegenerate equilibria. At equilibrium point A in Figure 1(b) the steady state manifold and the
compatibility class intersect tangentially, while at equilibrium points B and C the intersection is transversal.
This distinction is an important one: A is called a degenerate equilibrium, while B and C are called nonde-
generate equilibria. To be precise, a positive equilibrium point x∗ is called nondegenerate if the kernel of the
Jacobian matrix of (2) computed at x∗ intersects the stoichiometric subspace at 0 only [11, Definition 4]:

ker(ΓDr(x)|x=x∗) ∩ im Γ = {0}. (5)

Equivalently, a positive equilibrium x∗ is nondegenerate if the Jacobian of the vector field projected on
compatibility classes (reduced Jacobian [3, Appendix A.] or core determinant [17]) is nonzero. Conveniently
for calculations, the reduced Jacobian is the sum of all k × k principal minors of the Jacobian matrix
ΓDr(x)x=x∗ , where k = rank Γ is the dimension of the stoichiometric subspace [3].

Definition 2.4. (Capacity for MPNE). We say that a reaction network N has the capacity for multiple
positive nondegenerate equilibria (MPNE) if there exist an assignment of rate constants κ such that the mass
action system (N , κ) has two or more positive nondegenerate equilibria belonging to the same compatibility
class of N .
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x1

x2
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x2

(b)

x1

x2

(c)

Figure 1: Various scenarios for multistationarity. Steady state manifolds are drawn in bold, and compatibility
classes with thin lines. (a) Reaction network (3) does not have the capacity for MPE. Each compatibility
class contains exactly one nondegenerate equilibrium. (b) Reaction network (4) has the capacity for MPNE.
Compatibility classes may contain no equilibria, one degenerate equilibrium (point A), or two nondegenerate
equilibria. (c) Reaction network (6) has the capacity for MPE, but not the capacity for MPNE. When
equilibria exist, a whole compatibility class is made out of equilibria.

The Jacobian matrix of network N1 in example 2.3 taken with rate constants κ1 = κ2 = 1 is

ΓDr(x) =

[
2x1x2 − 1 x2

1

−2x1x2 + 1 −x2
1

]
and its reduced Jacobian is equal to −x2

1 + 2x1x2 − 1. At equilibrium points x∗ this expression is equal to
−(x∗1)2 + 1, and it follows that (1, 1) is a degenerate equilibrium, whereas all other equilibrium points are
nondegenerate. Reaction network (4) has the capacity for MPNE.

Some reaction networks exhibit pathological multistationarity behaviour, in that equilibria, if they exists,
are all degenerate.

Example 2.5. Consider the reaction network

N3 = {X1 + 2X2 → 2X1 + 3X2, 2X1 +X2 → X1} (6)

The steady state manifold in the positive quadrant is found from

Γr(x) =

[
1 −1
1 −1

] [
κ1x1x

2
2

κ2x
2
1x2

]
= 0,

i.e. κ1x2−κ2x1 = 0. The stoichiometric subspace of N3 is one-dimensional, spanned by [1, 1]t and compati-
bility classes are of the form x2−x1 = T . Positive equilibria in the compatibility class x2−x1 = T obey the
equation (κ1 − κ2)x1 + κ1T = 0, which has positive solutions if and only if κ1 = κ2 and T = x2 − x1 = 0.
In other words, all positive points in the compatibility class x2 − x1 = 0 are equilibria of N3, and no other
equilibria exist (Figure 1(c)). It is easy to check that all equilibria are degenerate. The reduced Jacobian
κ1x

2
2 − κ2x

2
1 is zero at equilibrium points. Therefore N3 has the capacity for MPE, but does not have the

capacity for MPNE.
We conclude this section with a useful observation that allows us to remove species with corresponding

zero coordinates in each reaction vector; their concentrations are constant functions of time. Let N be a
reaction network with stoichiometric matrix Γ and suppose row i0 of Γ is zero. If a is a complex of N we let
ā denote the complex obtained by removing species i0 from a, and let

N̄ = {ā→ b̄|a→ b ∈ N}.
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(N̄ is obtained from N by removing species i0 from all reactions). If κk denotes the rate constant of
a · X → b · X we define κ̄k = κkC

ai0 to be the rate constant of ā → b̄. We have κkx
a = κ̄kā

x̄, so that
r(x) = r̄(x̄) where r̄ denotes the rate vector of (N̄ , κ̄).

Proposition 2.6. With notations above, y = (y1, . . . , yn) ∈ Rn>0 is a (degenerate/nondegenerate) equilibrium
point of (N , κ) if and only if ȳ = (y1, . . . , yi0−1, yi0+1, . . . , yn) is a (degenerate/nondegenerate) equilibrium
point of (N̄ , κ̄).

Proof. We may assume that i0 = 1. By separating the first row in Γ we write in block matrix form

Γr(y) = Γr̄(ȳ) =

[
0
Γ̄

]
r̄(ȳ) = [0 Γ̄r̄(ȳ)],

so Γr(y) = 0 if and only if Γ̄r̄(ȳ) = 0.
For the nondegeneracy part we use (5). A straightforward calculation shows that Dr(x) = Dr(x)RD1/x,

where R denotes the matrix having the source complexes of N as rows, and Dη denotes the diagonal
matrix with entries of vector η on the diagonal. Let v ∈ im Γ be a nonzero vector. We have v1 = 0 and
v̄ = [v2, . . . , vn] ∈ im Γ̄, v̄ 6= 0. Using block matrix forms we have

ΓDr(x)|x=yv =

[
0
Γ̄

]
Dr̄(x̄)

[
R1 R̄

] [1/x1 0
0 D1/x̄

] [
0
v̄

]
=

[
0

Γ̄Dr̄(x̄)R̄v̄

]
=

[
0

Γ̄Dr̄(x̄)x̄=ȳ v̄

]
so ΓDr(x)|x=yv = 0 if and only if Γ̄Dr̄(x̄)x̄=ȳ v̄ = 0, therefore y is nondegenerate if and only if ȳ is.

Throughout the rest of the paper we assume that Γ does not contain zero rows.

Inheritance of multistationarity. The following result is an essential tool in our proofs.

Theorem 2.7 (Theorem 3.1 [20], Theorem 1 [4]). Let N be a reaction network on species X1, . . . , Xn and
N ′ a reaction network obtained from N by adding a reaction on species X1, . . . , Xn whose reaction vector is
in the stoichiometric subspace of N . If N has the capacity for MPNE, so does N ′.

We note that the result in Theorem 2.7 is one of the simplest examples of network modification that
preserve nondegenerate multistationarity

2.3 Reaction networks, embedded graphs, and arrow diagrams

A reaction network can be specified (uniquely) by its source complexes and corresponding reaction vectors.
For the purpose of this paper, it is useful to introduce the following, even though it comes at the price of a
slight abuse of terminology.

Definition 2.8. (Reaction network). A reaction network N on n species is a finite set of reactions

ak → ak + wlk, l ∈ {1, . . .m′k}

where for each k ∈ {1, . . . ,m} (wlk ∈ Zn)1≤l≤m′k are nonzero pairwise distinct vectors.

Note that a1, . . . , ak are pairwise distinct and there are m′k ≥ 1 reactions associated with source complex
ak. The terminology introduced so far applies naturally to our extended notion of reaction network. In
particular, a1, . . . , ak are called source complexes of N ; letting m′ =

∑m
k=1m

′
k, the n × m′ matrix with

columns w1
1, . . . , w

m′1
1 , . . . , w1

m, . . . , w
m′m
m is called the stoichiometric matrix of the network; im Γ is called its

stoichiometric subspace; and if η ∈ Rn>0 then (η + im Γ) ∩ R≥0, is called the compatibility class of η.
Each reaction ak → ak + wlk is associated a rate constant κlk. Letting

r(x) = [κ1
1x
a1 , . . . , κ

m′1
1 xa1 , . . . , κ1

kx
akκ1

mx
am , . . . , κ

m′m
m xam ]t

the ODE system (2) is called the polynomial dynamical system associated to (N , κ). Positive equilibrium
points, degeneracy/nondegeneracy, and the capacity for MPE or MPNE are defined as in section 2.2.
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Definition 2.9. (Subnetwork) A subnetwork of a reaction network N is a reaction network given by a
subset of the reactions of N .

Remark 2.10. Mass action systems introduced in section 2.1 fall within the setup of this section. We note
however that not every reaction network in the sense of Definition 2.8 is a reaction network in the classical
sense: in definition 2.8 complexes ak +wlk are in Zn, but not necessarilly in Zn≥0. Some dynamical properties
of polynomial dynamical systems are different from those of classical reaction networks, for instance the
positive orthant may not be forward invariant: the reaction 0→ −1 on one species is such an example.

Remark 2.11. A particularly useful feature of our extended notion of reaction network in Definition 2.8
is that replacing all reaction vectors by their negatives (i.e. changing directions of arrows in the embedded
graph) yields a new reaction network with the same positive equilibria as the original one. This allows us to
reduce the number of cases in some of the proofs.

Remark 2.12. The results in this paper apply with almost verbatim proofs if we even further extend
Definition 2.8 to allow source complexes and reaction vectors to have real entries, i.e. the vector field is
a signomial vector function; reaction rates in this case are called power law [30]. A number of results on
various dynamical aspects of mass-action kinetics (like multistationarity [3], persistence and global stability
[13, 9]) apply more generally for power-law kinetics.

A reaction network N can be depicted naturally as a set of arrows from a ∈ Zn≥0 to b ∈ Zn≥0 for each
reaction a → b ∈ N ; see Figure 2(a) for an example. Following [9] we call this the embedded graph of N .
Note that the embedded graph of a reaction network N identifies N uniquely up to permutation of species.2

The arrow diagram of N is obtained by replacing all arrows from ak to ak + wlk in the embedded graph
by arrows starting at ak in the direction of sign(wlk) ∈ {−1, 0, 1}n. Vectors from the same source complex
going in the same direction are drawn as one. The length of arrows in the arrow diagram is not important;
see Figure 2(b). b can be negative?

1

2

(0, 1)

(0, 0)

(−2, 0)

(−2,−1)

(2, 1) (3, 1)

(1, 0)

(a)

1

2

(0, 1) (2, 1)

(1, 0)

(b)

Figure 2: (a) Embedded graph and (b) arrow diagram of reaction network {(0, 1) → (2, 2), (2, 1) →
(0, 0), (2, 1)→ (−2,−1), (1, 0)→ (3, 1))}.

2.4 Network projections

Definition 2.13. Let N be a reaction network as in Definition 2.8 and let I be a nonempty ordered subset
of {1, . . . , n}. The projection of N on I, denoted by NI is the reaction network on |I| species with reactions
pI(ak)→ pI(ak+wlk) where pI denotes the orthogonal projection on coordinates ZI . If pI(ak) = pI(ak+wlk)
then that reaction is discarded from NI . Duplicate reactions are also discarded from NI .

2This is not true in the original definition of an euclidean embedded graph [9]; in that work the embedded graph is defined
starting from an ODE system rather than a network, like we do here.
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In other words, NI is obtained by removing species Xi, i /∈ I from all reactions in N and then discarding
any trivial reactions where the source complex and the product complex is the same. We note that for
reaction networks with one-dimensional stoichiometric subspace no projection of a reaction can be trivial
under our assumption that Γ contains only nonzero rows. Moreover, while two diferent reactions in N may
have the same projection in NI , we list each reaction in NI only once.

Projections of networks are called embedded subnetworks by other authors [21].
The embedded graph of NI is the orthogonal projection on coordinates I of the embedded graph of N ,

discarding trivial reactions.
If |I| = 1 or |I| = 2 we call NI a 1D projection, respectively a 2D projection of N . Note that if I1 and I2

are permutations of each other, then NI1 and NI1 are identical up to a permutation of species. In particular
the 2D projections on (i, j) and (j, i) are reflections of each other with respect to the main diagonal of the
coordinate system, Figure 3.

Example 2.14. Let

N = {2X1 +X3 → X1 +X2 + 3X3, X1 +X2 → 2X2 + 2X3, X2 + 2X3 → X1}.

