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Abstract

The Lagrangian description of absolutely continuous curves of probability measures on
the real line is analyzed. Whereas each such curve admits a Lagrangian description as a
well-defined flow of its velocity field, further conditions on the curve and/or its velocity are
necessary for uniqueness. We identify two seemingly unrelated such conditions that ensure
that the only flow map associated to the curve consists of a time-independent rearrangement
of the generalized inverses of the cumulative distribution functions of the measures on the
curve. At the same time, our methods of proof yield uniqueness within a certain class for
the curve associated to a given velocity, i.e. they provide uniqueness for the solution of the
continuity equation within a certain class of curves.

1 Introduction

Consider the problem

∂tX(t, x) = v(t,X(t, x)), under X(0, x) = X0(x), x ∈ I, (Flow)

where I is the interval (0, 1) and X0 : I → R, v : (0, T )×R→ R are given functions. Note that
the solution X is written as a function of two variables in order to account not only for the
time-variable but also for the initial value prescribed for X. If X0 ≡ Id in I and the solution
exists and is unique for all x ∈ I, loosely speaking, the function X is called the classical flow
of v. The terminology comes primarily from Fluid Dynamics: if v stands for the velocity of
fluid flow, then X(t, x) accounts for the position at time t of the fluid particle that was initially
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(t = 0) at position x (if X0 ≡ Id) or, more generally, X0(x). This equation is the basis for
the Lagrangian description of fluid flow (where the trajectory of a particle is observed through
time). If L1 is the Lebesgue measure on R and µt := Xt#L1|I (i.e. µt(B) = L1(X−1t (B))
for all Borel sets B ⊂ R), then we get the Eulerian description of the distribution X0#χ
(where L1|I=: χ) as it is transported by the velocity v: this means (µ, v) solves the Continuity
Equation

∂tµ+ ∂y(µ v) = 0 in (0, T )× R (CE)

from Fluid Mechanics in the sense of distributions. It is worth mentioning that (Flow) and
(CE) are closely connected to the Transport Equation

∂tF + v ∂yF = 0 in (0, T )× R. (Trans)

Indeed, the cumulative distribution function Ft of ρt formally satisfies the above equation (see
Proposition 3.2 below).

If v = v(t, y) is sufficiently smooth, one can formally take the derivative of both sides of the
equation with respect to x to verify that the spatial derivative u = ∂xX(t, x) satisfies

∂tu(t, x) = ∂yv(t,X(t, x))u(t, x), u(0, x) = X ′0(x). (1.1)

The solution procedure shows that

u(t, x) = X ′0(x) exp

(∫ t

0
∂yv(s,X(s, x)) ds

)
.

Whereas we have not really found an explicit solution (because ∂yv depends on X), we can
conclude that X ′0(x) > 0 implies ∂xX(t, x) > 0 for all (t, x) ∈ (0, T )× I, which shows that for
every t ∈ (0, T ), the function x 7→ X(t, x) is strictly increasing, with positive slope everywhere.
This, when referring to (CE), is in agreement with the intuition that “nice” velocities v preserve
in time the order of the positions of particles on the real line, or, equivalently, the characteristics
do not cross. If v is not smooth enough to justify our little calculation above, then the order
need not be preserved through time. This has fundamental implications in scalar Conservation
Laws, where the crossing of characteristics is responsible for the formation of shocks. Our goal
in this paper is to study conditions under which x 7→ X(t, x) stays monotone nondecreasing
for all times t ∈ [0, T ) if X0 is itself monotone nondecreasing. The meaning of “conditions”
is quite vague at this point; however, they shall not be imposed on the velocity v, but rather
on the Eulerian flow (CE) whose Lagrangian characterization is provided by (Flow). Under
the minimal assumptions we shall impose on µ, the velocity v will be uniquely determined by
µ from (CE) (in some precise sense). Thus, our endeavor will be to study (Flow) under the
constraint that Xt#χ = µt be given for all t ∈ [0, T ] in the form of an absolutely continuous
curve of probability measures [3].

DiPerna & Lions [7], Ambrosio [1] (also, see [5] for a good survey on such problems) have
addressed the questions of existence, uniqueness and stability for regular Lagrangian flows, i.e.
solutions X of (Flow) such that Xt#Ld � CLd for some positive real constant independent
of t ∈ [0, T ]. In the Sobolev case (there is a similar version if only certain BV regularity on
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v is assumed), the almost (minor improvements are available [5]) state-of-the-art uniqueness
result covers only velocities

v ∈ L∞((0, T )× Rd;Rd) ∩ L1([0, T ];W 1,p(Rd;Rd)) for some p > 1.

It is proved that if v is this regular, then its regular Lagrangian flow, if it exists, then it
is unique. We had originally planned a complete departure from that setting, as our initial
goal was to investigate the uniqueness of the Lagrangian flow associated to a given absolutely
continuous path of probability measures (see Definitions 1.1 and 2.1 below). Thus, no explicit
conditions on the velocity v were to be made, even though any assumption on the curve of
measures will implicitly reflect on the (unique) velocity associated to it. We have managed
to stay true to this goal only in part; see the main result Theorem 3.12, which covers the
case of higher integrability for the densities on the curve. However, while analyzing the case
of continuous densities (Theorem 3.4, the other main result) we discovered that a continuous
velocity would not only yield uniqueness for the Lagrangian flow associated to the curve, but
it would also give uniqueness for the continuity equation (CE) within the class of absolutely
continuous curves of probabilities [3]. Thus, in Theorem 3.4 we also make the continuity
assumption on v.

We would like to make it clear that we only deal with solutions of (CE) that are absolutely
continuous curves of probability measures: it is easy to construct examples of velocities v and
distributional solutions of (CE) originating at a given probability ρ0 but whose masses change
in time, and/or become negative. Indeed, one may take any smooth and positive density ρ0
that vanishes at ±∞ and set ρ(t, y) := (1 − t)|1 − t|ρ0(y): then ρ is a distributional solution
for (CE) with v(t, y) = 2F0(y)/[(1 − t)ρ0(y)] if t ∈ [0, 1) ∪ (1,∞) and v(t, ·) ≡ 0 if t = 1 (F0

is the cumulative distribution function of ρ0). Note that while ρ(0, ·) is a smooth probability
density, the mass of ρ(t, ·) decreases in time and ρ(t, ·) even goes below zero for t > 1. Such
solutions of (CE) are non-physical in Conservation Laws or Thermodynamics (for example),
where this equation is also used to express precisely conservation of mass for ρ; furthermore,
as ρ usually denotes a physical quantity (such as material density or absolute temperature), it
is also important in applications that it does not pointwise go below zero.

It is convenient to introduce the definition of Flow of a Borel map, which is the Lagrangian
flow restricted to the one-dimensional case. We take I := (0, 1), which ensures the measure
X#L1|I= X#χ is a probability measure, but everything we achieve in this paper can be trivially
extended to any bounded interval.

Definition 1.1 (Flow of a Borel map). Let v : [0, T ] × R −→ R and X0 : I → R be Borel
functions. We say that X : [0, T ]× I −→ R is a flow map for v if

(i) the map [0, T ] 3 t→ X(t, x) is absolutely continuous for a.e. x ∈ I;

(ii) ∂tX(·, x) = v(·, X(·, x)) for a.e. x ∈ I.

Furthermore, we say that X : [0, T ] × I −→ R is a flow map for v starting at X0 if, beside
(i), (ii), the following is satisfied:

(iii) X(0, x) = X0(x) for a.e. x ∈ I.
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We have seen earlier that any solution X of (Flow) will be nondecreasing in x provided that X
and v are regular enough to justify (1.1). It is, however, this regularity that might not be there,
which will enable solutions that are not nondecreasing in x (see Example 1.2 below). Examples
1.4 and 1.5 however, illustrate that there are even irregular v for which only nondecreasing
solutions exist. By one-dimensional Optimal Transport, it is known that there is a bijective
correspondence between the closed, convex cone of monotone nondecreasing functions in L2(I)
and the metric space P2(R) endowed with the quadratic Wasserstein distance (see, e.g., [10]).
This implies [10] (due to the uniqueness of the velocity for a given AC2 curve) there is a
bijective correspondence between paths M ∈ H := H1(0, T ;L2(I)) consisting of monotone
nondecreasing maps Mt and curves µ ∈ AC2(0, T ;P2(R)), via Mt#χ = µt. It was also proved
in [10] that M satisfies (Flow) in the sense of Definition 1.1. Thus, the initial value problem
(Flow) admits a solution in H if and only if v is the velocity associated with some curve
µ ∈ AC2(0, T ;P2(R)). We shall see that one can obtain such a curve from (Flow) by defining
µt := Xt#χ; thus, we shall see that if X0 is nondecreasing, then as soon as (Flow) admits
a solution X ∈ H, it automatically admits the solution M ∈ H consisting of the monotone
rearrangements of the maps Xt. Thus, it comes as a very natural question to investigate when
(Flow) has only spatially nondecreasing solutions.

A study of the regularity of the monotone rearrangements of maps belonging to a time-
continuous family of maps was performed by Loeper in [11]. It is proved that the distributional
time derivative is a signed measure. This is very weak by comparison to what we achieve here,
but it covers a much more general case: arbitrary spatial dimension, and the family of maps
is not necessarily the flow of a map.

Example 1.2. Let us consider the (Borel) function v : [0, 2]× R→ R given by

v(t, y) =
y

t− 1
if t ∈ [0, 2]\{1}, v(1, ·) ≡ 0.

Clearly, v is analytic everywhere except on the fiber {1} × R. It is easy to see that X(t, x) :=
(1 − t)x satisfies X ∈ H (it is, in fact, analytic and bounded in (0, 2) × I) and is a solution
for (Flow) for this particular v. Note that Xt is nondecreasing only if t ∈ [0, 1], and strictly
decreasing otherwise. However, by setting

M(t, x) = (1− t)x if t ∈ [0, 1] and M(t, x) = (1− t)(1− x) if t ∈ (1, 2],

we observe that M ∈ H is also a solution with M0(x) = x for all x ∈ I. The maps Mt are
the monotone rearrangements of the maps Xt. So, this is an example where (Flow) has other
solutions, beside monotone non-decreasing ones. It also illustrates that once a solution exists,
there will also exist a monotone non-decreasing solution, as discussed above.