Dropping X from notation the 2D projections of N on (1, 2) and (2, 1) are

N(1,2) = {(2, 0)→ (1, 1), (1, 1)→ (0, 2), (0, 1)→ (1, 0)}
N(2,1) = {(0, 2)→ (1, 1), (1, 1)→ (2, 0), (1, 0)→ (0, 1)}

and the 1D projection on (3) is
N(3) = {1→ 3, 0→ 2, 2→ 0}

Figure 3 illustrates arrow diagrams of some 2D and 1D projections of N .

1

2

(0, 1) (1, 1)

(2, 0)

(a)

2

1

(0, 2)

(1, 1)

(1, 0)

(b)

1

2

3

0 1 2

0 1

0 1 2

(c)

Figure 3: Arrow diagrams of projections of reaction network N in example 2.14. (a), (b): 2D projections
N(1,2) and N(2,1); the two pictures are reflections of each other about the diagonal. (c): 1D projections N(1),
N(2), N(3).

3 Reaction networks with one-dimensional stoichiometric subspace

3.1 A simplification: at most two reaction for each source.

Let N be a reaction network with one-dimensional stoichiometric subspace, and consider the subnetwork
N ′ of N given by the reactions associated with a fixed source complex ak. All reaction vectors wlk are
scalar multiples of w = w1

k. Suppose wlk = λlw where λl > 0 for l ∈ I+ ⊂ {1, . . . ,m′k} and λl < 0 for
l ∈ I−⊂ {1, . . . ,m′k}. The polynomial dynamical system (2) of N ′ is given by

ẋ = xak
m′k∑
l=1

κlkw
l
k = xak

∑
l∈I+

(κlkλl)w + xak
∑
l∈I−

κlk(−λl)(−w),
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which is the same ODE system as that of reaction network {ak → ak +w, ak → ak−w} with rate constants∑
l∈I+ κ

l
kλl and −

∑
l∈I− κ

l
kλl. Applying this trick for each source complex we may replace N by a network

that has one or two reactions per source complex, in the latter case the two reactions having opposite
directions, i.e. reaction vectors that are negative multiples of each other. We adopt this simplification
throughout the remainder of the paper.

Next we introduce notation which will be used consistently throughout the paper without further mention.
Occasionally we override some of this common notation to simplify presentation (for example when m = 3
in Section ??). It will be clear from the context when that is the case.

3.2 Notations

1 N denotes a reaction network on n ≥ 1 species with m ≥ 1 source complexes and one-dimensional
stoichiometric subspace.

2 The index sets for species and source complexes are denoted by S and R respectively:

S = {1, . . . , n} and R = {1, . . . ,m}.

3 v ∈ Rn spans the stoichiometric subspace of N . The sign pattern of v is encoded in the sets

S+ = {i ∈ S|vi > 0}, S− = {i ∈ S|vi < 0}.

Recall that Proposition 2.6 allows us to assume that v does not have zero coordinates.

4.1 If ak is involved in only one reaction, that reaction is denoted by

ak → a′k,

and we let
a′k − ak = λkv.

The rate constant of ak → a′k is denoted by κk.

4.2 If ak is involved in two reactions, these are denoted by

ak → a′+k , ak → a′−k

and we let
a′+k − ak = λ+

k v, a
′−
k − ak = λ−k v

where λ+
k > 0 and λ+

k < 0.

The rate constant of ak → a′+k is denoted by κ+
k and that of reaction ak → a′−k by κ−k .

We say that two reactions have the same direction if their corresponding λ values have the same sign,
and that they have opposite directions otherwise.

4.3 The following sets indicate the source complexes that have reactions in each of the two directions:

R+ = {k ∈ R|ak is associated with two reactions or λk > 0}
R− = {k ∈ R|ak is associated with two reactions or λk < 0}
R0 = {k ∈ R|ak is associated with two reactions} = R+ ∩R−.

5 The mass-action ODE system for the (N , κ) is given by

dx

dτ
= F (x), where F (x) =

 ∑
k∈R\R0

λkκk +
∑
k∈R0

(λ+
k − λ

−
k )

x(τ)akv.

Note that we use τ to denote the time variable. Variable t is used as follows:
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6 The positive stoichiometric class of η ∈ Rn>0 is parameterized by η+ tv. The bounds for t are computed
from ηi + tvi > 0 for all i ∈ S, i.e. t ∈ (αη, βη) where

αη = − min
i∈S+

ηi
vi

and βη = −max
i∈S−

ηi
vi
. (7)

7 We let
f(η, κ; t) =

∑
k∈R\R0

λkκk(η + tv)ak +
∑
k∈R0

(λ+
k − λ

−
k )(η + tv)ak .

We view f as a function of t that depends on the parameters η, κ. The domain of f(η, κ; t) is (αη, βη),
see (7).

3.3 Alt-complete and zigzag reaction networks

Definition 3.1. 1. We say that a reaction network N on one species contains the (→,←) pattern if it
contains reactions a→ a′, b→ b′ with a < a′, b′ < b and a < b. N has the (←,→) pattern if it contains
reactions a→ a′, b→ b′ with a′ < a, b′ > b and a < b.

2. We say that a reaction network N with with one-dimensional stoichiometric subspace contains the
(→,←) (or (←,→) pattern if there exists a 1D projection of N ) that has this pattern.

In other words a reaction network N on one species contains one of the patterns above if its arrow
diagram does; note that for each pattern the two source complexes must be different.

Definition 3.2. (Class Ac: alt-complete networks). A reaction network N with one-dimensional stoichio-
metric subspace is called alt-complete if it both (→,←) and (←,→) patterns. The two 1D projections may
be on the same coordinate. The class of alt-complete networks is denoted by Ac. We write N ∈ Ac.

We make a few remarks on the case when R0 is empty; this situation is an important part in our analysis.
First note that the direction (positive or negative) of the projection of ak → a′k on i is given by the sign of
λkvi. The 1D projection N(i) of N contains the (→,←) pattern if and only if there exist k, l ∈ R such that

aki < ali, λkvi > 0, and λlvi < 0. (8)

Likewise, N(i) contains the (←,→) pattern if and only if there exists k, l ∈ K such that

aki < ali, λkvi < 0, and λlvi > 0. (9)

If the (→,←) pattern is missing from all 1D projections of N then for any k ∈ R+, l ∈ R− and for all i ∈ S
we have

(aki − ali)vi ≥ 0 (10)

Indeed, if not, since λk > 0 and λl < 0 then we either have

aki < ali, λkvi > 0 and λlvi < 0

or
ali < aki, λlvi > 0 and λkvi < 0,

both of which define a (→,←) pattern in N(i), contradiction.
Similarly, if the (←,→) pattern is missing from all 1D projections of N then for any k ∈ R+, l ∈ R− and

for all i ∈ S we have
(aki − ali)vi ≤ 0. (11)

Following [21] we introduce a class of networks that is central to this paper.
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Definition 3.3. Let N = {a → a′, b → b′} be a reaction network on two species with one-dimensional
stoichiometric subspace spanned by v ∈ R2. We say that N is a zigzag and if

1. a→ a′ and b→ b′ have opposite directions and

2. v1v2(b1 − a1)(b2 − a2) < 0.

The slope of zigzag N is defined as the slope of b− a, i.e. b2−a2
b1−a1 .

Part 2 of Definition 3.3 simply says that the slopes of v and b − a are nonzero and of different signs, in
other words the arrow diagram of N is one of those in Figure 4. The slope of the zigzag is not zero or ±∞,
in other words the rectangles in the figure (“boxes” in terminology from [21]) are not degenerate, i.e. are
not line segments.

Figure 4: Arrow diagrams of zigzags.

Definition 3.4. Let N be a reaction network with one-dimensional stoichiometric subspace. A subnetwork
of a 2D projection of N which is a zigzag is called a zigzag projection of N .

Definition 3.5. (class Z). Let N be a reaction network with one-dimensional stoichiometric subspace. N
is called a zigzag network if it has a zigzag projection.

Note that zigzag network are alt-complete.

Definition 3.6. (class Z−1). A network N is said to be of class Z−1 if N is a zigzag network and all zigzag
projections of N have slope -1. We write N ∈ Z−1.

Examples 3.7.
1. The reaction network in Figure 2 contains the (→,←) pattern in both its 1D projection, and contains

the (←,→) pattern in its (1) projection. This network is alt-complete, but not a zigzag network.

2. The reaction network N in Example 2.14 contains the (→,←) pattern on all of its 1D projections,
but it does not contain the (→,←) pattern. This network is not alt-complete.

3. Let N = {(0, 1, 0) → (1, 2,−1), (1, 0, 1) → (0,−1, 2)}. This network contains the (→,←) pattern on
its (1) projection, and the (←,→) on its (2) and (3) projection. N is alt-complete. Moreover, N is a zigzag
network (for example N(1,2) is a zigzag), but it is not in Z−1 since N(1,3) is a zigzag of slope 1.

It is clear that zigzag networks are “minimally” alt-complete, in that only two reactions are required to
produce both (→,←) and (←,→) patterns. Other networks, like the one in Figure 2, require three reactions
to produce these patterns. Yet other networks require four reactions for this purpose, see Figure 5 (c) for a
typical example. The latter case requires a fairly restrictive arrow diagram; network like these are said to
belong to class Snz2 as we discuss in the next section.

3.4 Special classes of networks

The following classes of reaction networks with structural defining properties play a crucial role in the
classification of multistationarity for networks with one-dimensional stoichiometric subspace: our main result
shows that these classes encompass all alt-complete networks without capacity for MPNE.
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1

2

(0, 1)

(1, 0)

(a)

1

3

(0, 0)

(1, 1)

(b)

2

1
(c)

Figure 5: Arrow diagrams of (a), (b): 2D projections of reaction network N in Example 3.7 3. N(1,2) ∈ Z−1,
N(1,3) ∈ Z \ Z−1. N is a zigzag network, but not a Z−1 network. (c): a reaction network that requires four
reactions to form the (→,←) and (←,→) patterns.

Definition 3.8. (Class S1) A reaction network N with one-dimensional stoichiometric subspace is said to
be of class S1 (single-source network) if N contains exactly one source complex and two reactions of opposite
directions. We write N ∈ S1.

Definition 3.9. (Class Sz2 ) A reaction network N with one-dimensional stoichiometric subspace is said to
be of class Sz2 if it contains exactly two source complexes a, b and has reactions in both directions starting
at each of a, b; and there exist i, j ∈ S, i 6= j such that

1. N(i,j) ∈ Z−1, i..e vivj > 0 and bi − ai = −(bj − aj) 6= 0

2. as = bs for all s ∈ S \ {i, j}.

We write N ∈ Sz2 .

Definition 3.10. (Class Snz2 ) A reaction network N with one-dimensional stoichiometric subspace is said
to be of class Snz2 if it contains exactly two source complexes and N ∈ Ac \ Z. We write N ∈ Snz2 .

Definition 3.11. (Class L) A reaction network N with one-dimensional stoichiometric subspace is said to
be of class L if there exist i, j ∈ S, i 6= j such that

1. there exists δ ∈ R2
>0 such that

[aki, akj ]
t = δ + pk[1,−1]t for all k ∈ R

where pk are pairwise distinct, pk < 0 for all k ∈ R+ \ R0, pk = 0 for k ∈ R0, and pl > 0 for all
l ∈ R− \R0;

2. aks = als for all k, l ∈ R and for all s ∈ S \ {i, j}.

We write N ∈ L.

Definition 3.12. (Class C) A reaction network N with one-dimensional stoichiometric subspace is said to
be of class C if it is alt-complete, it contains at least three source complexes, and there exists γ ∈ Zn such
that

ak − γ ∈ {0, e1, . . . , en} for all k ∈ R.

γ is called the corner of N . We write N ∈ C.

The classes of networks defined above are easily characterized with pictures. Networks of class Sz2 have
a 2D projection (i, j) with arrow diagram in Figure 6, left. The line connecting the two projected source
complexes has slope -1. The 1D projections on the remaining species have a single source complex.
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Networks of class C are alt-complete with location of source complexes illustrated in Figure 6, right; γ
may or may not be a source complex. One may check if a given network N is in class C by computing the
vector

γ = (min
k∈R

ak2,min
k∈R

akm, . . . ,min
k∈R

akm), (12)

for if N ∈ C then necessarily γ is the corner of N . We then simply check that ak − γ ∈ {e1, . . . , en}.

i

j

(1.)

a

b
s 6= i, j

(2.)