The obvious issue with Example 1.2 is that, whereas for t > 1 we get decreasing solutions,
the solution Xt is still nondecreasing (and, thus, coincides with Mt) for all t ∈ [0, 1]. It is not
difficult to modify the example in such a way that the time threshold t = 1 is replaced by an
arbitrarily small positive time. However, the natural question is whether it is true that for
any solution X ∈ W 1,q(0, T ;Lp(I)) of (Flow) with X0 ≡ Id there exists a time horizon t̄ > 0
such that Xt is nondecreasing for all t ∈ [0, t̄]. As the next example will show, this is false.
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Following a suggestion by Alberto Bressan, we have constructed a velocity v and its flow X
such that for any ε > 0 there exists a time 0 < tε < ε for which Xtε is not nondecreasing.

Example 1.3. Let v : [0, 1] × I → R given by v(t, y) = 2 sgn(2−n/2 − t)
√

1− 2−n − y for all
positive integers n, all 1− 2−n+1 < y ≤ 1− 2−n and all t ∈ [0, 1], i.e.

v(t, y) =

{
2
√

1− 2−n − y if 1− 21−n < y ≤ 1− 2−n, 0 ≤ t < 2−n/2,

−2
√

1− 2−n − y if 1− 21−n < y ≤ 1− 2−n, 2−n/2 ≤ t ≤ 1.

If n ≥ 2 is an integer, define the function X : [0, 1]× I → I by

X(t, x) =


1− 2−n − (t−

√
1− 2−n − x)2 if 1− 21−n < x < 1− 2−n, 0 ≤ t <

√
1− 2−n − x

1− 2−n if 1− 21−n < x < 1− 2−n − 2−n−1,
√

1− 2−n − x ≤ t ≤ 1

1− 2−n if 1− 2−n − 2−n−1 < x ≤ 1− 2−n,
√

1− 2−n − x ≤ t < 2−n/2

1− 2−n − (t− 2−n/2)2 if 1− 2−n − 2−n−1 < x ≤ 1− 2−n, 2−n/2 ≤ t < 21−n/2

1− 21−n if 1− 2−n − 2−n−1 < x ≤ 1− 2−n, 21−n/2 ≤ t ≤ 1.

If n = 1 we remove the last branch from the above definition and cut t off at 1 in the penultimate
branch.

Note that X(0, x) = x for all x ∈ I and (Flow) holds in the classical sense for all x ∈
I\{1− 2−n : n positive integer }. If x = 1, then (Flow) is satisfied in the classical sense for
t ∈ [0, 1]. If x = 1 − 2−n for some integer n ≥ 2, then X(·, x) is continuous in t on [0, 1]. So
is ∂tX(·, x) except at tn = 21−n/2 where it has a jump discontinuity. The differential equation
(Flow) is satisfied in the classical sense on both sides of tn, so it is satisfied in the integral
sense over the whole time interval [0, 1].

Thus, (Flow) is satisfied in the integral sense for all x ∈ I and all t ∈ [0, 1]. Also, note that
on each interval In := (1−2−n+1, 1−2−n) we have the following property: for all t ∈ [2−n/2, 1]
the map X(t, ·) maps the left half of the interval to a single value, namely 1 − 2−n. Then it
maps the right half to a single value as well, namely 1− 2−n − (t− 2−n/2)2, which lies strictly
below 1 − 2−n for t ∈ (2−n/2, 1] (see the interrupted line vs the solid line in Figure 1). Thus,
X(t, ·) is not Lebesgue a.e. equal to a nondecreasing function over In for any integer n ≥ 2
and any t ∈ (2−n/2, 1]. Since 2−n/2 approaches zero as n→∞, we deduce that, for arbitrarily
small t > 0, the function X(t, ·) is not Lebesgue a.e. equal to a nondecreasing function over
(0, 1).

Since both X and v are bounded, we infer X ∈W 1,∞(0, 1;L2(I)) ⊂ H, so all the requirements
on X are satisfied.

Finally, note that Example 1.3 can be easily modified to make (Flow) satisfied in the classical
sense for all t ∈ (0, 1) (see Figure 1). Indeed, one may replace the fourth branch in the
definition of X above by the quadratic un(t) = ant

2 + bnt+ cn such that un(2−n/2) = 1− 2−n,
∂tun(2−n/2) = 0 and un(1) = 1− 21−n. For an = −1/(2n/2− 1)2, bn = 21−n/2/(2n/2− 1)2, cn =
1− 21−n + [1− 21−n/2/(2n/2 − 1)2], and t ∈ [2−n/2, 1] this function will satisfy the differential
equation ∂tun = −

√
4an(un − cn) + b2n. Thus, it suffices to replace the formula in the second

branch of the definition of v above by f(y) = −[2/(2n/2 − 1)]
√

1− 2−n − y if 1− 21−n < y ≤
1− 2−n and 2−n/2 ≤ t ≤ 1.
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Figure 1: (Flow) satisfied in the classical sense for Example 1.3.

Not only does Example 1.3 provide an instance where the non-uniqueness of the flow (albeit
classical) manifests instantaneously for t > 0 (as we have seen there are solutions other than
the monotone ones for arbitrarily small positive time), but it also gives instantaneous mass
concentrations (Dirac deltas) in the measures Xt#χ (as a result of Xt developing flat portions
instantaneously). The following example shows that this can occur even if the flow is unique
(i.e. consisting of monotone nondecreasing maps).

Example 1.4. Let 0 < T ≤ 1/2 and v : [0, T ]× R→ R given by

v(t, y) = 0 if y ≤ 0 and v(t, y) =
y − 1

1− t
if y > 0.

One can prove that

X(t, x) = 0 if 0 ≤ x ≤ t and X(t, x) =
x− t
1− t

if t < x ≤ 1

is the only solution to (Flow). Note that Xt develops a flat portion as soon as t > 0.

Furthermore, as the following example shows, it is also possible that there are two different
monotone solutions X and Y for (Flow). The example is constructed along the lines of
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the classical v(t, x) =
√
|x|, which is often used to illustrate non-uniqueness for the initial

value problem ẋ =
√
|x|, x(0) = 0. This example helps justify why the constraint “Xt#χ is

prescribed” is used here as a criterion to sort out between solutions. In [1], the author uses
this example towards the same goal. The criterion chosen there is different from ours: it is the
regularity of the flow, as described earlier.

Example 1.5. Let v(t, y) = 2
√
|y − 1|, T = 1 and note that

Xε(t, x) =


1 + (t−

√
1− x)

∣∣t−√1− x
∣∣ if t ∈ [0,

√
1− x]

1 if t ∈ [
√

1− x, ε+
√

1− x]

1 + (t− ε−
√

1− x)
∣∣t− ε−√1− x

∣∣ if t ∈ [
√

1− x+ ε, 1]

(1.2)

satisfies (Flow) for any 0 ≤ ε < 1 (see Figure 2) (the various ranges of t that do not make
sense in the above definition are not to be used: for example, when x = 0 we only use the first
branch to get Xε(t, 0) = 2t−t2 for all t ∈ [0, 1], or, when ε+

√
1− x ≥ 1 the function is defined

only on two pieces, namely [0,
√

1− x] and [
√

1− x, 1]). The maps Xε
t are all nondecreasing

(one needs to carefully write Xε(t, ·) for fixed t as a function of x to check that), yet different
for different ε; see Figure 2 (c). One can easily check that the solution Xε is classical (C1 in
time) and, since it is bounded on (0, T ) × I, (Flow) provides a bound on Ẋε as well. Thus,
Xε ∈ H trivially. In terms of measures µt := Xt#χ, this means that there are infinitely (in fact,
a continuum; one for each 0 ≤ ε < 1; see Figure 2 (a),(b)) many curves µ ∈ AC2(0, 1;P2(R)),
all originating at µ0 = χ and sharing the same velocity v.

As far as uniqueness for (Flow) goes, Example 1.5 shows that in general there might be more
than one curve whose velocity v is. This accounts for a non-uniqueness “mechanism”, which
we now dub multiple-curve (MC) condition on the velocity v. Thus, Example 1.5 provides a v
satisfying (MC) (or, we could say “v is (MC)”). If v is not (MC), then we say v is (SC) (single-
curve). Examples of v with (SC) are abundant; any continuous v that is also Lipschitz in the
y-variable would do, as this implies pointwise existence and uniqueness for ẋ(t) = v(t, x(t)) for
any initial x = x(0). But this regularity is not necessary, as we remark next.

Remark 1.6. We have seen that the velocity from Example 1.4 produces a single flow map X.
If we use it to compute the curve µ = X#χ, we get µt = tδ0 +(1− t)χ (the convex interpolation
between the Dirac mass at 0 and χ), and one can check µ ∈ AC2(0, T ;P2(R)). Thus, v is (SC)
(even though it is discontinuous) and its (unique) curve develops atoms as soon as t > 0.

Thus, if a velocity v is (MC), there is no hope for a uniqueness result for (Flow), as each
curve of probabilities associated with v will produce its own distinct solution (consisting of
the optimal maps). The question of whether the family of optimal maps is the only solution
becomes pertinent again once we prescribe the curve associated with v. This is yet another
motivation for undertaking the present analysis.

Our main contribution is identifying sufficient conditions on a path µ ∈ ACq(0, T ;Pp(R))
to ensure that the path M ∈ W 1,q(0, T ;Lp(I)) consisting of the optimal maps such that
Mt#χ = µt is the unique solution to (Flow) which pushes χ forward to µ. As a byproduct
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(c) Different flows with one value of ε.

Figure 2: (Flow) has different monotone solutions for Example 1.5.

of our approach, uniqueness for the continuity equation (CE) also arises within a precisely
defined class of solutions; within that class, the velocity v will be an (SC) velocity.

As we have already pointed out, the idea of treating these first-order differential equations
as depending on the parameter given by the initial data is not new [5], [1], [4]. This should
come as no surprise, given that such equations describe the flow of a scalar field, which is the
reason why they are instrumental to the Lagrangian description of particle motion. However,
the proposed approach is novel in that it is based on the connection between the flow equation
and one-dimensional Optimal Transport. In our opinion, exploring the close link between
(Flow), (CE), and (Trans) is worth pursuing before more complicated, higher-order PDE’s
are studied. The main idea here stems precisely from the analysis of ODE’s of the type (Flow)
performed by taking into account the dependence of solutions on initial data.

If the velocity v is a “nice” function, the whole theory is simple and well-understood. Other-
wise, the misleading simplicity of (CE) does not warn the researcher of the hazards involved
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with its analysis. Its connection with (Flow) offers a glimpse into that, since (Flow) can be
too general to be handled easily. These issues have been recognized and have been the object
of deep mathematical works [1], [4] etc. Our present work fills some knowledge gap even in the
simplest of cases (spatial dimension one).

The paper is organized as follows: Section 2 begins by briefly recalling the definition of
some objects essential to our presentation, such as Wasserstein distance/space, absolutely
continuous curves of probability measures, generalized inverse etc. Then a necessary and
sufficient condition on the regularity Lagrangian flow is proved in order for the associated
path of measures to possess AC-regularity. The main result of Section 2 is Theorem 2.11
which shows that, quite generally, AC paths consisting of probabilities absolutely continuous
with respect to the Lebesgue measure admit Lagrangian descriptions provided by the family
of optimal maps. Section 3 focuses on two different types of conditions under which the said
Lagrangian description is unique: Theorem 3.4 explores the case of continuous densities and
velocities by a direct method (loosely connected to the narrative from Section 2), whereas
Theorem 3.12 is more deeply indebted to the results from Section 2 as it analyzes the case
where the densities enjoy some precisely quantified integrability (no conditions imposed on
the velocity in this case). Theorem 3.4 also provides a uniqueness result for the continuity
equation (CE) within a reasonably general class of solutions. Theorem 3.12 does the same,
albeit in a more restrictive setting. In both cases, the uniqueness results for the Lagrangian
flow and the uniqueness results for the continuity equation are obtained concomitantly from
our method of proof. We conclude with Section 4, where we discussed open problems and
possible applications.

2 Lagrangian Flows associated to ACq(0, T ;Pp(R)) curves

If 1 ≤ p <∞ and d ≥ 1 is an integer, we denote by Pp(Rd) the p-Wasserstein space on Rd, i.e.
the set of Borel probabilities on Rd with finite p-moment and endowed with the p-Wasserstein
metric

Wp(µ, ν) := inf
{(

E[|X − Y |p]
) 1

p
: law(X) = µ, law(Y ) = ν

}
.

Also, in this paper Pacp (Rd) stands for the set of all Borel probability measures µ ∈ Pp(Rd)
which are absolutely continuous with respect to the Lebesgue measure Ld. Let us begin by
recalling the definition of ACq(0, T ;Pp(Rd)) (see [3]):

Definition 2.1. If 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, a path [0, T ] 3 t 7→ µt ∈ Pp(Rd) is said to lie
in ACq(0, T ;Pp(Rd)) provided that there exists β ∈ Lq(0, T ) such that

Wp(µs, µt) ≤
∫ t

s
β(τ)dτ for all 0 ≤ s ≤ t ≤ T.

It is proved in [3] that if 1 < p < ∞, then any such curve admits a Borel velocity v :
(0, T )× Rd → Rd of minimal norm in the sense that:

(µ, v) satisfies (CE) in the sense of distributions in (0, T )× Rd (2.1)

9



v(t, ·) ∈ Lp(µ(t, ·);Rd) for a.e. t ∈ (0, T ) and (0, T ) 3 t 7→ ‖v(t, ·)‖Lp(µ(t,·);Rd)∈ Lq(0, T ); (2.2)∫ T

0
‖v(t, ·)‖Lp(µ(t,·);Rd)dt is minimal among all velocities satisfying (2.1) and (2.2). (2.3)

Moreover, it is showed in [3] that this “velocity of minimal norm” is unique, in the sense that
if v1 and v2 satisfy (1), (2), (3) above for a.e. t ∈ (0, T ), then v1(t, ·) ≡ v2(t, ·) µt a.e.

Note that ACq(0, T ;Pp(Rd)) ⊂ AC1(0, T ;P1(Rd)) for all 1 ≤ p <∞ and 1 ≤ q ≤ ∞.

More can actually be said if d = 1; the proof of the proposition below is borrowed, with
minor modifications, from [12]. It shows that on the line there is at most one integrable (in
the sense specified below) velocity, the minimality condition on its norm being redundant.

Theorem 2.2. Consider a path µ ∈ AC1(0, T ;P1(R)) for some 0 < T < ∞. Then there
exists at most one Borel velocity v for µ such that v ∈ L1(µ) (as a function of both time and
space) for a.e. t ∈ (0, T ). More precisely, if v1, v2 : (0, T ) × R → R are Borel maps such
that vi ∈ L1(µ) for i = 1, 2, and such that both (µ, v1) and (µ, v2) satisfy (CE) in the sense
of distributions, then for Lebesgue a.e. t ∈ (0, T ) we have v1(t, ·) ≡ v2(t, ·) in the µ(t, ·)–a.e.
sense.

Proof: By subtracting (CE) written for both (µ, v1) and (µ, v2) and by taking test functions
ϕ(t, y) = ξ(t)ζ(y), the equations above readily yield∫

R
u(t, y)ζ ′(y)µ(t, dy) = 0 for a.e. t ∈ (0, T ) and any ζ ∈ C1

c (R),

where u := v1 − v2. Fix ε > 0 and φ ∈ Cc(R). If φ = 0 on [R,+∞), consider, for each natural
number n > R, the function

Φn(y) :=


∫ y
−∞ φ(z) dz if y < n,

ω(y − n) if n ≤ y ≤ n+ 1,

0 if y > n+ 1

(2.4)

where ω ∈ C1[0, 1] such that ω(0) =
∫ R
−∞ φ(z) dz, ω(1) = 0 and ω′(0) = 0 = ω′(1). Clearly,

Φn ∈ C1
c (R). Thus,∫

R
u(t, y)φ(y)µ(t, dy) +

∫ n+1

n
u(t, y)ω′(y − n)µ(t, dy) = 0 for a.e. t ∈ (0, T ) .

We have |ω′(y − n)|≤ ‖ω′‖L∞(0,1)=: C for all n > R and all y ∈ (n, n + 1). Since u(t, ·) ∈
L1(µ(t, ·)) and µ(t, ·) is a Borel probability for Lebesgue a.e. t ∈ (0, T ), we conclude that for
such t and any ε > 0 we have ∣∣∣∣ ∫

R
u(t, y)φ(y)µ(t, dy)

∣∣∣∣ ≤ ε
if n is sufficiently large. Due to the arbitrariness of ε and φ, the proof is concluded. QED.

The following is an obvious consequence.
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Corollary 2.3. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ and µ ∈ ACq(0, T ;Pp(R)) be given. Then,
there exists at most one Borel map v : (0, T ) × R → R such that (µ, v) satisfies (2.1) (with
d = 1) and

v ∈ L1(µ), i.e.

∫ T

0

∫
R
|v(t, y)|µ(t, dy)dt <∞. (2.5)

This uniqueness result enables us to make the following definition:

Definition 2.4. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ and µ ∈ ACq(0, T ;Pp(R)) be given. If it
exists, the Borel map v : (0, T ) × R → R such that (2.1) and (2.5) are satisfied is called the
L1–velocity associated to µ.

If p = 1, then even when d = 1 and ρ(t, ·) ∈ Pac1 (R) for all t ∈ (0, T ), a velocity v satisfying
(2.1) and (2.5) may not exist.

Example 2.5. Let M : (0, 1)× (0, 1)→ R be the family of optimal maps given by:

M(t, x) =

{
x if x ∈ [0, 1− t),
1 + x if x ∈ [1− t, 1]

for all t ∈ (0, 1). Also, M(0, x) = x and M(1, x) = 1 + x for all x ∈ [0, 1]. Then we can
easily compute the curve ρ(t, ·) = Mt#χ to obtain ρ(t, ·) = χ[0,1−t] +χ[2−t,2], which shows that
ρ(t, ·) ∈ Pacp (R) for all p ≥ 1 and for all t ∈ [0, 1]. However, for all 0 ≤ s ≤ t ≤ 1

Wp(ρs, ρt) =

(∫ 1

0
|M(s, x)−M(t, x)|p dx

) 1
p

=

(∫ 1−s

1−t
1 dx

) 1
p

= |t− s|
1
p ,

and this is bounded by
∫ t
s β(τ)dτ for some β ∈ L1(0, 1) if and only if p = 1 (in which case we

may take β ≡ 1 ∈ L∞(0, 1)). Thus, ρ ∈ AC∞(0, 1;Pac1 (R)) but ρ /∈ ACq(0, 1;Pp(R)) for any
1 < p <∞ and any 1 ≤ q ≤ ∞.

Next, assume that the L1–velocity v associated to ρ exists. Then, for all ϕ ∈ C1
c (R), the

function t 7→
∫
R ϕ(y)ρ(t, dy) is absolutely continuous on [0, 1] and

d

dt

∫
R
ϕ(y)ρ(t, dy) =

∫
R
v(t, y)ϕ′(y)ρ(t, dy) at a.e. t ∈ (0, 1),

i.e.

−ϕ(1− t) + ϕ(2− t) =

∫ 1−t

0
v(t, y)ϕ′(y) dy +

∫ 2

2−t
v(t, y)ϕ′(y) dy

for a.e. t ∈ [0, 1]. Take ϕ ∈ C1
c (R) such that ϕ ≡ 1 on [0, 5/8] and ϕ ≡ 2 on [11/8, 2]. Then

the above equality must be satisfied, in particular, at a.e. t ∈ (3/8, 5/8); this yields 1 = 0,
a contradiction. In conclusion, we have produced an example of a curve lying in the “most
regular” subset of the ACq(0, 1;P1(R)) families of curves (namely, AC∞(0, 1;Pac1 (R))), and
yet whose L1-velocity does not exist.
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Example 2.6. Let f(z) = (1 − ln z)−1, so that f ′(z) = z−1(1 − ln z)−2 for z ∈ (0, 1). Then
f ∈ L∞(0, 1) and f ′ ∈ Lp(0, 1) if and only if p = 1, so that f ∈W 1,1(0, 1) but f /∈W 1,p(0, 1) for
any p > 1. Set g(x) := min{−f ′(x),−e/4} and note that g is continuous on (0, 1], increasing on
(0, e−1) and constant on [e−1, 1]. Just like f ′, we have g ∈ Lp(0, 1) if and only if p = 1. Finally,
let M(t, x) := f(t)g(x) for all (t, x) ∈ [0, 1]×(0, 1) (f(0) = 0 in the right-limit sense) to see that
the curve [0, T ] 3 t 7→ ρ(t, ·) =: M(t, ·)#χ lies in AC1(0, 1;P1(R)) but not in ACq(0, 1;Pp(R))
for any 1 ≤ p <∞ and any 1 < q ≤ ∞. Furthermore, the flat portions in the graphs of M(t, ·)
yield Dirac masses in the measures ρ(t, ·) for all t ∈ [0, T ] (while the increasing portions show
that these measures are not purely discrete). So, ρ /∈ AC1(0, 1;Pac1 (R)). However, in spite
of its very basic AC1(0, 1;P1(R)) regularity, one can easily see that v(t, y) = f ′(t)y/f(t) if
t ∈ (0, 1] is the L1-velocity of ρ. To recapitulate, here we have a curve with no better than
AC1(0, 1;P1(R)) regularity, but for which the L1-velocity exists.