γ γ + e2

γ + e3

γ + e1

1

1

1

Figure 6: Classes Sz2 and C. Left: Sz2 networks have two source complexes with reactions of all directions
(for a total of four reactions), an (i, j) projection containing a zigzag of slope -1, and projections on all other
species have a single source complex. Right: The possible locations of source complexes for networks of class
C when n = 3 are of the form γ, γ + e1, γ + e2, γ + e3.

Networks of class L have a 2D (i, j) projection having one of the arrow patterns in Figure 7, whereas the
1D projections on the remaining species contain a single source complex. Note that the line containing all
projections of source complexes has slope -1, and δ separates the reactions according to their direction. For
networks of class L R0 contains zero or one elements; if there exists a source complex ak with reactions in
both directions, then ak = δ. Note that we have

max
k∈K+

aki ≤ min
l∈K−

aliIs this about the provided picture? (13)

i

j δ

(1.)

i

j
δ

(1.)

s 6= i, j

(2.)

Figure 7: Class L. Arrow diagrams of Left (1.): the (i, j) projection, corresponding to |R0| = 0 and |R0| = 1
respectively. Right (2.): projections on all other species have a single source complex.

Finally, networks N of class Snz2 are precisely those with two distinct source complexes a and b, both
having reactions in both directions; and such that (b− a) is in the closure of the sign class of v or −v:

b− a ∈ Q0(v) or b− a ∈ Q0(v)thesame

where Q0(v) = {u ∈ Rn|uivi ≥ 0} (under our assumption that v has only nonzero coordinates). This follows
as N /∈ Z is equivalent to saying that for any i, j ∈ S we have vivj(bi − aj)(bj − aj) ≥ 0. Snz2 are also
completely characterized by their 2D projections. At least one of these projections must have one of the
arrow diagrams in Figure 8, and all 2D projections either have a single source complex or one of the arrow
diagrams in Figure 8, up to permuting i and j.
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Do we need remark about the number of species? Only networks of class Snz2 or S1 can be on one species.
Corollary 3.8??: r + s ≥ 4 for every MPNE.

i

j

i

j

i

j

i

j

Figure 8: Class Snz2 . There are two source complexes with reactions of all directions (for a total of four
reactions). All 2D projections have either one source complex or have one of the arrow diagrams in the
figure, up to interchanging i and j. Not all 2D projections can have one source complex.

Remark 3.13. (Relations between classes of networks) It is easily seen that networks of classes L, Sz2 and
Snz2 are alt-complete. Figure 9 shows the set-theoretical relations between the various classes of networks
defined in the paper. These are easily checked straight from the definitions.

Ac
Z

Z−1

L Sz2 C Snz2

Figure 9: Inclusion relations between classes of networks Ac, Z, Z−1, L and C.

4 Main result, examples, and discussion

4.1 Characterization of capacicity for MPE/MPNE for reaction networks with
one-dimensional stoichiometric subspace

Following our discussion in section 3.2 we first remove species with corresponding v coordinates equal to
zero, and therefore we assume v 6= 0.

Theorem 4.1. Let N be a reaction network one-dimensional stoichiometric subspace. Then

1. If N has capacity for multiple equilibria then either N is alt-complete or is a single-source network.

2(i). If N is alt-complete and N /∈ Sz2 ∪ Snz2 ∪ L ∪ C then N has the capacity for nondegenerate multiple
equilibria.

2(ii). If N ∈ S1 ∪ Sz2 ∪ Snz2 ∪ L ∪ C then N has the capacity for multiple equilibria, but it does not have the
capacity for multiple nondegenerate equilibria.
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X1

γ1 γ1 + 1

(c)(b) (a)

X2

γ2 γ2 + 1

(a), (c) (b)

X3

γ3 γ3 + 1

(a)(b) (c)

Xs s > 3

γs

(a), (c)(b)

Figure 10: If N ′ ∈ C and γ is not a source complex and sign(v) = (+,−,+) then N’ is not alt-complete.

1

3

2

4

Figure 11: 1D projections of network N in example 2.14.

All hypotheses of Theorem 4.1 may be checked by inspecting arrow diagrams of 1D and 2D projec-
tions. Often times checking 1D projection is enough; let A1

c denote the class of reaction network with
one-dimensional stoichiometric subspace that have a 1D projection containing both (→,←) and (←,→)
patterns. We have the following Define A1

c as (→,←,→) or (←,→,←)

Corollary 4.2. If N ∈ A1
c then N has the capacity for MPNE.

Proof. Since N ∈ Ac it is enough to show that 1D projections of networks in Sz2 ∪ Snz2 ∪ L ∪ C do not have
both (→,←) and (←,→) patters. This is easily checked from the definitions of these classes.

The tree in Figure 12 is one example of an efficient algorithm for deciding the capacity for MPE and
MPNE for any networkN with two or more source complexes and one-dimensional stoichiometric subspace. v
is assumed to have nonzero coordinates. The conditions at each node are checked with very short calculations
and by inspecting 1D arrrow diagrams and at most one 2D arrow diagram.

Example 4.3. Consider the network N on 5 species:

(0, 1, 2, 0, 2)→ (1, 2, 3, 0, 1), (1, 0, 3, 1, 2)→ (2, 1, 4, 1, 1),

(2, 2, 1, 2, 1)→ (1, 1, 0, 2, 2), (3, 3, 1, 0, 1)→ (2, 2, 0, 0, 2)

The stoichiometric space of N is spanned by v = (1, 1, 1, 0,−1). We note that v4 = 0 and remove
the fourth species. We follow the roadmap in Figure 12. The four 1D projections are depicted in Figure
11 using arrow diagrams. We see that N ∈ Ac \ A1

c , and all four projections have two or more source
complexes. It remains to check if N ∈ C, see (12). We have γ = (0, 0, 1, 1) and note that, for example
(0, 1, 2, 2)− (0, 0, 1, 1) /∈ {e1, e2, e3, e4}. Therefore N /∈ C and N has the capacity for MPNE.

Left branch in Decision tree: if b− a has only one nonzero coordinate?
More examples of arrow diagrams and their capacity for MPE/MPNE are given in Figure 13. These

include at least one network from each of the sets forming the partition of Ac in Figure 9.

4.2 Discussion and past results

The question of multistationarity for networks with one-dimensional stoichiometric subspace has been the
focus of a number of recent papers [21, 31, 32, 23, 33]. These works are motivated by the question of
structural conditions for multistationarity for reaction networks with one-dimensional subspace, and are all
connected to Conjecture 1.1, which was the motivation for this work. Our result shows that the conjecture
is true up to the trivial case of a network with only one source complex. Joshi and Shiu solved the case
of networks with one or two species,two (possibly reversible) reactions and also characterized their capacity
for MPNE using arrow diagrams. Theorem 4.1 extends this characterization of MPNE to the general case,
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START

two source
complexes a, b

reactions in only one
direction from a or b

no MPE

reactions in both
directions from

both a, b

b− a has 2 nonzero
coordinates i, j

bj − aj = −(bi − ai)
MPE, no MPNE

bj − aj 6= −(bi − ai)
MPNE

b− a has 6= 2
nonzero entries

MPE, no MPNE

b− a ∈ Q0(v)
MPE, no MPNE

b− a /∈ Q0(v)
MPNE

≥3 source complexes:
check 1D projections

N /∈ Ac

no MPE
N ∈ Ac \ A1

c

two 1D projections i, j
with ≥2 source

complexes: check 2D
projection on (i, j)

N ∈ L ∪ C
MPE, no MPNE

N /∈ L ∪ C
MPNE

≥3 1D projections
with ≥2

source complexes

N ∈ C
MPE, no MPNE

N /∈ C
MPNE

N ∈ A1
c

MPNE

Figure 12: Decision tree for deciding the capacity for MPE and MPNE for reaction networks N with two or
more source complexes and one-dimensional stoichiometric subspace.
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(a)

1

1

(b)

2

2

(c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

1

1

Figure 13: Examples of arrow diagrams and their capacity for MPE/MPNE. (a) Ac \ (Z ∪C ∪Snz2 ): MPNE.
Z \Z−1 need to change slope for this description (b) C ∩Z: MPE, no MPNE. (c) Z−1 \ (L∪C ∪Sz2 ): MPNE.
(d) L: MPE, no MPNE. (e): Z−1 \ (L∪C ∪Sz2 ): MPNE. (f) Sz2 : MPE, no MPNE. (g) Z \Z−1: MPNE. (h)
Snz2 : MPE, no MPNE. (i) Z \ Z−1: MPNE. (j) not Ac: no MPE. (k) Ac \ (Z ∪ C ∪ Snz2 ): no MPE.MPNE
(l) C \ Z: MPE, no MPNE.

revealing new structural sources of degeneracy for three or more species. We review the relevant results in
[21] further down this section. Some of these results are used as a starting point in our proof of sufficiency
in Conjecture 1.1, where n = 3 is the first case treated.

Other partial results towards Conjecture 1.1 are known. Lin et al.[23, Theorem 4.3] proved that alt-
complete is necessary for multistationarity under the assumption that the network cannot have an infinite
number of positive equilibria for any choice of rate constants. This excludes all networks that have the
capacity for MPE but not MPNE, but also some networks that have the capacity for MPNE (see Figure
13)(e). We give a short proof of the general statement for this implication (section 5.3). Lin et al. also show
that alt-complete in sufficient for multistationarity if there exist two reactions in the network such that the
subnetwork consisting of the two reactions admits at least one and finitely many positive steady states[23,
Theorem 4.7]. We believe that it is possible to find a structural characterization of latter condition, and use
that path to prove Conjecture 1. However, our proof is self-contained and independent of these results.

Other work on multistationarity addressed conditions for the existence of three or more positive equilibria
[23], conditions for multistability and the number of stable equilibria [32, 33], and conditions for the existence
of nondegenerate multiple equilibria. Joshi and Shiu showed that (1) networks with one irreversible and one
reversible reactions for and (2) networks with two reversible reactions must necessarily have one-dimensional
stoichiometric subspace to be multistationary, and they characterized the capacity for MPE for these networks
[21, Theorems 2.8, 5.12]. In subsequent work Shiu and de Wolff characterized the capacity for MPNE for
networks of type (1) and (2) above for the special case of two species [31]. These results can be viewed as
corollaries of our Theorem 4.1, and so does the general case of any number of species, posed as an open
question in [31]:

Proposition 4.4 ([31] Conjecture 5.1). A network N consisting of one pair of reversible reactions and one
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irreversible reaction has the capacity for MPNE if and only if N has one-dimensional stoichiometric subspace
and N ∈ A1

c.

Proof. First we remove species corresponding to zero coordinates in v. One implication follows from Corollary
4.2. For the other implication, suppose N has the capacity for MPNE. Then N must have one-dimensional
stoichiometric subspace as discussed above. By Theorem 4.1 part 1, N must be alt-complete. Let N = {a

b, c→ c′}. In all 1D projections a 
 b gives a (→,←) pattern. Since N is alt-complete, there must exist a
1D projection N(i) that also contains the (←,→) pattern, so N ∈ A1

c .

The same short argument can be applied to characterize the capacity for MPNE for networks composed
of two reversible reactions and any number of species, generalizing Theorem 3.6 in [31]:

Proposition 4.5. A network N consisting two pairs of reversible reactions has the capacity for MPNE if
and only if N has one-dimensional stoichiometric subspace and N ∈ A1

c (equivalently, a 1D projection of N
contains the (→,←,→,←) pattern.

A review of results for one and two species. The next theorems collects some of the implications of
Theorems 3,6 5.1 and 5.2 in [21].