Remark 2.7. We have included the condition “the L1-velocity v is assumed to exist if p = 1”
in the upcoming statements, whenever the results apply to AC1(0, 1;Pac1 (R)) curves with their
velocities. Examples 2.5 and 2.6 show that this condition is neither redundant nor vacuous in
the case p = 1.

The most general problem (Flow) discussed here assumes only Borel regularity on v and we
only study solutions X belonging to some time-Sobolev spaces W 1,q(0, T ;Lp(I)). The reason
for this extra-requirement on the object introduced in Definition 1.1 will become clear in this
section, where we prove that any map X as in Definition 1.1 which also satisfies Xt#χ = ρt
for all t ∈ [0, T ] for some ρ ∈ ACq(0, T ;Pp(R)) must, in fact, lie in W 1,q(0, T ;Lp(I)). This
also means that the time-derivative along paths X(·, x) ∈ W 1,1(0, T ) which is denoted by
∂tX(·, x) ∈ L1(0, T ) coincides L2-a.e. with the functional derivative Ẋ ∈ Lq(0, T ;Lp(I)) of X.
This definition turns out to be equivalent to requiring that X ∈W 1,q(0, T ;Lp(I)) satisfy

X(t, x) = X(s, x) +

∫ t

s
v(τ,X(τ, x)) dτ for L1-a.e x ∈ I and every 0 ≤ s ≤ t ≤ T .

On the other hand, we shall prove that a solution X of (Flow) in the sense of Definition 1.1
belongs to W 1,q(0, T ;Lp(I)) if and only if [0, T ] 3 t 7→ Xt#χ =: ρt belongs to ACq(0, T ;Pp(R)).
This has the important consequence that if a map X ∈ W 1,q(0, T ;Lp(I)) solves (Flow), then
so does M , where Mt is the monotone rearrangement of Xt for all t ∈ [0, T ]. The theorem
we prove next establishes the connection between the regularity of an absolutely continuous
curve of probabilities and that of its Lagrangian description. Note that there is no claim at
this point that said description be unique; this result applies to any flow map associated to
the given curve.

Theorem 2.8. If X : [0, T ]× I −→ R is a Lagrangian flow map associated to the Borel map
v : [0, T ]× R −→ R, then the following are equivalent:

(1) X#χ = ρ ∈ ACq(0, T ;Pp(R)) and v is its unique L1-velocity field (or, simply, the velocity
field associated to ρ). In fact,

(0, T ) 3 t 7→ ‖vt‖Lp(ρt)
∈ Lq(0, T ). (2.6)
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(2) X ∈ W 1,q(0, T ;Lp(I)), in which case ∂tX coincides a.e. in (0, T ) × I with the functional
derivative Ẋ of X.

Proof. (1)=⇒(2). Note that∫ T

0
‖vt‖qLp(ρt)

dt =

∫ T

0

(∫
I
|v(t,X(t, x))|p dx

) q
p

dt,

so ∂tX ∈ Lq(0, T ;Lp(I)) ⊂ L1((0, T )× I). Now,

|X(t, x)| ≤ |X0(x)|+
∫ t

0
|v(s,X(s, x))| ds

=⇒ ‖X(t, ·)‖Lp(I) ≤ ‖X0(x)‖Lp(I) +

∫ t

0
‖∂sX(s, ·)‖Lp(I)ds for all t ∈ [0, T ].

Thus, X ∈ L∞(0, T ;Lp(I)) ⊂ L1((0, T )×I). Since X(·, x) ∈W 1,1(0, T ) for a.e. x ∈ I, we have∫ T

0
∂tϕ(t, x)X(t, x) dt = −

∫ T

0
ϕ(t, x)∂tX(t, x) dt for all ϕ ∈ C1

c ((0, T )× I).

We use X, ∂tX ∈ L1((0, T )× I) to conclude∫ T

0

∫
I
∂tϕ(t, x)X(t, x) dx dt = −

∫ T

0

∫
I
ϕ(t, x)∂tX(t, x) dx dt for all ϕ ∈ C1

c ((0, T )× I).

Thus, X ∈W 1,q(0, T ;Lp(I)) and ∂tX = Ẋ a.e. in (0, T )× I.

(2)=⇒(1). To prove ρ ∈ ACq(0, T ;Pp(R)) note that the fact that (Xs ×Xt)#χ is a transport
plan between ρs and ρt implies

Wp(ρs, ρt) ≤ ‖Xs −Xt‖Lp(I) ≤
∫ t

s
‖Ẋ(τ, ·)‖Lp(I)dτ for all 0 ≤ s ≤ t ≤ T . (2.7)

According to [3], the fact that the map [0, T ] 3 t 7→ ‖Ẋ(t, ·)‖Lp(I) lies in Lq(0, T ) implies

ρ ∈ ACq(0, T ;Pp(R)) ⊂ AC1(0, T ;P1(R)). It is now enough to prove (2.6) (which implies (2.4))
and the fact that (ρ, v) satisfies (CE) as distributions. Property (2.6) follows immediately (via
Xt#χ = ρt and the a.e. identification ∂tX = Ẋ) from∫ T

0
‖Ẋ(t, ·)‖qLp(I)dt =

∫ T

0

(∫
I
|v(t,X(t, x))|p dx

)q/p
dt =

∫ T

0
‖vt‖qLp(ρt)

dt. (2.8)

Since any ϕ ∈ C1
c (I) is Lipschitz, we have that for a.e. x ∈ I the function [0, T ] 3 t 7→

ϕ(X(t, x)) lies in W 1,1(0, T ) and its a.e. derivative is ϕ′(X(t, x))∂tX(t, x). Or, equivalently,
for a.e. x ∈ I, we have (we use (Flow) for the second equality)∫ T

0
ξ̇(t)ϕ(X(t, x))dt = −

∫ T

0
ξ(t)ϕ′(X(t, x))∂tX(t, x)dt

= −
∫ T

0
ξ(t)ϕ′(X(t, x))v(t,X(t, x))dt for all ξ ∈ C1

c (0, T ).
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But both integrands are in L1((0, T ) × I), so by Fubini’s Theorem the above equality can be
integrated in x, then we can change the order of integration to get∫ T

0
ξ̇(t)

∫
I
ϕ(X(t, x))dxdt = −

∫ T

0
ξ(t)

∫
I
ϕ′(X(t, x))v(t,X(t, x))dxdt for all ξ ∈ C1

c (0, T ).

Since Xt#χ = ρt, the above translates into∫ T

0
ξ̇(t)

∫
R
ϕ(y)ρt(dy) dt = −

∫ T

0
ξ(t)

∫
R
ϕ′(y)v(t, y)ρt(dy) dt. (2.9)

This proves that v is, indeed, a velocity for ρ. �

Remark 2.9. Due to the uniqueness of the L1-velocity v (when it exists) for a given ρ ∈
AC1(0, T ;P1(R)), every time we refer to a Lagrangian flow map X for v under the constraint
Xt#χ = ρt, we may simply call it a Lagrangian flow map associated to ρ.

It has been known since Fréchet [9] that any Borel map S defined on (in our case) I can be
monotonically rearranged over I, i.e. there exists a nondecreasing map M : I → R such that
χ(S−1(B)) = χ(M−1(B)) for all Borel sets B ⊂ R. In other words, there exists a nondecreasing
function M such that the Lebesgue measure of the pre-images of any Borel set through S and
M coincide. This function satisfies

M(x) = inf {y ∈ R : F (y) > x} for all x ∈ (0, 1),

where F is the cumulative distribution function of the Borel probability measure µ := S#χ,
i.e. M is the generalized inverse of F . It also turns out that F is the generalized inverse of M .

Remark 2.10. If µ has no atoms, then F#µ = χ optimally, M is strictly increasing and
F ◦M ≡ Id. We also have that if µ� L1, then M ◦ F ≡ Id on the support of µ.

We continue with the main result of this section.

Theorem 2.11. Let ρ ∈ ACq(0, T ;Pacp (R)) for some 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. If p = 1,
assume also that the L1–velocity of ρ exists. Denote by M(t, ·) the optimal map pushing forward
χ to ρ(t, ·). Then M ∈W 1,q(0, T ;Lp(I)) and it is a flow map associated to ρ.

Proof. Since

‖M(t, ·)‖pLp(I) =

∫
R
|y|pρ(t, y) dy = W p

p (ρt, δ0)

≤ 2p−1
(
W p
p (ρt, ρ0) +

∫
R
|y|pρ0(y) dy

)
≤ 2p−1

[(∫ T

0
‖vt‖Lp(ρt) dt

)p
+

∫
R
|y|pρ0(y) dy

]
<∞ for all t ∈ [0, T ]
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and ∫ T

0

(∫
I
|v(t,M(t, x))|p dx

)q/p
dt =

∫ T

0
‖vt‖qLp(ρt)

dt <∞,

it suffices to prove that v(t,M(t, x)) is the distributional time-derivative of M to obtain the
desired thesis.

Consider a standard mollifier ηε(y) = η(y/ε)/ε for 0 < ε < 1 and let

ρε(t, ·) = ηε ∗ ρ(t, ·), Eε(t, ·) = ηε ∗ [v(t, ·) ρ(t, ·)] .

Here, η ∈ C∞c (R) is supported in [−1, 1], nonnegative, even and

∫
R
η = 1. Thus, for fixed

y ∈ R, z 7→ ηε(z − y) is smooth and supported in [y − ε, y + ε]. So, it can be used as a test
function in (CE) to deduce that

[0, T ] 3 t 7→
∫
R
ηε(z − y) ρt(z)dz = ρε(t, y)

is absolutely continuous and

∂tρ
ε(t, y) =

∫
R
∂z[η

ε(z − y)] v(t, z) ρ(t, z) dz = −
∫
R

(ηε)′(y − z) v(t, z) ρ(t, z) dz = − ∂yEε(t, y)

for a.e. t ∈ [0, T ]. Now let F ε(t, ·) and F (t, ·) be the cumulative distribution functions of
ρε(t, ·) and ρ(t, ·), respectively. Note that since ρ(t, ·) ∈ L1(R), we have that

ρε(t, ·) −−−→
ε→0+

ρ(t, ·) strongly in L1(R),

which implies

|F ε(t, y)− F (t, y)| ≤
∫ y

−∞
|ρε(t, z)− ρ(t, z)| dz −−−→

ε→0+
0 (2.10)

uniformly in y ∈ R. Also, F ε(t, ·) is smooth with ∂yF
ε(t, y) = ρε(t, y) for all t and y.