Theorem 4.6. [21, Theorem 3.6] Let N be a reaction network on one species. Then

1. N has the capacity for MPE if and only if N ∈ A1
c or N has exactly one or two source complexes, both

with reactions in both directions (i.e. its arrow diagram is (←•→) or (←•→,←•→)

2. N has the capacity for MPNE if and only if N ∈ A1
c.

Theorem 4.7. [21, Theorems 5.1, 5.2] Let N = {a→ a′, b→ b′} be a reaction network with one-dimensional
stoichiometric subspace spanned by v ∈ Rn and composed of two reactions with opposite directions. Assume
that all coordinates of v are nonzero and let β = [(a′1 − a1)(b1 − a1), . . . , (a′n − an)(bn − an)]. Then

1. N has the capacity for multiple nondegenerate equilibria if (i) βi < 0 and βj > 0 for some i, j ∈
{1, . . . , n} and (ii) if βs = 0 for all s /∈ {i, j} then the projection of N on (i, j) is not a zigzag of slope
-1.

2. N has the capacity for multiple equilibria, but not the capacity for multiple nondegenerate equilibria if
βi < 0 and βj > 0 are the only nonzero coordinates of β, and the projection of N on (i, j) is a zigzag
of slope -1.

Note that condition (i) (i.e. βi < 0 and βj > 0) in part 1 of Theorem 4.7 can be rewritten as vi(bi−ai) < 0
and vj(bj − aj) > 0. Since the two reactions have opposite directions, this is equivalent to saying N(i,j) is a
zigzag. Moreover, condition (ii) in part 1 of Theorem 4.7 is equivalent to saying that N /∈ L (and condition
(ii) in part 2 is equivalent to N ∈ L).

We have the following

Lemma 4.8. Let N be a reaction network with stoichiometric subspace of dimension 1 and composed of two
reactions. Then N is alt-complete if and only if N is a zigzag network.

Proof. (8) and (9) imply that N ∈ Ac if and only if λ1λ2 < 0 and vivj(a1i − a2i)(a1j − a2j) < 0 for some
i, j ∈ S which is equivalent to N ∈ Z according to Definitions 3.4 and 3.5.

With the observation above and Lemma 4.8, Theorem 4.7 can be restated equivalently as follows

Theorem 4.9. Let N be an alt-complete reaction network with one-dimensional stoichiometric subspace.

1. If N /∈ L then N has the capacity for nondegenerate multiple equilibria;

2. If N ∈ L then N has the capacity for multiple equilibria, but does not have the capacity for multiple
nondegenerate equilibria.
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In view of Proposition 2.6, this implies our Theorem 5.6 2(i) and 2(ii) for the case when N is composed
of two reactions.

We conclude with a few consequences of Theorems 4.6 and 4.9 that will be used later in our proofs.

Lemma 4.10. Let N = {a ·X → a′ ·X, b ·X → b′ ·X} and suppose N(i,j) ∈ Z is the only 2D projection of
N with a zigzag subnetwork. Then as = bs for all s ∈ {1, . . . , n} \ {i, j}.

Proof. We have vivj(ai − bi)(aj − bj) < 0. Assume that there exists s /∈ {i, j} such that as 6= bs. Then
vivs(ai − bi)(as − bs) < 0 or vjvs(aj − bj)(as − bs) < 0 and therefore N(i,s) ∈ Z or N(j,s) ∈ Z, which is a
contradiction.

We conclude this section with a couple of useful consequences of Theorem 4.9. These corollaries are
about networks with any number of reactions.

Corollary 4.11. Let N be a network with any number of reactions. If N ∈ Z \Z−1 then N has the capacity
for multiple nondegenerate equilibria.

Proof. By hypothesis, there exists a subnetwork N ′ of N with two reactions such that N ′ ∈ Z \Z−1. Since
Z ⊂ Ac and L ⊂ Z−1 we have N ′ ∈ Ac \ L. By Theorem 4.9 part 1 we conclude that N ′ has the capacity
for multiple nondegenerate equilibria, and it follows by Theorem 2.7 that N does as well.

Corollary 4.12. Let N be a network with one-dimensional stoichiometric subspace and any number of
reactions. If N has a subnetwork N ′ composed of two reactions such that N ′ ∈ Z−1 \ L then N admits
nondegenerate multiple equilibria.

Proof. We have N ′ ∈ Ac \ L and the proof is identical to that of Corollary 4.11.

5 Proofs

This section proceed as follows. We begin with some remarks on the interpretation of nonegeneracy in terms
of f(η, κ; t) in section 5.1, and we discuss some simplifications and assumptions that can be made without
loss of generality in section 5.2. Parts 1 and 2(ii) of Theorem 4.1 are proved in sections 5.3 and 5.4. The
bulk of the proof is that of part 2(i), given in section ??.

5.1 Steady states and f(η, κ; t)

Clearly, η + t0v ∈ Rn>0 is a steady state of (N , κ) if and only if

f(η, κ; t0) = 0 (14)

and therefore studying whether the equation f(t) = 0 has multiple positive roots is the object of this paper.
Even more, the condition for nondegeneracy of an equilibrium is very natural when written in terms of f :

Proposition 5.1. A steady state η + t0v of the polynomial dynamical system (N , κ) is degenerate if and
only if f ′(η, κ; t0) = 0.

Proof. We have f(t)v = F (η+ tv) and f ′(t)v = DF |η+tvv. Then f ′(t0) = 0 if and only if v is an eigenvector
of DF |η+t0v corresponding to the zero eigenvalue, i.e. if and only if η + t0v is degenerate.

In some of our proofs it is convenient to write f as a product. The following proposition is useful in that
case.

Proposition 5.2. Suppose η + t0v is a steady state of the reaction system (N , κ) and that f(t) = p(t)q(t)
where p(t0) 6= 0. Then η + t0v is degenerate if and only if q′(t0) = 0.

Proof. f ′(t0) = p′(t0)q(t0) + p(t0)q′(t0) = p(t0)q′(t0), so f ′(t0) = 0 if and only if q′(t0) = 0.
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5.2 Simplifying remarks and assumptions

Recall that we are assuming that v does not have zero coordinates. The next easy result allows us to
assume that the entries of v are 1 or −1. We will assume this throughout the paper to simplify some of the
calculations in the proofs. However, our results are stated in generality, independently of this assumption.

Proposition 5.3. Let N be a reaction network with one-dimensional stoichiometric subspace. Denote
|v| = (|v1|, . . . , |vn|) and let ṽi = vi

|vi| , η̃i = ηi
|vi| for all i ∈ S. If k ∈ R \R0 we let κ̃k = κk|v|ak , and if k ∈ R0

we let κ̃+
k = κ+

k |v|ak and κ̃−k = κ−k |v|ak . Let Ñ denote the reaction network with reactions ak → ak +λkṽ for
k ∈ R\R0 and ak → ak + λ+

k ṽ, ak → ak + λ−k ṽ for k ∈ R0. Then η + t0v is a (nondegenerate/degenerate)

steady state of (N , κ) if and only if η̃ + t0ṽ is a (nondegenerate/degenerate) steady state of (Ñ , κ̃).

Proof.

f(η, κ; t) =
∑

k∈R\R0

λkκk(η + tv)ak +
∑
k∈R0

(λ+
k − λ

−
k )(η + tv)ak

=
∑

k∈R\R0

κkλk
∏
i∈S
|vi|aki

∏
i∈S

(η̃i + tṽi)
aki +

∑
k∈R0

(λ+
k − λ

−
k )
∏
i∈S
|vi|aki

∏
i∈S

(η̃i + tṽi)
aki

=
∑

k∈R\R0

κ̃kλk(η̃ + tṽ)ak +
∑
k∈R0

(λ̃+
k − λ̃

−
k )(η̃ + tṽ)ak

= f(η̃, κ̃; t)

and the conclusion follows from (14) and Proposition 5.1.

It is useful to note that under the assumption v = sign(v) the embedded graph and the arrow diagram
of N are identical up to the length of arrows.

Remark 5.4. The following assumptions can be made without loss of generality and independently of each
other. These will be used in proofs to reduce the number of cases without further explanation.

1 permuting species labels;

2 permuting labels of source complexes in R+ and permuting labels of source complexes in R−;

3 setting a certain coordinate of v to 1. This can be done by replacing v with −v as a basis of the
stoichiometric subspace, if necessary. The network does not change.

4 setting a certain λk, k /∈ R0 to 1. This is done by replacing all reaction vectors with their negatives,
i.e. reversing the direction of all reactions. This changes the reaction network, but f(η, κ; t) simply
changes sign. Equilibria and their degeneracy properties stay the same.

5.3 Proof of part 1: necessary conditions for multistationarity

We prove part 1 of Theorem 4.1. Assume that N is not a single-source network and that it does not have 1D
projections containing the arrow pattern (→,←) (the case when N does not have 1D projections containing
the arrow pattern (←,→) is proved similarly.) We write

f(η, κ; t) =
∑
k∈R+

κk(η + tv)ak −
∑
l∈R−

κl(η + tv)al . (15)

and differentiate two cases. First, if R+ = ∅ or R− = ∅ then f(η, κ; t) is either strictly positive or strictly
negative on (αη, βη) and therefore f(η, κ; t) = 0 does not have solutions.

On the other hand, if R+ 6= ∅ and R− 6= ∅, then (see (10)) for any k ∈ R+, l ∈ R− and i ∈ S we
have (aki − ali)vi ≥ 0. In other words for i ∈ S+ we have max

l∈R−
ali ≤ min

k∈R+
aki and for i ∈ S− we have

max
k∈R+

aki ≤ min
l∈R−

ali.
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Let δ ∈ Rn be such that that

max
l∈R−

ali ≤ δi ≤ min
k∈R+

aki if i ∈ S+ (16)

max
k∈R+

aki ≤ δi ≤ min
l∈R−

ali if i ∈ S−.

Since R+ and R− are both nonempty and since N has at least two different source complexes there must
exist (k0, l0) ∈ R+ × R− such that ak0 6= al0 . Let i0 ∈ S be such that ak0i0 6= al0i0 . We refine our choice of
δ (16) to ensure that δi0 − ak0i0 6= 0 and δi0 − al0i0 6= 0. Setting (15) equal to zero yields∑

k∈R+

κk(η + tv)ak−δ =
∑
l∈R−

κl(η + tv)al−δ. (17)

Note that exponents ak − δ on the left hand side of (17) have coordinates of the same sign or zero, with at
least one (i.e. ak0i − δi) being nonzero. The same holds for the right hand side of (17), and the sign there
is the opposite of the sign in the left hand side. It follows that the two sums in equality (17) are strictly
monotonic functions of t on (αη, βη) with different monotonicities. Therefore (17) has at most one solution
in t, and N does not have the capacity for multiple positive equilibria.

5.4 Proof of part 2(ii): capacity for MPE, but not MPNE

Case N ∈ S1 If N is a single source network with rate constants κ+ and κ− then equilibria exist if and only
if κ+ = κ−. In that case f(η, κ; t) is identically zero for any η and all equilibria are degenerate.

Case N ∈ Sz2 Denote N = {a → a′, a → a′′, b → b′, b → b′′} and the corresponding rate constants by
κ+
a , κ

−
a , κ

+
b , κ

−
b respectively. Suppose that the (1, 2) projection of N has the arrow diagram in Figure ??

class L, and let d = a2−b2 = b1−a1 6= 0. The equation f(η, κ; t) = (κ+
a −κ−a )(η+tv)a+(κ−b −κ

−
b )(η+tv)b = 0

is equivalent to

h(η, κ; t) = (κ+
a − κ−a ) + (κ−b − κ

−
b )(η + tv)b−a

= (κ+
a − κ−a ) + (κ−b − κ

−
b )

(
η1 + t

η2 + t

)d
= 0. (18)

If η1 6= η2 then h(η, κ; t) is strictly monotonic and f(η, κ; t) has at most one zero. On the other hand, if
η1 = η2 then equation (18) has solutions if and only if (κ+

a − κ−a ) + (κ−b − κ
−
b ) = 0, in which case f(η, κ; t)

is identically zero, and N has multiple equilibria, all degenerate.

Case N ∈ Snz2 Denote N = {a → a′, a → a′′, b → b′, b → b′′} and the corresponding rate constants by
κ+
a , κ

−
a , κ

+
b , κ

−
b respectively. Suppose that the (1, 2) projection of N has one of the arrow diagrams in Figure

??. The equation f(η, κ; t) = (κ+
a − κ−a )(η + tv)a + (κ−b − κ

−
b )(η + tv)b = 0 is equivalent to

h(η, κ; t) = (κ+
a − κ−a ) + (κ−b − κ

−
b )(η + tv)b−a

= (κ+
a − κ−a ) + (κ−b − κ

−
b )

∏
k∈K+

(ηk + t)bk−ak
∏
l∈K−

(ηl − t)bl−al = 0.