Since ρ ∈ AC1(0, T ;P1(R)), we deduce that∫
R
|y| ρ(t, y) dy ≤ C <∞ for all t.

We also have that t 7→ F ε(t, y) is absolutely continuous for a.e. y ∈ R, with ∂tF
ε(t, y) =

−Eε(t, y). Indeed, this comes as a consequence of ∂tρ
ε(t, y) = −∂yEε(t, y). In order to prevent

some integrability issues, we also introduce a cut-off function in y, namely, ξk ∈ C1
c (R) such

that ξk(y) = y if |y|≤ k, ξk(y) = 0 if |y|≥ 3k and |ξk(y)| ≤ min{2|y|, k + 1}, |ξ′k(y)| ≤ 1 for all
y ∈ R. Let ϕ ∈ C1

c (I) and note that

[0, T ] 3 t 7→ ξk(y)ϕ(F ε(t, y)) ρε(t, y)

is also absolutely continuous for a.e. y ∈ R, with

∂

∂t

[
ξk(ϕ ◦ F ε)ρε

]
= ξk(y)ϕ′(F ε(t, y)) ∂tF

ε(t, y) ρε(t, y) + ξk(y)ϕ(F ε(t, y)) ∂tρ
ε(t, y)

= −
[
ξk(y)ϕ′(F ε(t, y))Eε(t, y)) ρε(t, y) + ξk(y)ϕ(F ε(t, y)) ∂y E

ε(t, y)
]
,
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i.e., for any ζ ∈ C1
c (0, T ), we have:

(2.11)

∫ T

0
ζ̇(t)ξk(y)ϕ(F ε(t, y)) ρε(t, y) dt =

∫ T

0
ζ(t)

[
ξk(y)ϕ′(F ε(t, y))Eε(t, y)) ρε(t, y)

+ ξk(y)ϕ(F ε(t, y)) ∂yE
ε(t, y)

]
dt for a.e. y ∈ R.

We would like to integrate the above equality in y over R, then integrate by parts over R the
last term in the right hand side; for this we need to show both sides are integrable over R.
First, ∣∣∣∣ ∫ T

0
ζ̇(t) ξk(y)ϕ(F ε(t, y)) ρε(t, y) dt

∣∣∣∣ ≤ 2‖ζ̇‖∞ ‖ϕ‖∞
∫ T

0
|y| ρε(t, y) dt,

and we continue by noticing that∫
R
|y| ρε(t, y) dy =

∫
R
|y|
∫
R
ηε(y − z) ρ(t, z) dz dy

=

∫
R

(∫
R
|y| ηε(y − z) dy

)
ρ(t, z) dz

≤
∫
R

(∫
R

(
|z|+ |y − z|

)
ηε(y − z) dy

)
ρ(t, z) dz

=

∫
R
|z| ρ(t, z) dz +

∫
R
ρ(t, z) dz

∫
R
|y| ηε(y) dy

≤
∫
R
|z| ρ(t, z) dz + C ε, where C :=

∫ 1

−1
|y| η(y) dy.

Thus,

∫
R
|ξk(y)| ρε(t, y) dy is bounded by a finite constant which is independent of t and 0 <

ε < 1. So, (t, y) 7→ ξk(y)ϕ(F ε(t, y)) ρε(t, y) is in L∞(0, T ;L1(R)), with bounds independent of
ε ∈ (0, 1) and k. As for the right hand side of (2.11), we see that:

|Eε(t, y)| ≤
∫
R
ηε(y − z) |v(t, z)| ρ(t, z) dz ≤ 1

ε
max
R
|η|‖vt‖L1(ρt).

Thus, ∫
R

∣∣∣ξk(y)ϕ′(F ε(t, y))Eε(t, y) ρε(t, y)
∣∣∣ dy ≤ C

ε
‖vt‖L1(ρt) ‖ϕ

′‖∞,

where we absorbed the uniform bound on

∫
R
|ξk(y)| ρε(t, y) dy proved above in the constant C.

Note that the right hand side of this inequality lies in L1(0, T ), so

(t, y) 7→ ξk(y)ϕ′(F ε(t, y))Eε(t, y) ρε(t, y)

is in L1((0, T )× R) (even though, in this case, the bound may be of order ε−1).
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Finally, the last term in (2.11) is ξk(y)ϕ(F ε(t, y)) ∂yE
ε(t, y) and it satisfies∫

R

∣∣∣ξk(y)ϕ(F ε(t, y)) ∂yE
ε(t, y)

∣∣∣ dy ≤ (k + 1)‖ϕ‖∞
∫
R

∫
R

∣∣(ηε) ′(y − z)∣∣ |v(t, z)| ρ(t, z) dz dy

= (k + 1)‖ϕ‖∞
∫
R

(∫
R

∣∣(ηε) ′(y − z)∣∣ dy) |v(t, z)| ρ(t, z) dz

= ε−1(k + 1)‖ϕ‖∞‖η′‖L1(R)‖v(t, ·)‖L1(ρ(t,·)),

so it lies in L1((0, T )×R) as well. Since [0, T ] 3 t 7→ ‖v(t, ·)‖L1(ρ(t,·)) lies in L1(0, T ), we deduce
that (2.11) can be integrated with respect to y over R and Fubini’s Theorem may be applied
to discover, after a spatial integration by parts of the last term in the right hand side (which
leads to the cancelation of the first term in the right hand side), that∫ T

0
ζ̇(t)

∫
R
ξk(y)ϕ(F ε(t, y)) ρε(t, y) dy dt = −

∫ T

0
ζ(t)

∫
R
ξ′k(y)ϕ(F ε(t, y))Eε(t, y)) dy dt,

(2.12)
with integrands in L1((0, T )× R).

Next, we let ε → 0+ and use the uniform convergence of F ε(t, ·) to F (t, ·) and the L1(R)-
convergence of ρε(t, ·) to ρ(t, ·), along with that of Eε(t, ·) to v(t, ·)ρ(t, ·) to infer that for each
t ∈ [0, T ] we have (since ξk is continuous and compactly supported)

U ε(t) :=

∫
R
ξk(y)ϕ(F ε(t, y)) ρε(t, y) dy −−−→

ε→0+

∫
R
ξk(y)ϕ(F (t, y)) ρ(t, y) dy

and

V ε(t) :=

∫
R
ξ′k(y)ϕ(F ε(t, y))Eε(t, y) dy −−−→

ε→0+

∫
R
ξ′k(y)ϕ(F (t, y)) v(t, y)ρ(t, y) dy.

By some well-known convolution properties of L1-functions (note also that ρ(t, ·) is nonnegative,
as a probability density), we have

|U ε(t)| ≤ (k + 1)‖ϕ‖∞ and |V ε(t)| ≤ (k + 1)‖ϕ‖∞‖v(t, ·)‖L1(ρ(t,·)).

Next we let ε→ 0+ in (2.12) and use Dominated Convergence over [0, T ] to get∫ T

0
ζ̇(t)

∫
R
ξk(y)ϕ(F (t, y)) ρ(t, y) dy dt = −

∫ T

0
ζ(t)

∫
R
ξ′k(y)ϕ(F (t, y)) v(t, y) ρ(t, y) dy dt.

But |ξk(y)|≤ 2|y|, ‖ξ′k‖∞≤ 1 and ξk(y) and ξ′k(y) converge pointwise to y and 1, respectively,
for all y ∈ R. Recall that the first moment of ρ(t, ·) is bounded uniformly with respect to t,
and that vρ ∈ L1((0, T ) × R). Thus, we may let k → ∞ and use Dominated Convergence on
[0, T ]× R to get∫ T

0
ζ̇(t)

∫
R
y ϕ(F (t, y)) ρ(t, y) dy dt = −

∫ T

0
ζ(t)

∫
R
ϕ(F (t, y)) v(t, y) ρ(t, y) dy dt. (2.13)
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We now use the fact that

ρ(t, ·)� L1 implies F (t,M(t, x)) = x for a.e. x ∈ (0, 1), (2.14)

and that Mt#χ = ρt to conclude:∫ T

0
ζ̇(t)

∫ 1

0
ϕ(x)M(t, x) dx dt = −

∫ T

0
ζ(t)

∫ 1

0
v(t,M(t, x))ϕ(x) dx dt

for all ζ ∈ C1
c (0, T ), ϕ ∈ C1

c (I). Thus, the distributional time-derivative of M(t, x) is
v(t,M(t, x)). Of course, the last displayed equality and the uniform Lq − Lp bounds obtained
in the first paragraph of this proof also imply that for a.e. x ∈ I the function t 7→ M(t, x)
is absolutely continuous on [0, T ] and its a.e. time derivative is v(·,M(·, x)), so M is as in
Definition 1.1. �

Now let X0 : I → R such that X0#χ =: ρ0 � L1. If F0 is the c.d.f. of ρ0 and M0 : I → R is
the optimal map pushing χ forward to ρ0, then g0 := F0 ◦X0 is the Lebesgue a.e. unique map
such that g0#χ = χ and X0 = M0 ◦ g0. This is the polar decomposition [4] of X0.

Corollary 2.12. Let ρ ∈ ACq(0, T ;Pacp (R)) for some 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. If p = 1
assume also that the L1–velocity of ρ exists. Then for any X0 : I → R such that X0#χ = ρ0
there exists a flow map X ∈W 1,q(0, T ;Lp(I)) associated to ρ that starts at X0. More precisely,
X can be chosen such that Xt = Mt ◦ g0 for all t ∈ [0, T ], where M is the family of optimal
maps associated to ρ, and g0 is the measure-preserving map such that X0 = M0 ◦ g0.

Proof. Let X0 = M0 ◦ g0 be the polar decomposition of X0 as recalled above. There exists a
Borel set A ⊂ I such that χ(A) = 1 and

M(t, z) = M0(z) +

∫ t

0
v(s,M(s, z))ds for all t ∈ [0, T ] and all z ∈ A.

But 1 = χ(A) = χ(g−10 (A)) due to g0#χ = χ, so g0(x) ∈ A for L1-a.e. x ∈ I. Thus,

M(t, g0(x)) = M0(g0(x)) +

∫ t

0
v(s,M(s, g0(x)))ds for all t ∈ [0, T ] and L1-a.e. x ∈ A.

Thus, Xt := Mt ◦ g0 satisfies (Flow) with X(0, ·) ≡ X0. �

3 Uniqueness for the Lagrangian flow and for the Continuity
Equation

In this section we identify sufficient conditions for the uniqueness of the Lagrangian flow.
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3.1 Continuous Case

Lemma 3.1. If I ⊂ R is an open interval, then C1
c (I) is separable with respect to the C1(Ī)

topology.

Proof. Assume first that I = (a, b) is bounded and fix ϕ ∈ Cc(I) with ϕ̄ := −
∫
I
ϕ = 1. Define

the operator S : Cc(I) −→ C1
c (I) by

Sξ(x) =

∫ x

a
ξ(z) dz − ξ̄

∫ x

a
ϕ(z) dz

(note that, indeed, this acts between the specified spaces).
We next see that S is onto by checking that S(f ′) = f for any f ∈ C1

c (I). It is also linear and
continuous with respect to the sup norm. Indeed, since (Sξ)′(x) = ξ(x)− ξ̄ϕ(x), we have

‖Sξ‖∞ + ‖(Sξ)′‖∞ ≤ C ‖ξ‖∞ for some C <∞ independent of ξ ∈ Cc(I).

Thus, the separability of Cc(I) with the sup norm implies the separability of C1
c (I) with respect

to the C1
c (Ī)-norm.

If I is unbounded, we can write it as a countable union of bounded intervals to conclude. �

Proposition 3.2. Let I, J be two open intervals, J be unbounded below and U = (ρ, w) ∈
L1(I × J ;R2) with div U = 0 in the sense of distributions. Then, for a.e. y ∈ J the function

F (t, y) =

∫ y

−∞
ρ(t, z) dz lies in W 1,1(I) and Ḟ (·, y) = −w(·, y). Furthermore, if J 3 y 7→ w(·, y)

is continuous in L1
loc(I)-weak and ρ(t, ·) ∈ L1(J) for all t ∈ I, then the above conclusions hold

for all y ∈ J .

Proof. For every ξ ∈ C1
c (I) and ζ ∈ C1

c (J) we have∫
I
ξ̇(t)

(∫
J
ρ(t, z)ζ(z) dz

)
dt = −

∫
I
ξ(t)

(∫
J
w(t, z)ζ

′
(z) dz

)
dt. (3.1)

Fix k ∈ Z, k ≥ 2 and consider:

ζk(z) =



0 if z ∈ (−∞,−k − 1],

z + k + 1 if z ∈ (−k − 1,−k],

1 if z ∈ (−k, y],

−kz + ky + 1 if z ∈ (y, y + 1
k ],

0 if z > y + 1
k ,

which is continuous, compactly supported and piecewise linear on R. Let {ζn}n≥1 ⊂ C1
c (J) be

such that ζn −−−→
n→∞

ζk uniformly, and

(ζn)′ −−−→
n→∞

ζ ′k everywhere except at z = −k − 1,−k, y, y + 1
k
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(where ζk is not differentiable) and such that
∥∥(ζn)′

∥∥
∞ ≤ 2 k. Then we can pass to the limit

in (3.1) with ζ ≡ ζn to get∫
I
ξ̇(t)

∫
J
ρ(t, z)ζk(z) dz dt = −

∫
I
ξ(t)

[∫ −k
−k−1

w(t, z) dz − k
∫ y+ 1

k

y
w(t, z) dz

]
dt.

Since ρ, w ∈ L1(I × J), we can pass to the limit in∫
I

[
ξ̇(t)

∫
J
ρ(t, z)ζk(z) dz + ξ(t)

∫ −k
−k−1

w(t, z) dz

]
dt

by Dominated Convergence to get (as k →∞):

lim
k→∞

∫
I
−
∫ y+ 1

k

y
w(t, z)ξ(t) dz dt =

∫
I
ξ̇(t)F (t, y) dt (3.2)

By Lemma 3.1, there exists a sequence {ξn}n≥1 ⊂ C1
c (I) dense in C1

c (I) with respect to the

C1(Ī) topology. Fix such ξ ≡ ξn in (3.2) above. The fact that

z 7→
∫
I
w(t, z)ξn(t) dt ∈ L1(J)

implies there exists a sequence of measurable subsets An of J with L1 (J\An) = 0 such that
every y ∈ An is a Lebesgue point for this mapping. Thus, at any such y we have

lim
k→∞

∫
I
−
∫ y+ 1

k

y
w(t, z)ξn(t) dz dt = lim

k→∞
−
∫ y+ 1

k

y

∫
I
w(t, z)ξn(t) dt dz =

∫
I
ξn(t)w(t, y) dt. (3.3)

Let A =
⋂
n≥1
An, so that L1 (J\A) = 0 and (3.3) holds for all y ∈ A and all n ≥ 1. By (3.2),

we get ∫
I
ξn(t)w(t, y) dt =

∫
I
ξ̇n(t)F (t, y) dt for all n ≥ 1 and all y ∈ A.

By the density described above and the fact that F (·, y) ∈ L1(I) and w(·, y) ∈ L1(J) for a.e.
y ∈ J , we deduce∫

I
ξ̇(t)F (t, y) dt =

∫
I
ξ(t)w(t, y) dt for a.e. y ∈ J and all ξ ∈ C1

c (0, T ).

Thus, we conclude that the function t 7→ F (t, y) ∈W 1,1(I) for a.e. y ∈ J and its distributional
derivative is Ḟ (·, y) = −w(·, y). In particular,

F (b, y)− F (a, y) = −
∫ b

a
w(t, y)dt (3.4)

for all a, b ∈ I with a ≤ b and a.e. y ∈ J , and we will use this to prove the second statement.
Pick an arbitrary y0 ∈ J and consider a sequence {yn}n≥1 ⊂ J such that yn → y0 and (3.4)
holds for y = yn for all n ≥ 1. Then we get that (3.4) holds for y0 as well by passing to the
limit as n → ∞. Indeed, ρ(t, ·) ∈ L1(J) for all t ∈ I implies F (t, ·) is continuous on J for all
t ∈ I. To pass to the limit in the right hand side we use that w(·, yn) converges to w(·, y0)
weakly in L1(a, b). Thus, (3.4) holds for all a, b ∈ I and all y ∈ J . �

20



Remark 3.3. Since ρ(t, ·) ∈ L1(J) for a.e. t ∈ I, we infer F (t, ·) ∈ L∞(J) with spatial
derivative ∂yF (t, ·) = ρ(t, ·) ∈ L1(J). If w = vρ for some Borel map v = v(t, y) and Ẋ(t, x) =
v(t,X(t, x)) in some well-defined sense, then a formal calculation reveals

∂t[F (t,X(t, x))] = Ḟ (t,X(t, x)) + ∂yF (t,X(t, x))Ẋ(t, x)

= −w(t,X(t, x)) + ρ(t,X(t, x))v(t,X(t, x)) = 0. (3.5)

So, provided that ρ(0, ·) = χ and X(0, ·) = IdI , we deduce F (t,X(t, x)) = x for all t ∈ [0, T ]
and a.e. x ∈ I. This fact has far reaching consequences, as we shall see below.

The following statement makes three distinct claims: first, the joint continuity in time-space
of v ensures that the continuity equation (CE) has at most one solution ρ ∈ AC1(0, T ;Pac1 (R))
whose density ρ = ρ(t, x) is jointly continuous in time-space. Secondly, if such continuous
solution exists, then it is also unique within the larger class AC1(0, T ;Pac1 (R)) (no continuity
of densities imposed). Finally, the Lagrangian description of such jointly continuous solution
(if it exists) is unique (it is precisely the one provided by Corollary 2.12).

Theorem 3.4. Let AC1
cont(0, T ;Pac1 (R)) be the set of all ρ ∈ AC1(0, T ;Pac1 (R)) such that ρ ∈

C([0, T ]×R). If v ∈ C([0, T ]×R), then there exists at most one curve ρ ∈ AC1
cont(0, T ;Pac1 (R))

originating at a given probability density ρ0 ∈ C(R) whose velocity v is. Furthermore, if such
a curve exists, then it is also the unique AC1(0, T ;Pac1 (R)) curve starting at ρ0 and whose
velocity v is. Finally, its only Lagrangian description X ∈ W 1,1(0, T ;L1(R)) starting at a
given X0 (such that X0#χ = ρ0) is given by Xt = Mt ◦ g0. Here, Mt are the optimal maps
such that Mt#χ = ρt for all t ∈ [0, T ], and g0 is the a.e. unique χ-preserving map such that
X0 = M0 ◦ g0.

Proof. Consider the curves ρ ∈ AC1
cont(0, T ;Pac1 (R)) and ρ̃ ∈ AC1(0, T ;Pac1 (R)) such that

ρ(0, ·) = ρ0 = ρ̃(0, ·). Let, as usual, F (t, ·) be the cumulative distribution function of ρ(t, ·).
Furthermore, let X̃ ∈ W 1,1(0, T ;L1(I)) be a Lagrangian flow map associated with ρ̃; indeed,
we know from Corollary 2.12 that we can, for example, take X̃ ≡ M̃ ◦ g0, where M̃ is the
family of optimal maps such that M̃t#χ = ρ̃t for all t ∈ [0, T ], and g0 is the χ-preserving map
from the polar decomposition of X0 = M0 ◦ g0 = M̃0 ◦ g0 = X̃(0, ·). Our strategy is to analyze
the function

g(t, x) := F (t, X̃(t, x)), for all (t, x) ∈ [0, T ]× I.

We will show that g(·, x) ∈W 1,1(0, T ) for a.e. x ∈ I and ġ(·, x) ≡ 0. Since

g(0, x) = F (0, X̃(0, x)) = F̃ (0, X̃(0, x)) = g0(x) for a.e. x ∈ I,

this will imply
g(t, x) = g0(x) for all t ∈ [0, T ] and a.e. x ∈ I. (3.6)

Note that the above displayed equalities hold because M0 = M̃0 (since ρ(0, ·) = ρ0 = ρ̃(0, ·))
and ρ0 � L1 (see (2.14)). In fact, (2.14) gives that F (t,M(t, ·)) = Id a.e. in I for all t ∈ [0, T ],
where Mt are the optimal maps pushing χ forward to ρ(t, ·). Before we justify (3.6), let us
show why that yields the desired thesis. The claims are:

g(t, x) = g0(x) for all t ∈ [0, T ] and a.e. x ∈ I implies ρ(t, ·) = ρ̃(t, ·) for all t ∈ [0, T ] (3.7)
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and
X̃t = Mt ◦ g0 for all t ∈ [0, T ], (3.8)

i.e. ρ = ρ̃ and the Lagrangian flow is necessarily the one consisting of a time-independent
rearrangement of the optimal maps pushing χ forward to ρt. Indeed, note that (3.6) implies

F̃t#ρ̃t = χ = g0#χ = gt#χ = Ft#[X̃t#χ] = Ft#ρ̃t for all t ∈ [0, T ].