Since N /∈ Z we have vivj(bi − ai)(bj − aj) ≥ 0 for all i, j ∈ S, which implies that sign(bk − ak) is the
same for all k ∈ K+, sign(bl − al) have the same sign for all l ∈ K− and the two signs are opposite. Then
h(η, κ; t) is a monotonic function which has zeros if and only if it is identically zero. This happens when
κ+
a = κ−a and κ+

b = κ−b , and all equilibria are degenerate.

Case N ∈ L Let N ∈ L and suppose N(1,2) ∈ Z−1. The slope of the projection of v on (1, 2) is positive and
we set v1 = v2 = 1. Let δ ∈ R2 such that[

ak1

ak2

]
= δ + pk

[
1
−1

]
for all k ∈ R
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where pk < 0 for R ∈ R+ \R0, pk = 0 for k ∈ R0, and pk > 0 for k ∈ R− \R0.
Then

h(η, κ; t) :=
f(η, κ; t)

(η + tv)δ
=

∑
k∈R+\R0

κk

(
η1 + t

η2 + t

)pk
+
∑
k∈R0

(κ+
k − κ

−
k )−

∑
l∈R−\R0

κl

(
η1 + t

η2 + t

)pl
(19)

Since R+ \R0 and R− \R0 are not both empty and since the exponents in the corresponding sums have
opposite signs, h(η, κ; t) is a strictly monotonic function if η1 6= η2, and f(η, κ; t) has at most one zero. If
η1 = η2 then h(κ, η; t) =

∑
k∈R+\R0 κk +

∑
k∈R0(κ+

k −κ
−
k )−

∑
l∈R−\R0 κl. Equilibria exist if and only if and

h(η, κ; t) is identically zero. All equilibria are degenerate in this case.

Case N ∈ C Let γ denote the corner of N (see Definition 3.12). The source complexes of N different from
γ are given by

aj = γ + eij , j ∈ {1, . . . ,m}
where eij is the standard ij Euclidean unit vector; ij are pairwise distinct for j ∈ {1, . . . ,m}. As γ may or
may not be a source complex, the list of source complexes of N is either a1, . . . , am or γ, a1, . . . , am.

We have

f(η, κ; t) = ελ0κ0(η + tv)γ +
m∑
j=1

λjκj(η + tv)aj ,

where ε = 0 or ε = 1 depending on whether γ is a scource complex of N .
Steady states of N correspond to zeros of the function

h(η, κ; t) =
f(κ, η; t)

(η + tv)γ
= ελ0κ0 +

m∑
j=1

λjκj(η + tv)eij = ελ0κ0 +

m∑
j=1

λjκj(ηij + tvij ) = A0 +A1t (20)

which is a polynomial in t of degree at most one. Therefore N has multiple steady states if and only if h is
identically zero, in which case all steady states are degenerate. It remains to check that there are choices of
η ∈ Rn>0 and of rate constants κ such that h is identically zero. We have

A0 = ελ0κ0 +

m∑
j=1

λjκjηij and A1 =

m∑
j=1

λjκjvij .

For any s ∈ S the 1D projection of N on Xs contains at most two source complexes (namely γs and
γs + 1). Therefore if both arrow patterns (→,←) and (←,→) appear on the same 1D projection, then
we must have the situation in Figure 5.4(a). But since any source complex differs from γ in at most one
coordinate, the two source complexes that project on γs + 1 must be the same, contradiction. It follows that
the (→,←) and (←,→) patterns must appear in different 1D projections of N , as shown in Figure 5.4(b).
Note that the reaction of N whose source complex projects on Xs1 at γs1 + 1 is different from the reaction
that whose source complex projects on Xs2 at γs2 + 1, for otherwise that source complex differs from γ in
two coordinates. Assume that these two reactions have indexes j = 1 and j = 2. Suppose the other two
reactions whose projections are shown in Figure 5.4(b) have indices p, q ∈ R; p and q may be equal. From
(8) and (9) we obtain

λpvs1 > 0, λ1vs1 < 0, λqvs2 < 0, λ2vs2 > 0. (21)

The rest of the argument applies the following trivial lemma:

Lemma 5.5. Suppose x ∈ Rn has at least a positive coordinate and at least a negative coordinate. Then

{x · w|w ∈ Rn>0} = R.

Note that i1 = s1 and i2 = s2. It follows from (21) that x = [λ1vi1 , . . . , λmvim ] has coordinates of mixed
signs, and by Lemma 5.5 there exists κ1, . . . , κm such that A1 = 0. Fix these values of κj . Let κ0 = λ0 = 1.
Since λ1 and λp have different signs, x = [λ1κ1, . . . , λmκm] has coordinates of mixed signs, and Lemma 5.5
implies that there exists w = [ηi1 , ηi1 , . . . , ηim ] ∈ Rn>0 such that x · w = −ελ0, in other words A0 = 0. The
other coordinates of η (if any) can be chosen arbitrary positive numbers.
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(a) (b)

γs γs + 1

Xs

γs1 γs1 + 1

Xs1(p) (1)

γs2 γs2 + 1

(q) (2) Xs2

Figure 14: 1D projections of N that contain 1-alt patterns. Case (a) is impossible, as explained in the text.

5.5 Proof of 2(i): capacity for MPNE

We start with a crucial particular case, discussed in the following subsection. The general case is treated in
section 5.5.2.

5.5.1 Networks composed of three reactions with pairwise distinct source complexes

We consider networks with m = 3 source complexes and one reaction per source complex, in other words
R0 = ∅. Note that reaction networks of this type cannot be in S1 ∪ Sz2 ∪ Snz2 . Theorems ?? and 5.13
correspond to cases N ∈ Z and Z /∈ Z and combine to prove part 2(ii) of Theorems 4.1 for m = 3 and
R0 = ∅.

Theorem 5.6. Let N be a reaction network with m = 3 and R0 = ∅. If N is alt-complete and N /∈ L ∪ C
then N has the capacity for nondegenerate multiple equilibria.

We begin with notation and a few lemmas. Let

N = {a ·X → a′ ·X, b ·X → b′ ·X, c ·X → c′ ·X}

and
a′ − a = λ1v, b

′ − b = λ2v, c
′ − c = λ3v.

We assume that N has pairwise distinct source complexes, i.e a 6= b 6= c 6= a. Noting that λ1, λ2, and λ3

cannot all have the same sign, we set without loss of generality λ1 = 1, λ2 = −1, λ3 = 1. Therefore

f(η, κ1, κ2, κ3; t) = κ1(η + tv)a − κ2(η + tv)b + κ3(η + tv)c (22)

Define the function g of variable t and depending on parameters η, κ1, κ3 :

g(η, κ1, κ3; t) = κ1(η + tv)a−b + κ3(η + tv)c−b (23)

= κ1

∏
i∈S+

(ηi + t)ai−bi
∏
j∈S−

(ηj − t)aj−bj + κ3

∏
i∈S+

(ηi + t)ci−bi
∏
j∈S−

(ηj − t)cj−bj

Note that g has the same domain (αη, βη) as f and that g is positive on this interval.
Clearly, η + t0v ∈ Rn>0 is a steady state of (N , κ) if and only if

g(η, κ1, κ3; t0) = κ2. (24)

Moreover, η + t0v is a nondegenerate steady state of (N , κ) if additionally

g′(η, κ1, κ3; t) 6= 0. (25)

as follows from Proposition 5.1 and Proposition 5.2 with p(t) = (η + tv)b and q(t) = g(η, κ1, κ3; t)) − κ2.
These remarks imply the following proposition, which gives a useful characterization of the capacity for
(nondegenerate) multiple steady states using function g.

23



Proposition 5.7. 1. N has the capacity for multiple steady states if and only if there exist η ∈ Rn>0 and
κ1, κ3 > 0 such that g(η, κ1, κ3; t) is not injective, i.e. there exist t1, t2 ∈ (αη, βη), t1 6= t2 such that

g(η, κ1, κ3; t1) = g(η, κ1, κ3; t2).

2. N has the capacity for multiple steady states if and only if there exist η ∈ Rn>0, κ1, κ3 > 0 and
t1, t2 ∈ (αη, βη), t1 6= t2 such that

g(η, κ1, κ3; t1) = g(η, κ1, κ3; t2)

and g′(η, κ1, κ3; t1), g′(η, κ1, κ3; t2) are both nonzero.

Finally, the following easy lemmas give useful tools in applying Proposition 5.7.

Lemma 5.8. Let α, β ∈ R ∪ {±∞} and let g : (α, β) → R be a non-constant rational function. If
limt→α g(t) = limt→β g(t) then there exist t1, t2 ∈ (α, β), t1 6= t2, such that g(t1) = g(t2) and g′(t1) 6=
0, g′(t2) 6= 0.

Proof. Let T ∈ (α, β) be such that g(T ) 6= limt→α =: L. Suppose that g(T ) < L (the other case is similar).
For each y ∈ (g(T ), L) there exist t1 ∈ (α, T ) and t2 ∈ (T, β) such that g(t1) = g(t2) = y. There is an infinite
number of choices for y (and therefore an infinite number of pairs t1, t2 as above), but only a finite number
of roots of g′, which is a nonzero rational function. Therefore we can find t1, t2 that satisfy the conclusion
of the lemma.

Lemma 5.9. Let α, β ∈ R ∪ {±∞} and let g : (α, β) → R be a non-constant rational function. Denote
limt→α = A, limt→β = B and let T ∈ (α, β) be such that g(T ) < min{A,B} or g(T ) > max{A,B}. Then
there exist t1, t2 ∈ (α, β), t1 6= t2, such that g(t1) = g(t2) and g′(t1) 6= 0, g′(t2) 6= 0.

Proof. Suppose A < B and g(T ) < A (the other cases are treated similarly). Then there exists β′ ∈ (T, β)
such that g(β′) = A. Lemma 5.8 applies on the interval (α, β′) and the conclusion follows.

Theorem 5.10. Let N be a network with one-dimensional stoichiometric subspace composed of three reac-
tions with pairwise distinct source complexes. If N ∈ Z \ (L ∪ C) then N has the capacity for MPNE.

Proof. If N ∈ Z \ Z−1 then N has the capacity for multiple nondegenerate equilibria by Corollary 4.11.
Moreover, letting N1 = {a → a′, b → b′} and N2 = {b → b′, c → c′} if either N1 or N2 belong to Z−1 \ L
then by Corollary 4.12 N admits nondegenerate multistationarity. For the remainder of the proof we assume
that N ∈ Z−1 \ L and that N1,N1 /∈ Z−1 \ L.

Since N ∈ Z at least one of N1 or N2 are zigzag networks. Assume N1 ∈ Z−1, and therefore N1 ∈ L.
Suppose without loss of generality that the projection of N1 on (1, 2) is a zigzag of slope -1. Without loss of
generality we let a1 < b1 and v1 = v2 = 1. Denote d = a2 − b2 = b1 − a1 > 0. N1 ∈ L implies that ai = bi
for all i ∈ S \ {1, 2} and therefore

(η + tv)a−b = (η1 + t)a1−b1(η2 + t)a2−b2 =

(
η2 + t

η1 + t

)d
.