Since both Ft and F̃t are nondecreasing, we infer (by the uniqueness of the optimal map pushing
ρ̃t forward to χ) F (t, y) = F̃ (t, y) for ρ̃t-a.e. y ∈ R. Thus, ∂yF (t, y) = ∂yF̃ (t, y) for L1-a.e. y in
the interior of the support of ρ̃t, i.e. ρ(t, ·) = ρ̃(t, ·) Lebesgue a.e. in the interior of the support
of ρ̃t. This means that both densities give rise to the same probability (note that the continuity
of either density is not necessary here). Finally, since we now know X̃t#χ = ρt = Mt#χ, we
can write X̃t = Mt ◦ st as the polar factorization of X̃t. So,

g0 = gt = Ft ◦ X̃t = Ft ◦Mt ◦ st = st,

which proves claim (3.8).

Now let us get on with the proof that g(·, x) is absolutely continuous. Fix x ∈ (0, 1) for which
t 7→ X̃(t, x) is in W 1,1(0, T ), and so we have

X̃(t, x) = X0(x) +

∫ t

0

˙̃X(s, x) ds = X0(x) +

∫ t

0
v(s, X̃(s, x)) ds

for t ∈ [0, T ]. This implies

|X̃(t, x)| ≤ |X0(x)|+ ‖ ˙̃X(·, x)‖L1(0,T ) =: C(x) < +∞ for all t ∈ [0, T ].

To show that t 7→ g(t, x) is absolutely continuous on [0, T ] (i.e. g(·, x) ∈ W 1,1(0, T )) let us
notice first that g(·, x) ∈ L∞(0, T ), so it all amounts to proving that there exists f ∈ L1(0, T )
such that for all 0 ≤ a ≤ b ≤ T :

|g(b, x)− g(a, x)| ≤
∫ b

a
f(t) dt.

As expected, we begin by estimating

|g(b, x)− g(a, x)| = |F (b, X̃(b, x))− F (a, X̃(a, x))|
≤ |F (b, X̃(b, x))− F (b, X̃(a, x))|+ |F (b, X̃(a, x))− F (a, X̃(a, x))|
= : E1 + E2.

We have:

E1 =

∣∣∣∣∣
∫ X̃(b,x)

X̃(a,x)
ρ(b, y) dy

∣∣∣∣∣ ≤
(

max
[0,T ]×[−C(x),C(x)]

ρ

)
|X̃(b, x)− X̃(a, x)|,
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since |X̃(a, x)|, |X̃(b, x)| ≤ C(x) < +∞ and ρ ∈ C([0, T ]× R).
Let max { max

[0,T ]×[−R,R]
ρ, max

[0,T ]×[−R,R]
|v|} =: M (R) < +∞ for all finite R > 0. Thus,

E1 ≤M (C(x))

∫ b

a
| ˙̃X(s, x)| ds. (3.9)

We use Proposition 3.2 to estimate E2:

|F (b, X̃(a, x))−F (a, X̃(a, x))| ≤
∫ b

a
|v(t, X̃(a, x))|ρ(t, X̃(a, x))dt ≤ [M (C(x))]2(b−a). (3.10)

By (3.9) and (3.10) we conclude that for a.e. x ∈ (0, 1) the function g(·, x) is absolutely
continuous on [0, T ].

The next step is to prove that

ġ(·, x) ≡ 0, for a.e. x ∈ (0, 1).

Pick t ∈ (0, T ) where ˙̃X(t, x) exists in the pointwise sense and let h ∈ R such that −t/2 ≤ h ≤
(T − t)/2. Set up the difference quotient:

g(t+ h, x)− g(t, x)

h
=
F (t+ h, X̃(t+ h, x))− F (t, X̃(t, x))

h
.

Case I: If X̃(t+ h, x) = X̃(t, x) for all h such that |h| ≤ δ (for some δ > 0), then

ġ(t, x) = lim
h→0

F (t+ h, X̃(t, x))− F (t, X̃(t, x))

h

= − lim
h→0

1

h

∫ t+h

t
v(s, X̃(t, x))ρ(s, X̃(t, x))ds

= −v(t, X̃(t, x))ρ(t, X̃(t, x))

due to the continuity of s 7→ v(s, y)ρ(s, y) for all y ∈ R. But X̃(·, x) is constant on (t−δ, t+δ),

so v(t, X̃(t, x)) = ˙̃X(t, x) = 0 implies ġ(t, x) = 0.

Case II: There exists a sequence {hn}n ⊂ [−t/2, (T − t)/2] such that hn −−−→
n→∞

0 and X̃(t +

hn, x) 6= X̃(t, x) for all n ≥ 1.
Then:

g(t+ hn, x)− g(t, x)

hn
=
F (t+ hn, X̃(t+ hn, x))− F (t+ hn, X̃(t, x))

X̃(t+ hn, x)− X̃(t, x)

X̃(t+ hn, x)− X̃(t, x)

hn

+
F (t+ hn, X̃(t, x))− F (t, X̃(t, x))

hn
= E1 + E2.
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We have seen that E2 −−−→
n→∞

−v(t, X̃(t, x))ρ(t, X̃(t, x)). So, it suffices to prove E1 −−−→
n→∞

v(t, X̃(t, x))ρ(t, X̃(t, x)). Note that:

E1 = −
∫ X̃(t+hn,x)

X̃(t,x)
ρ(t+ hn, y) dy

X̃(t+ hn, x)− X̃(t, x)

hn
.

Since ˙̃X(t, x) exists in the pointwise sense (due to our initial choice of t), we have

X̃(t+ hn, x)− X̃(t, x)

hn
−−−→
n→∞

˙̃X(t, x) = v(t, X̃(t, x)).

As for −
∫ X̃(t+hn,x)

X̃(t,x)
ρ(t + hn, y) dy, we use the fact that the restriction of ρ to [t − δ, t + δ] ×

[−C(x), C(x)] is uniformly continuous, so X̃(t+ hn, x) −−−→
n→∞

X̃(t, x) implies

lim
n→∞

−
∫ X̃(t+hn,x)

X̃(t,x)
ρ(t+ hn, y) dy = ρ(t, X̃(t, x)).

This concludes the proof. �

Remark 3.5. The assumptions on v can be weakened, as it can be seen from the proof. Indeed,
we can only require that v is locally essentially bounded, w := vρ satisfy the conditions from
Proposition 3.2, and the map ρv = ρ(t, y)v(t, y) is continuous on [0, T ] for all y ∈ R.

Before coming up with an application (Corollary 3.8), we need the following:

Proposition 3.6. Let v : [0, T ]× R→ R satisfy:

(i) v ∈ C([0, T ]× R);

(ii) For all t ∈ [0, T ], v(t, ·) ∈ C1(R);

(iii) There exists λ ∈ L1(0, T ) such that |∂yv(t, y)|≤ λ(t) for all (t, y) ∈ [0, T ]× R.

Then, for any positive probability density ρ0 ∈ C(R) ∩ P1(R), v is the L1-velocity of a curve
ρ ∈ AC1

cont(0, T ;Pac1 (R)) originating at ρ0.

Proof. Let us begin by noticing that ρ0 > 0 everywhere implies M0 is continuous, strictly
increasing on (0, 1), and M0(0+) = −∞, M0(1−) = ∞. Also, M0 is the true inverse of the
c.d.f. F0 of ρ0. This shows that both F0 ∈ C1(R) and M0 ∈ C1(0, 1).

By the classical theory, for each x ∈ I the initial value problem (Flow) with X0(x) = M0(x)
admits a (unique) solution X(t, x). Fix x ∈ I and −x < h < 1− x, h 6= 0 and let

Yh(t, x) :=
X(t, x+ h)−X(t, x)

h
,
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so that it satisfies

Ẏh(t, x) =
1

h
[v(t,X(t, x+ h))− v(t,X(t, x))] = fh(t, x)Yh(t, x), (3.11)

where

fh(t, x) :=

∫ 1

0
∂yv(t, (1− τ)X(t, x) + τX(t, x+ h))dτ.

Thus,

Yh(t, x) =
M0(x+ h)−M0(x)

h
exp

[ ∫ t

0
fh(s, x)ds

]
,

which gives, in particular,

|X(t, x+ h)−X(t, x)|≤ e‖λ‖L1(0,T ) |M0(x+ h)−M0(x)|. (3.12)

We get from this that X(t, ·) is continuous in I. Next, we have, for all τ ∈ [0, 1],

lim
h→0

∂yv(t, (1− τ)X(t, x) + τX(t, x+ h)) = ∂yv(t,X(t, x))

by the continuity of ∂yv(t, ·) and X(t, ·). Due to (iii), we have that for L1-a.e. t ∈ (0, T ) and
all τ ∈ [0, 1]

|∂yv(t, (1− τ)X(t, x) + τX(t, x+ h))|, |∂yv(t,X(t, x))| ≤ λ(t) <∞.

Thus, we use Dominated Convergence to integrate in τ and get fh(t, x) −−−→
h→0

f(t, x) for a.e.

t ∈ (0, T ). Since λ ∈ L1(0, T ), we use Dominated Convergence again (for the integrals in t this
time) to infer

lim
h→0
‖fh(·, x)− f(·, x)‖L1(0,T ) = 0. (3.13)

Consider now

Y (t, x) := M ′0(x) exp

[ ∫ t

0
∂yv(s,X(s, x))ds

]
, (3.14)

i.e. the unique solution of

Ẏ (t, x) = ∂yv(t,X(t, x))Y (t, x), Y (0, x) = M ′0(x). (3.15)

Set Dh(t, x) := Yh(t, x)− Y (t, x) to get, according to (3.11) and (3.15),

Ḋh(t, x) = f(t, x)Dh(t, x) +Rh(t, x),

where f(t, x) := ∂yv(t,X(t, x)) and

Rh(t, x) := Yh(t, x)

∫ 1

0
[∂yv(t, (1− τ)X(t, x) + τX(t, x+ h))− ∂yv(t,X(t, x))]dτ

= Yh(t, x)[fh(t, x)− f(t, x)].
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The solution procedure yields

Dh(t, x) = Dh(0, x) exp

[ ∫ t

0
f(s, x)ds

]
+

∫ t

0
Rh(s, x) exp

[ ∫ t

s
f(u, x)du

]
ds,

which implies

|Dh(t, x)| ≤ e‖λ‖L1(0,T )

[
|Dh(0, x)|+

∫ T

0
|Rh(t, x)|dt

]
.