Letting u = c− b we rewrite (24) as

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)m
+ κ3

∏
i∈S+

(ηi + t)ui
∏
j∈S−

(ηj − t)uj . (26)

We note that
uiuj ≤ 0 for all i ∈ S+ and j ∈ S−. (27)

Indeed, otherwise uiuj > 0, vivjuiuj < 0 and so the projection of N2 into (i, j) is a zigzag of positive
slope, contradicting N /∈ Z \ Z−1. Moreover,

if uiuj < 0 for some i, j ∈ S+ or i, j ∈ S− then ui = −uj and us = 0 for all s ∈ S \ {i, j}. (28)
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1. ∃j ∈ S− uj < 0 uj ≥ 0 ∀j ∈ S−

ui ≥ 0 ∀i ∈ S+ ∃i ∈ S+ ui < 0

2. ui = 0 ∀i ∈ S+ 3. ∃i ∈ S+ ui > 0 ∃i ∈ S+ \ {1} ui < 0 uk ≥ 0 ∀k ∈ S+ \ {1}

4. ∃k ∈ S+ uk >
0

uk ≤ 0 ∀k ∈ S+ 5. ∃k ∈ S+\{1} uk > 0 uk = 0 ∀k ∈ S+ \ {1}

6. uj = 0 ∀j ∈ S− 7. ∃j ∈ S− uj > 0 8. uj = 0 ∀j ∈ S− 9. ∃j ∈ S− uj > 0

Figure 15: Exhaustive cases for the proof of Theorem 5.10. The cases 1–8 marked by shaded rectangles
inherit the assumptions from all ancestor nodes. The symbols ∃ and ∀ mean “there exists” and “for all”
respectively.

Indeed, in this case vivjuiuj < 0, so N2 has a zigzag on its (i, j) projection. Therefore N2 ∈ Z−1, which
implies N2 ∈ L and (28) follows.

The proof splits into cases that give various forms for function g. Leaves 1–8 of the tree in Figure 15
(marked by shaded nodes) exhaust all possible cases. Each of the cases 1–8 inherit all assumptions from
their ancestor nodes. We note that under our setup 1, 2 ∈ S+.

Case 1. Fix j ∈ S− with uj < 0, and let η ∈ Rn>0 be such that η1 < ηi for all i ∈ S+ \ {1} and ηj < ηs
for all s ∈ S− \ {j}. Then (see 7) αη = −η1, βη = ηj . Equation (27) gives ui ≥ 0 for all i ∈ S+ and applying
limits to (26) we obtain limt→αη g(η, κ1, κ3; t) = limt→βη g(η, κ1, κ3; t) =∞. It now follows from Lemma 5.8
and Proposition 5.7 that N admits nondegenerate multistationarity.

Case 2. Pick η ∈ Rn>0 with ηj = 1 for all j ∈ S− and η2 < ηi for all i ∈ S+ \ {2}. Then αη = −η2 and
βη = 1 and

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3(1− t)L

where L =
∑
j∈S− uj . Since u 6= 0 and ui = 0 for all i ∈ S+ we must have uj > 0 for some j ∈ S−, and

therefore L ≥ 1. We have

lim
t→αη

g(η, κ1, κ3; t) = κ3(1 + η2)L, lim
t→βη

g(η, κ1, κ3; t) = κ1

(
η2 + 1

η1 + 1

)d
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and we choose positive κ1, κ3 such that limt→αη g(η, κ1, κ3; t) = limt→βη g(η, κ1, κ3; t). Lemma 5.8 and
Proposition 5.7 apply, and N has the capacity for multiple nondegenerate equilibria.

Case 3. Fix i ∈ S+ with ui > 0. Equation (27) implies that uj ≤ 0 for all j ∈ S−. Since we have
assumed uj ≥ 0 for all j ∈ S− in this case we have uj = 0 for all j ∈ S− and so

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3

∏
k∈S+

(ηk + t)uk .

We pick η ∈ Rn>0 such that η1 < ηi for all i ∈ S \ {1}, and so αη = −η1.
Note that regardless of η the function g is defined on (αη,∞) and we have limt→αη g(t) = limt→∞ g(t) =

∞. By Lemma 5.8 we can find t1, t2 ∈ (αη,∞) such that g(η, κ1, κ3; t1) = g(η, κ1, κ3; t2) and g′(η, κ1, κ3; t1),
g′(η, κ1, κ3; t2) are both nonzero. If S− = ∅ then βη =∞ and it follows from Proposition 5.7 that N admits
nondegenerate multistationarity. If S− 6= ∅ we let β > max{t1, t2}, and noting that g does not depend on
ηj , j ∈ S−, we may let ηj = β for all j ∈ S−. Then βη = β and it follows from Proposition 5.7 that N
admits nondegenerate multistationarity.

Remark 5.11. Although we are ultimately interested in showing that g is not injective on the domain
(αη, βη) of f , we note that g may be defined on (αeta,∞). In some of the cases in this proof we use limits
of g at infinity, like we did in Case 3. The approach used here to define β and then η will reoccur in some
of the remaining cases.

Case 4. Fix i ∈ S+\{1} and k ∈ S+ such that ui < 0 and uk > 0. With the assumptions in this case (27)
implies uj = 0 for all j ∈ S− and (28) implies that ui = −uk and us = 0 for all s ∈ S+ \ {i, k}. Therefore

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3

(
ηk + t

ηi + t

)uk
.

We pick η such that ηi < ηs for all s ∈ S+ \ {i} and η2 < η1 (the latter is possible since i 6= 1). Then
αη = −ηi and we have limt→αη g(t) =∞, limt→∞ g(t) = κ1 + κ3 and

g(η, κ1, κ3; 0) = κ1

(
η2

η1

)d
+ κ3

(
ηk
ηi

)uk
Since (η2η1 )d < 1 and (ηkηi )uk > 1 we can choose κ1 and κ3 such that

κ3

((
ηk
ηi

)uk
− 1

)
< κ1

(
1−

(
η2

η1

)d)

which gives g(η, κ1, κ3; 0) < κ1 +κ3. From Lemma 5.9 there exist t1, t2 ∈ (αη,∞) such that g(η, κ1, κ3; t1) =
g(η, κ1, κ3; t2) and g′(η, κ1, κ3; t1), g′(η, κ1, κ3; t2) are both nonzero. If S− = ∅ then βη = ∞; otherwise we
choose β > 0 such that β > max{t1, t2} and since g does not depend on ηj , j ∈ S−, we may choose ηj = β
for all j ∈ S−. Then βη = β. In both cases it follows from Proposition 5.7 that N admits nondegenerate
multistationarity.

Case 5. In this case we have u1 < 0. Fix k ∈ S+ \ {1} such that uk > 0. Once again (27) implies that
uj = 0 for all j ∈ S− and (28) implies that us = 0 for all s ∈ S \ {1, k} and uk = −u1. Therefore

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3

(
ηk + t

η1 + t

)uk
Note that k > 2, for otherwise we have as = bs = cs for all s ∈ S \ {1, 2} and so N is in L, contradiction.

Moreover, we cannot have d = uk = 1 : indeed, in that case letting γ = [a1, b2, b3, . . . , bn] we have a−γ = e2,
b− γ = e1 and c− γ = ek and so N ∈ C contradiction. Therefore d > 1 or uk > 1.
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We choose η such that η1 = 2, η2 = 1, ηk = 3 and ηs > 1 for all s ∈ S+. Then αη = −1 and g is a
non-constant function on (αη, βη). Setting κ1 = 2d(4uk − 3uk) and κ3 = 2uk we get

lim
t→αη

g(η, κ1, κ3; t) = g(η, κ1, κ3; 0) = 4uk

and Lemma 5.8 applies on the interval (αη, 0). It follows from Proposition 5.7 that N has the capacity for
multiple nondegenerate equilibria.

Case 6. Here we have

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3

∏
k∈S+

(ηk + t)uk

where uk ≤ 0 for all k ∈ S+. Fix i ∈ S+ \{1} with ui < 0 and choose η such that ηi < ηk for all k ∈ S+ \{i}
to obtain αη = −ηi. Then limt→αη g(η, κ1, κ3; t) =∞ and limt→∞ g(η, κ1, κ3; t) = κ1. Moreover

g(η, κ1, κ3; 0) = κ1

(
η2

η1

)d
+ κ3

∏
k∈S+

ηukk

Since i 6= 1 we may choose η2 < η1. Then
(
η2
η1

)d
< 1 and we can choose κ1 and κ3 such that

κ3

∏
k∈S+

ηukk < κ1

(
1−

(
η2

η1

)d)

to obtain g(η, κ1, κ3; 0) < κ1. Lemma 5.9 applies on (αη,∞) and the conclusion follows by mimicking the
final part of Case 4.

Case 7. Fix i ∈ S+ \ {1} with ui < 0 and fix j ∈ S− with uj > 0. Pick η such that ηi < ηk for all
k ∈ S+ \ {i} and η1 > η2. We also let ηj = 1 for all j ∈ S−. We therefore have αη = −ηi and βη = 1. Let
L =

∑
j∈S− uj and note that L ≥ 1. Then

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3(1− t)L

∏
k∈S+

(ηk + t)uk .

We have

lim
t→αη

g(η, κ1, κ3; t) =∞, lim
t→βη

g(η, κ1, κ3; t) = κ1

(
η2 + 1

η1 + 1

)d
and

g(η, κ1, κ3; 0) = κ1

(
η2

η1

)d
+ κ3

∏
k∈S+

ηukk

Since

(
η2 + 1

η1 + 1

)d
>

(
η2

η1

)d
we can choose κ1 and κ3 such that

κ3

∏
k∈S+

ηukk < κ1

((
η2 + 1

η1 + 1

)d
−
(
η2

η1

)d)

i.e. g(η, κ1, κ3; 0) < limt→βη g(η, κ1, κ3; t). It follows from Lemma 5.9 and Proposition 5.7 that N admits
nondegenerate multistationarity.

Case 8. In this case

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3(η1 + t)u1
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where u1 < 0. If d = 1 and u1 = −1 we let γ = c and we have a − γ = e2 and b − γ = e1. It follows that
N ∈ C, contradiction. Therefore either d > 1 or u1 < −1.

Let κ1 = κ3 = 1, η1 = 2, η2 = 1, and ηi > 1 for all i ∈ S+ \ {2}, so that αη = −1. g is defined on (αη,∞)
and limt→αη g(η, k1, k3; t) = limt→∞ g(η, k1, k3; t) = 1. With such choice g = ( t+1

t+2 )d + (t + 2)u1 and since
either d > 1 or u1 < −1 we have g is non constant. But since either d > 1 or u1 < −1 we have

g(η, k1, k3; 0) =

(
1

2

)d
+ 2u1 < 1.

Lemma 5.9 applies and the conclusion follows by mimicking the final part of Case 4.
Case 9. Fix j ∈ S− such that uj > 0. We have

g(η, κ1, κ3; t) = κ1

(
η2 + t

η1 + t

)d
+ κ3(η1 + t)u1

∏
k∈S−

(ηk − t)uk

where u1 < 0.
Suppose d = 1, u1 = −1, and L :=

∑
k∈S− uk = 1. Note that L = 1 is equivalent to saying that uj = 1

and all other coordinates of u are zero. Letting γ = [a1, b2, b3, . . . , bn] we have a − γ = e2, b − γ = e1 and
c− γ = ej , which implies that N ∈ C contradiction. So d > 1, or u1 < −1, or L > 1.

Choosing ηk = 1 for all k ∈ S−, η2 = 1 and ηi = 2 for all i ∈ S+ \ {2} we obtain αη = −η2 = −1 and
βη = 1 and

g(η, κ1, κ3; t) = κ1

(
1 + t

2 + t

)d
+ κ3(2 + t)u1(1− t)L

It is easy to see that under the assumptions on d, u1 and L, g is non-constant. Letting κ1 = 3d and
κ3 = 2d−L we get limt→αη g(η, κ1, κ3; t) = limt→βη g(η, κ1, κ3; t) = 2d. Once again, Lemma 5.8 applies and
Proposition 5.7 concludes that N has the capacity for multiple nondegenerate equilibria.

Remark 5.12. Although we assume that d and uk are integers, this fact wasn’t used in our proof. The
crucial was to know sign of d, sign of components of ui, and in some cases compare d |ui| with one. As d and
u defined, d = b2 − a2 > 0 and u = b− c, the same conclusion can be obtained assuming that a, b, c ∈ Rnge0.
It follows that the restriction on source complexes to be integers can be eliminated.

Theorem 5.13. Let N be a network with one-dimensional stoichiometric subspace composed of three re-
actions with pairwise distinct source complexes. If N ∈ Ac \ (Z ∪ C) then N has the capacity for multiple
nondegenerate equilibria.

Proof. Without loss of generality suppose that λ1 = λ3 = 1, λ2 = −1, and that a 1D projection of N1 =
{a→ a′, b→ b′} has the arrow diagram (→, ←). Since N1 /∈ Z (11) implies

vi(ai − bi) ≤ 0 for all i ∈ S (29)

where at least one such product is nonzero and so

v · (a− b) < 0. (30)

Since {a → a′, b → b′} is not a zigzag network, the 1D projection of N containing the pattern (←, →)
must come from N2 = {b→ b′, c→ c′}. Then (10) implies

vj(cj − bj) ≥ 0 for all j ∈ S (31)

and so
v · (b− c) < 0. (32)
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Combining (30) and (32) we obtain
v · (a− c) < 0. (33)

The equation
g(η, κ1, κ3; t1) = g(η, κ1, κ3; t2)

corresponding to multiple steady states of N (see Proposition 5.7) can be viewed as the following linear
system in κ1, κ3: [

(η + t1v)a−b (η + t1v)c−b

(η + t2v)a−b (η + t2v)c−b

] [
κ1

κ3

]
=

[
κ2

κ2

]
. (34)

To be precise, η + t1v, η + t2v ∈ Rn>0 are equilibria of N if there exist κ2 such that (34) has solutions
satisfying κ1, κ3 > 0. We show that this is the case under the additional simplifications η = [p, p, . . . , p] for

some p > 1 and t1 = −t2 = t0 where t0 =
√
p2 − 1. Note that p− t0 = 1

p+t0
.

We let vS+ = 1
2 (v + 1) and vS− = [1, 1, . . . , 1] − vS+ . In other words, vS+ has all S+ coordinates equal

to 1 and all S− coordinates equal to 0, while vS− has all S+ coordinates equal to 0 and all S− coordinates
equal to 1. We have

v = vS+ − vS− .

The system (34) has determinant

detM =(η + t0v)a−b(η − t0v)c−b − (η + t0v)c−b(η − t0v)a−b

=(p+ t0)(a−b)·vS+ (p− t0)(a−b)·vS− (p− t0)(c−b)·vS+ (p+ t0)(c−b)·vS−

− (p+ t0)(c−b)·vS+ (p− t0)(c−b)·vS− (p− t0)(a−b)·vS+ (p+ t0)(a−b)·vS−

=(p+ t0)(a−b)·vS+−(a−b)·vS−−(c−b)·vS++(c−b)·vS−

− (p+ t0)(a−b)·vS−−(a−b)·vS+−(c−b)·vS−+(c−b)·vS+

=(p+ t0)(a−b)·v−(c−b)·v − (p+ t0)−(a−b)·v+(c−b)·v

=(p+ t0)(a−c)·v − (p+ t0)(c−a)·v

which is nonzero – this follows since p + t0 > 1 and (33). For any κ2 > 0 the solution of (34) is computed
using Cramer’s rule:

κ1 = κ2
(p+ t0)(b−c)·v − (p+ t0)−(b−c)·v

(p+ t0)(a−c)·v − (p+ t0)−(a−c)·v (35)

κ3 = κ2
(p+ t0)(a−b)·v − (p+ t0)−(a−b)·v

(p+ t0)(a−c)·v − (p+ t0)(a−c)·v

Since (a − b) · v, (b − c) · v and (a − c) · v have the same sign (see (30), (32), (33)) we have κ1 > 0 and
κ3 > 0 for any choice of κ2 > 0 and for any p > 1.

It remains to check that the resulting equilibria are nondegenerate. To this end we have

g(η, κ1, κ3; t) = κ1(p+ t)(a−b)·vS+ (p− t)(a−b)·vS− + κ3(p+ t)(c−b)·vS+ (p− t)(c−b)·vS−

and therefore

g′(t) = κ1[(a− b) · vS+(p+ t)(a−b)·vS+−1(p− t)(a−b)·vS−

− (a− b) · vS−(p+ t)(a−b)·vS+ (p− t)(a−b)·vS−−1]

+ κ3[(c− b) · vS+(p+ t)(c−b)·vS+−1(p− t)(c−b)·vS−

− (c− b) · vS−(p+ t)(c−b)·vS+ (p− t)(c−b)·vS−−1]
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Using p− t0 = (p+ t0)−1 and plugging in (35) we obtain

detM

κ2
g′(t0) = Q(p+ t0)

where

Q(y) =A1y
E1 −A2y

E1+2 −A3y
E3 +A4y

E3+2

− (A1 −A3)yE5 + (A2 −A4)yE5+2

with
A1 = (a− b) · vS+ , A2 = (a− b) · vS− , A3 = (c− b) · vS+ , A4 = (c− b) · vS− .

and
E1 = (a− c) · v − 1, E3 = (c− a) · v − 1, E5 = (a+ c− 2b) · v − 1.

Since any choice of p > 1 gives two positive equilibria, it remains to argue that for some value of p > 1
these equilibria are nondegenerate, in other words Q(p +

√
p2 − 1) 6= 0 and Q(p −

√
p2 − 1) 6= 0. Indeed,

unless Q is identically zero, Q has a finite number of zeros (Q multiplied with a monomial of large enough
exponent is a polynomial). We conclude the proof by showing that Q cannot be identically zero. Suppose it
is; it can be seen from (30) and (32) that the following inequalities hold between exponents of Q:

E1 < E1 + 2 ≤ E5 < E5 + 2 ≤ E3 < E3 + 2. (36)

Since the the exponents E1 and E3 + 2 appear only once in the expression of Q, we have A1 = A4 = 0.
Since A1 − A2 = (a − b) · v < 0 we have A2 6= 0 and therefore a term with exponent E1 + 2 must
appear elsewhere. The inequalities (36) then imply E1 + 2 = E5, in other words (c − b) · v = 1. The
aggregate coefficient of this exponent is −A2 − A1 + A3 = 0, so A2 = A3. Therefore A3 6= 0 and we must
have E3 = E5 + 2, in other words (b − a) · v = 1. The combined coefficient of the E3 exponent equals
−A3 +A2 −A4 = 0, so A4 = 0. Therefore we have

(a− b) · vS+ = 0, (a− b) · v = −1, (c− b) · vS− = 0, (c− b) · v = 1,

and so
(a− b) · vS− = 1 and (c− b) · vS+ = 1. (37)

Since every term in the dot products above are non-negative integers by (29) and (??) it follows that it follows
that a− b and c− b are elements of the standard basis of Rn, and so N ∈ C (with γ = b), contradiction.

Therefore Q is not identically zero and the proof is complete.

Remark 5.14. Inequality 36 is obtained under the assumption that |(a − b) · v| ≥ 1, |(c − b) · v| ≥ 1 and
|(a − c) · v| ≥ 1. Suppose this assumption is lifted. Then we have E1 < E5 < E3 < E3 + 2. The same
arguments to get A1 = A4 = 0 which implies that A2 6= 0 and A3 6= 0. Note, that any three of the remaining
four exponents cannot be equal. The only possibility to get zero is when E1 + 2 = E5 and E3 = E5 + 2. It
is the case covered by the theorem.

We conclude the discussion on networks with three reactions with the following useful result.

Lemma 5.15. Let N be a reaction network with one-dimensional stoichiometric subspace consisting of three
reactions. If N has a 1D projection that contains both (→,←) and (←,→) patterns (i.e. is alt-complete)
then N has the capacity for multiple nondegenerate equilibria.

Proof. Networks of class L and C do not have 1D projections that are alt-complete, so N ∈ Ac \ (L ∪ C).
The conclusion follows from case m = 3 of Theorem 5.6 2(i).
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5.5.2 The general case

combine! Networks with more than three reactions combine this into the general case Throughout
this section N denotes a reaction network with one-dimensional stoichiometric subspace, composed of m
reactions

ak → a′k, k ∈ R.

Lemma 5.16. Suppose N is a reaction net alt-complete reaction network composed of m ≥ 4 reactions with
pairwise distinct source complexes. Then N has an alt-complete subnetwork composed of three reactions.

We start with two lemmas:

Lemma 5.17. Let N be a reaction network with one-dimensional stoichiometric subspace with at least three
source complexes. If N ∈ Ac then N has an alt-complete subnetwork composed of three reactions with
pairwise distinct source complexes.

Proof. does this work? True when N composed of three reactions.
Let N ′ = {a1 → a′1, a2 → a′2, a3 → a′3, a4 → a′4} be an alt-complete subnetwork of N .
Without loss of generality assume that a 1D projection of {a1 → a′1, a2 → a′2} contains the (→,←)

pattern and a 1D projection of {a3 → a′3, a4 → a′4} contains the (←,→) pattern. Additionally, suppose
that λ1 > 0, λ2 < 0, and λ3 > 0, λ4 < 0. Then (11) implies that vi(a1i − a2i) < 0 for some i ∈ S, and
(10) implies that vj(a3j − a4j) > 0 for some j ∈ S (it is possible to have i = j). If a1 6= a4,then there
exists s ∈ S such that vs(a1s − a4s) 6= 0. Additionally, λ1λ4 < 0. Hence, {a1 → a′1, a4 → a′4} ∈ A1. If
vs(a1s − a4s) > 0, then {a1 → a′1, a2 → a′2, a4 → a′4} ∈ Ac. Otherwise {a1 → a′1, a3 → a′3, a4 → a′4} ∈ Ac.
If a1 = a4 and a2 6= a3 by applying the same arguments we get that {a1 → a′1, a2 → a′2, a3 → a′3} ∈ Ac or
{a2 → a′2, a3 → a′3, a4 → a′4} ∈ Ac . If a1 = a4, a2 = a3, and since N /∈ Sz2 ∪ Snz2 then there exist a5 → a′5
with a5 6= a1 and a5 6= a2. Assume that λ5 > 0 (similar arguments when λ5 < 0). If reactions 2,5 and 4,5
have different patterns (→,←) or (←,→) on 1D projections, then 2,4,5 form an alt-complete subnetwork.
If they have the same pattern on all 1D projections, then one we choose a pair from 1,2 or 3,4 that has
different pattern. We get that reactions 1,2,5 or 3,4,5 form an alt-complete network. If a1 = a2 = a3 = a4,
then N ′ /∈ Ac.

case Z, just do the not in Z case.

Lemma 5.18. Let N be a reaction network with one-dimensional stoichiometric subspace composed of three
reactions. If N ∈ Ac \ Z then N has pairwise distinct source complexes.

Proof. Let N = {a→ a′, b→ b′, c→ c′}, and set a→ a′ and c→ c′ to have the same direction, the opposite
of that of b→ b′.

Since N is alt-complete not all a, b, c can be equal. Recall that each source complex has at most one
reaction for each direction, so a 6= c. Suppose a = b; then the (→,←) and (←,→) patterns of N must come
from projections of N ′ = {b → b′, c → c′}, which is a zigzag network; it follows that N ∈ Z, contradiction.
We conclude that a, b, c are pairwise distinct.

Proof. check Let N = {a1 → a′1, a2 → a′2, a3 → a′3, a4 → a′4} ∈ Ac be a network with pairwise distinct source
complexes. By way of contradiction, assume that N does not have an alt-complete subnetwork composed
of three reactions. Without loss of generality assume that a 1D projection of {a1 → a′1, a2 → a′2} contains
the (→,←) pattern and a 1D projection of {a3 → a′3, a4 → a′4} contains the (←,→) pattern. Additionally,
suppose that λ1 > 0, λ2 < 0, and λ3 > 0, λ4 < 0. Then (11) implies that vi(a1i − a2i) < 0 for some i ∈ S,
and (10) implies that vj(a3j − a4j) > 0 for some j ∈ S (it is possible to have i = j). Since a1 6= a4, there
exists s ∈ S such that vs(a1s − a4s) 6= 0. Additionally, λ1λ4 < 0. Hence, {a1 → a′1, a4 → a′4} ∈ A1. If
vs(a1s − a4s) > 0, then {a1 → a′1, a2 → a′2, a4 → a′4} ∈ Ac. Otherwise {a1 → a′1, a3 → a′3, a4 → a′4} ∈ Ac.
The result contradicts the assumption.
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Lemma 5.19. Let N be a reaction network with one-dimensional stoichiometric subspace. Asssume that
N /∈ L ∪ C and that there exists subnetwork

N ′ = {a→ a′, b→ b′, c→ c′}

of N that has a 2D projection forming one of the patterns in Figure 16 (in particular, for (i) a− c, b− c ∈
{e1, . . . , en}). Then N has the capacity for multiple nondegenerate equilibria.

(i)

1

1

c a

b

(ii)

1

1

b a

c

Figure 16: Special 2D patterns that imply the capacity for multiple nondegenerate equilibria (see Lemma
5.19).

Proof. Note that for both (i) and (ii) the subnetwork N ′ = {a→ a′, b→ b′, c→ c′} of N is not in L. If it’s
also not in C then N has multiple nondegenerate equilibria from case m = 3 of Theorem 5.6 and Theorem
2.7. It remains to treat the case when N ′ ∈ C.

Pattern (i). Let a = c+ e1, b = c+ e2. Let d→ d′ be an arbitrary reaction in N \N ′. The subnetwork

N ′′ = {a→ a′, b→ b′, d→ d′}

is alt-complete.
If N ′′ /∈ L∪ C then it follows from case m = 3 of Theorem 5.6 2(i) that N ′′ has the capacity for multiple

nondegenerate equilibria, and therefore so does N .
If N ′′ ∈ L then the projection of d on (1, 2) must lie on the line ab and be different from a and b. One

checks easily from Figure 17 that in this case the subnetwork {b→ b′, c→ c′, d→ d′} of N is alt-complete,
but not in L ∪ C, and therefore it has the capacity for multiple nondegenerate equilibria and so does N .

c a

b

d

d

Figure 17: Possible locations for the projection of d on (1, 2) when N ′ ∈ L. The direction of d → d′ is not
important.
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X1

b1 b1 + 1

(c)(b) (a)

X2

b2 b2 + 1

(a) (b) (c)

Figure 18: 1D projections of pattern (ii) in Lemma 5.19.

If N ′′ ∈ C, let γ′ denote its corner. Since a − b /∈ {e1, . . . , en} we have γ′ 6= a, γ′ 6= b and therefore for
some i, j ∈ S we have a = γ+ e1 = γ′+ ei and b = γ+ e2 = γ′+ ej . It follows that γ−γ′ = ei− e1 = ej − e2,
and we must have i = 1, j = 2, and γ = γ′, and so

d− γ ∈ {e1, . . . , en}. (38)

We have shown that if not all source complexes d /∈ {a, b, c} of N satisfy (38) then N has the capacity
for multiple nondegenerate equilibria. On the other hand, if all source complexes d /∈ {a, b, c} satisfy (38)
then N ∈ C, contradiction.

Pattern (ii). Let a = b + e1, c = b + e2, and d → d′ be an arbitrary reaction in N \ N ′. First suppose
that d→ d′ has the same direction as a→ a′. By inspecting the 1D projections of pattern (ii) in Figure 18
we note that if d1 < b1 then N has both patterns (→,←) and (←,→) on its X1 projection, and therefore
has the capacity for multiple nondegenerate equilibria by Lemma 5.15. The same is true if d2 < b2.

If d1 > b1 and d2 > b2 then the projection of {b→ b′, d→ d′} on (1, 2) is a zigzag of positive slope, and
therefore N ∈ Z \ Z−1 has the capacity for multiple nondegenerate equilibria by Corollary 4.11.

If d1 = b1 and d2 > b2 then the network N ′′ = {a → a′, b → b′, d → d′} is alt-complete but not in
L. We next argue that N ′′ is also not in C. Indeed, otherwise we must have d2 = b2 + 1 and in fact
d = b + e2 = c, contradiction. So N ′′ /∈ L ∪ C and N ′′ (and therefore N ) has the capacity for multiple
nondegenerate equilibria. If d2 = b2 then there exists s /∈ {1, 2} such that ds 6= bs. Since b and d have
different directions, {b → b′, d → d′} form one of the (→,←) or (←,→) patterns on the Xs 1D projection
of N . The remaining pattern is formed by {a→ a′, b→ b′} on X1 or by {b→ b′, c→ c′} on X2. Therefore
either N ′′ = {a → a′, b → b′, d → d′} or N ′′′ = {b → b′, c → c′, d → d′} is alt-complete. Suppose N ′′ ∈ Ac
(the other case is similar). Note that N ′ /∈ L. If N ′′ /∈ C then it has the capacity for multiple nondegenerate
equilibria by case m = 3 of Theorem 5.6, and so does N by Theorem 2.7. If N ′′ ∈ C then b must be the
corner of this network and therefore

d− b ∈ {e3, . . . , en}. (39)

We have shown that if any reaction d ∈ N \ N ′ does not satisfy (39) then N has the capacity for multiple
nondegenerate equilibria. On the other hand if all reactions d ∈ N \ N ′ does obey (39) then N ∈ C,
contradiction.

Now assume that d → d′ has the same direction as b → b′. If d1 /∈ {b1, b1 + 1} or d2 /∈ {b2, b2 + 1}
d1 > b1 + 1 or d2 > b2 + 1 then the projection of N on X1 or X2 has both (→,←) and (←,→) patterns if
d1 < b1 and d2 < b2 +1, then {a→ a′, d→ d′} ∈ Z \Z−1 and N has the capacity for multiple nondegenerate
equilibria by Lemma 5.15.

If [d1, d2] = [b1, b2] then the subnetwork {a→ a′, c→ c′,→ d′} of N is alt-complete and not in Cit can be
in C, but like (i) . If this network is in C then we must have c = d, contradiction. Therefore the subnetwork
has the capacity for multiple nondegenerate equilibria, and so does N .

If [d1, d2] = [b1 + 1, b2 + 1] then {a → a′, c → c′, d → d′} /∈ L ∪ C is alt-complete, and so N has the
capacity for multiple nondegenerate equilibria.

If [d1, d2] = [b1, b2 +1] = [c1, c2] then there exists s ∈ S \{1, 2} such that ds 6= cs = as. If (a→ a′, d→ d′)
form the (→,←) pattern on Xs then the subnetwork {a → a′, c → c′, d → d′} of N is alt-complete and
not in L; it is also not in C since that would imply d = cimply a2 = d2 , contradiction. Therefore N has
the capacity for multiple equilibria. If (a → a′, d → d′) form the (←,→) pattern on Xs then as above the
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subnetwork {a → a′, b → b′, d → d′} of N switch a for c is alt-complete and not in L ∪ C, and therefore N
has the capacity for multiple nondegenerate equilibria.

The case [d1, d2] = [b1 + 1, b2] is similar to the one above.

Now we proceed to the proof of Theorem 5.6 part 2(i), using notation introduced in 3.2. The cases m = 2
and m = 3 were settled in sections ?? and ??. We assume m ≥ 4. According to Lemma 5.17 there exists an
alt-complete subnetwork

N ′ = {a→ a′, b→ b′, c→ c′}

of N . Assume without loss of generality that a = a1, b = a2, c = a3 and (see Remark 5.4) that λ1 = λ3 =
−λ2. If N ′ /∈ L ∪ C then N ′ has the capacity for multiple nondegenerate equilibria by Theorems 5.10 and
5.13. It follows from Theorem 2.7 that N has the capacity for multiple nondegenerate equilibria.

1. Case N ′ ∈ L We may assume that the projection of N ′ on (1, 2) is a zigzag network, and we have[
a1

a2

]
= δ + p1

[
1
−1

]
,

[
b1
b2

]
= δ + p2

[
1
−1

]
,

[
c1
c2

]
= α+ p3

[
1
−1

]
, (40)

where δ ∈ R2
>0, p1 and p3 have the same sign and p2 the opposite sign. Permuting X1 and X2 we may

choose without loss of generality p3 < p1 < 0. We also set v1 > 0, v2 > 0 and choose δ /∈ {[aj1, aj2]t|j ∈ R}
(i.e. δ is different from all projections of source complexes of N on (1, 2)). The projection of N ′ on (1, 2) is
illustrated in Figure 19 (i).

(i)

X1

X2

δ

c
a

b

(ii)

X1

X2

X1

X2

Figure 19: Case N ′ ∈ L
.

Let d → d′ be an arbitrary reaction in N \ N ′. The subnetwork N ′′ = {a → a′, b → b′, d → d′} of N
is alt-complete and not of class C. This can be seen by computing b− c = (p2 − p3)[1,−1]t and noting that
p1 − p3 ≥ 2; but differences of source complexes of C networks may only have coordinates equal to 0, 1 or
−1. Therefore if N ′′ is not in L then N ′′ has capacity for multiple nondegenerate equilibria, and so does N .

It remains to discuss the case when N ′′ ∈ L for any reaction d → d′ ∈ N \ N ′. For any such source
complex d, [d1, d2] is collinear with [a1, a2] and [b1, b2]. Since N /∈ L the directions of the reactions on the
(1, 2) projection must alternate, in other words N must contain a subnetwork N ′′′ whose projection on (1, 2)
falls within one of the patterns in Figure 19 (ii). But N ′′′ is composed of three reactions is not in L ∪ C
and therefore has the capacity for multiple nondegenerate equilibria. It follows that N has the capacity for
multiple nondegenerate equilibria as well.

2. Case N ′ ∈ C. There are two cases, depending on whether or not the corner γ of N is a source complex,
see Definition 3.12.

2.1. γ is a source complex. Assume without loss of generality that a − γ, b − γ, c − γ ∈ {0, e1, e2}. Up
to replacing every reaction vector with its negative (i.e. replacing λ with −λ), permuting a and c, and up
to reflection about the X1 = X2 diagonal (i.e. permuting X1 and X2) there are two possibilities for N(1,2),
namely those illustrated in Figure 16. It follows from Lemma 5.19 that N has the capacity for multiple
nondegenerate equilibria.
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2.2: γ is not a source complex. Suppose without loss of generality that a = γ+ e1, b = γ+ e2, c = γ+ e3

and set v1 > 0.
If v2 > 0 then the projection of N ′ on (1, 2) has the pattern in Figure 16(i) and the conclusion follows

from Lemma 5.19. Likewise, if v2 < 0 and v3 < 0 then after replacing λ with −λ and a reflection about the
X2 = X3 axis the projection of N ′ on (2, 3)has the pattern in Figure 16(i), and the conclusion follows.

Finally, if v2 < 0 and v1 > 0 then the (→,←) pattern is missing from all 1D projections of N ′ (Figure
10) and N ′ is not alt-complete, contradiction.

Proof of 2(i): sufficient conditions for nondegenerate multistationarity
Case N ∈ Z. Without loss of generality suppose that 1 ∈ R+, 2 ∈ R− and the projection of N ′ =

{a1 → a′1, a2 → a′2} on (1, 2) is a zigzag with a11 < a21. Let Nds be a subnetwork of N obtained by keeping
a single reaction out of each source complex, including a1 → a′1 and a2 → a′2. If Nds /∈ L ∪ C then Nds has
the capacity for multiple nondegenerate equilibria by Theorem 5.6, and therefore so does N by Theorem 2.7.
Note that since N /∈ C we have Nds /∈ C

If Nds ∈ L we differentiate two cases. When Nds has no other source complexes than a1 and a2 then N
is either equal to Nds or has one or two additional reactions, picked from the negatives of the reactions in
N ′. If both negatives are in N then N ∈ Snz2 , and otherwise N ∈ L, contradiction.

Suppose Nds has three or more source complexes. We show that in this case N ∈ L, a contradiction.
Indeed, if N /∈ L then

ak̄1 = max
k∈R+

ak1 > min
l∈R−

al1 = al̄1. (41)

We may refine our choice of Nds by choosing reactions from sources ak̄ and al̄ that satisfy λk̄ > 0 and λl̄ < 0.
Then (41) implies that Nds /∈ L, contradiction.

Case N /∈ Z. In this case N must have at least three source complexes, otherwise N ∈ Snz2 , contradiction.
Lemma 5.17 implies that there exists a subnetwork N ′ of N with three pairwise distinct source complexes
which is alt-complete. Consider a subnetwork Nds of N obtained by keeping only one reaction for each
source complex of N and making sure that N ′ ⊂ Nds. If Nds /∈ C then it follows from Theorem 5.6 that Nds
has the capacity for MPNE, and therefore so does N by Theorem 2.7. If on the other hand Nds ∈ C then it
follows that N ∈ C, contradiction.
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