But (3.12) and (3.13) give∫ T

0
|Rh(t, x)|dt =

∫ T

0
|Yh(t, x)||fh(t, x)− f(t, x)|dt

≤ e
‖λ‖L1(0,T )

∣∣∣∣M0(x+ h)−M0(x)

h

∣∣∣∣‖fh(·, x)− f(·, x)‖L1(0,T ) −−−→
h→0

0

for all x ∈ I (since M0 ∈ C1(0, 1)). Since

Dh(0, x) =
M0(x+ h)−M0(x)

h
−M ′0(x) −−−→

h→0
0 for all x ∈ I,

we deduce Yh(t, x) −−−→
h→0

Y (t, x) for all (t, x) ∈ [0, T ]× I, which means that for all t ∈ [0, T ]

X(t, ·) is differentiable at all x ∈ I and ∂xX(t, x) = Y (t, x). (3.16)

The formula (3.14) for Y clearly shows (in light of the hypothesis (iii) and the continuity of
X(t, ·)) that Y (t, ·) is continuous in I, so we get that X(t, ·) ∈ C1(0, 1) for all t ∈ [0, T ]. Since
M0 is strictly increasing in I, we also get from (iii) and (3.14) that

e
−‖λ‖L1(0,T )M ′0(x) ≤ ∂xX(t, x) ≤ e‖λ‖L1(0,T )M ′0(x),

which yields

e
−‖λ‖L1(0,T ) [M0(y)−M0(x)] ≤ X(t, y)−X(t, x) ≤ e‖λ‖L1(0,T ) [M0(y)−M0(x)] (3.17)

for all 0 < x ≤ y < 1. It immediately follows that X(t, ·) is strictly increasing in I and
X(t, 0+) = −∞ and X(t, 1−) = ∞. If ρ(t, ·) := X(t, ·)#χ, we have ρ(t,X(t, x))∂xX(t, x) = 1
for all x ∈ I, i.e.

ρ(t, y) =

exp

[
−
∫ t

0
∂yv(s,X(s, F (t, y)))ds

]
M ′0(F (t, y))

> 0 (3.18)

in light of (3.14) (here, F (t, ·) is the true inverse of X(t, ·) or, equivalently, the c.d.f. of ρ(t, ·)).
Clearly, ρ(0, ·) = ρ0.

We claim that ρ defined above belongs to AC1
cont(0, T ;Pac1 (R)) and v is its L1-velocity. First,

we would like to apply Theorem 2.8 to prove ρ ∈ AC1(0, T ;P1(R)) and that v is the required
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velocity map; according to said theorem, it is enough to prove that X ∈W 1,1(0, T ;L1(I)). let
m0 ∈ R denote the first moment of ρ0 and estimate∫

R
|y|ρ(t, y)dy =

∫
I
|X(t, x)|dx

≤ m0 +

∫
I
|X(t, x)−M0(x)|dx

≤ m0 +

∫ t

0

∫
I
|v(s,X(s, x))|dxds

≤ m0 +

∫ t

0
|λ(s)|

∫
I
|X(s, x)|dxds+

∫ t

0
|v(s, 0)|ds

≤ C0 +

∫ t

0
λ(s)

∫
I
|X(s, x)|dxds,

where C0 := m0 +T‖v(·, 0)‖L∞(0,T ) <∞ (since t 7→ v(t, 0) is continuous on [0, T ]). Gronwall’s
Lemma now gives a uniform (with respect to t ∈ [0, T ]) bound on the first moment of ρ(t, ·)
or, equivalently, on ‖X(t, ·)‖L1(I). Then,∫

I
|Ẋ(t, x)|dx ≤

∫ T

0

∫
I
|v(s,X(s, x))|dxds

=

∫ T

0

∫
R
|v(s, y)|ρ(s, y)dyds

≤
∫ T

0
λ(s)

∫
R
|y|ρ(s, y)dyds+

∫ T

0
|v(s, 0)|

∫
R
ρ(s, y)dyds

≤ ‖λ‖L1(0,T ) sup
t∈[0,T ]

‖X(t, ·)‖L1(I) + ‖v(·, 0)‖L∞(0,T )<∞.

Thus, X ∈ W 1,∞(0, T ;L1(I)) ⊂ W 1,1(0, T ;L1(I)), so ρ ∈ AC1(0, T ;P1(R)) and v is its L1-
velocity map (by Theorem (2.8)).

It only remains to prove that ρ ∈ C([0, T ]× R). The plan is to show first that F is (jointly)
continuous in [0, T ]×R, then use (3.18) to infer that ρ has the same property. Since ρ(t, ·)� L1
is a probability density, we have that y 7→ F (t, y) is uniformly continuous in R, but we would
like to show more: namely that F (t, ·) is uniformly continuous in R uniformly with respect to
t ∈ [0, T ]. For this, denote by ω a modulus of continuity for F0, i.e. ω : [0,∞) → [0,∞) is
continuous, increasing, ω(0) = 0, and satisfies

ω(y2 − y1) ≥ F0(y2)− F0(y1) for all y1 ≤ y2 ∈ R.

This is equivalent to

ω(M0(x2)−M0(x1)) ≥ x2 − x1 for all x1 ≤ x2 ∈ I.

Now let α := exp (‖λ‖L1(0,T )) > 0 and use (3.17), the above displayed inequality, and the
monotonicity of ω to infer

ω(α[X(t, x2)−X(t, x1)]) ≥ x2 − x1 for all x1 ≤ x2 ∈ I,
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i.e. (upon letting ωα(r) := ω(αr))

ωα(y2 − y1) ≥ F (t, y2)− F (t, y1) for all y1 ≤ y2 ∈ R.

But ωα is also a modulus of continuity (independent of t ∈ [0, T ]), so F (t, ·) is uniformly
continuous in R, uniformly with respect to t ∈ [0, T ]. The continuity of [0, T ] 3 t 7→ F (t, y)
for all y ∈ R will also be needed in order to infer that F is continuous in [0, T ]× R. To prove
that, assume there exists y ∈ R such that F (·, y) is not continuous at some t ∈ [0, T ]. Thus,
there exists a sequence {tn}n ⊂ [0, T ] and δ > 0 such that tn → t and |F (tn, y)− F (t, y)| > δ
for all n ≥ 1; so, it is either F (tn, y)− F (t, y) > δ or F (t, y)− F (tn, y) > δ for a subsequence
(not relabeled) of {tn}n. Assume the former. Since F (tn, y) > δ + F (t, y), we deduce 1 >
δ + F (t, y) > δ > 0, so δ + F (t, y) is in the domain of X(tn, ·). We know X(tn, ·) is strictly
increasing in I for all n ≥ 1, so X(tn, F (tn, y)) > X(tn, F (t, y) + δ), i.e. y > X(tn, F (t, y) + δ)
for all n ≥ 1. But X(·, x) is continuous on [0, T ] for all x ∈ I (satisfies (Flow) for all x ∈ I),
so we can pass to the limit as n → ∞ in the last inequality to deduce, after using again that
X(t, ·) is strictly increasing on I,

y ≥ X(t, F (t, y) + δ) > X(t, F (t, y)) = y,

a contradiction. If, instead, F (t, y)−F (tn, y) > δ, we rewrite it as F (t, y)−δ > F (tn, y), which
implies 1 > F (t, y)−δ > 0, i.e. F (t, y)−δ is in the domain of X(tn, ·). Since X(tn, ·) is strictly
increasing in I for all integers n ≥ 1, we deduce X(tn, F (t, y)− δ) > X(tn, F (tn, y)) = y for all
integers n ≥ 1. As before, in the limit we find

y = X(t, F (t, y)) > X(t, F (t, y)− δ) ≥ y,

a contradiction. Thus, in light of the uniform continuity of F (t, ·) holding uniformly with
respect to t, we get F ∈ C([0, T ]× R), as desired.

So, if tn → t and yn → y, we can use the continuity of x 7→ X(s, x) and of y 7→ ∂yv(s, y) (the
latter, according to (ii)) to deduce

∂yv(s,X(s, F (tn, yn))) −−−→
n→∞

∂yv(s,X(s, F (t, y))) for each s ∈ [0, T ].

We use Dominated Convergence in light of (iii) to move on to∫ t

0
∂yv(s,X(s, F (tn, yn)))ds −−−→

n→∞

∫ t

0
∂yv(s,X(s, F (t, y)))ds.

But (iii) also gives∣∣∣∣ ∫ tn

t
∂yv(s,X(s, F (tn, yn)))ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ tn

t
λ(s)ds

∣∣∣∣ −−−→n→∞
0,

which, in light of the previously displayed convergence, implies∫ tn

0
∂yv(s,X(s, F (tn, yn)))ds −−−→

n→∞

∫ t

0
∂yv(s,X(s, F (t, y)))ds.

This, along with (3.18) and the fact that M ′0 is continuous on I (note that F (t, y) ∈ I for all
t ∈ [0, T ] and all y ∈ R, i.e. the values 0 and 1 are achieved only as the asymptotic limits of
F (t, ·) at −∞ and ∞, respectively), implies the continuity of ρ in [0, T ]× R. �
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Remark 3.7. Note that the assumptions on v made in the statement of Proposition 3.6 do
not include the continuity of ∂yv(t, y) in time.

In light of Theorem 3.4, Proposition 3.6 gives sufficient conditions on the velocity to render
it an (SC) velocity with respect to ρ ∈ AC1(0, T ;Pac1 (R)), i.e. there is a unique curve in
ρ ∈ AC1(0, T ;Pac1 (R)) with that velocity. Yet another way to look at it:

Corollary 3.8. For any v and ρ0 satisfying the assumptions in Proposition 3.6, there is a
unique solution ρ ∈ AC1(0, T ;Pac1 (R)) of (CE) with initial ρ(0, ·) = ρ0. Furthermore, this
solution lies in C([0, T ]× R) and is everywhere positive at all times.

Remark 3.9. It is not difficult to construct examples where Theorem 3.4 applies but Propo-
sition 3.6 does not. For this, see example below. In this case all the conclusions of the above
corollary hold in spite of v being much less regular.

Example 3.10. Take u : R→ [1, 2] to be continuous and nowhere differentiable (some Weier-
strass function), then set, for example,

ρ(t, y) := η(t)
u(y)

y4 + t+ 1
,

where η(t) normalizes ρ(t, ·) to a probability density over R. Note that both η and η̇ are
bounded away from zero and infinity on [0, T ] for any 0 < T <∞. Also, since ρ ∈ C([0, T ]×R),
in order to prove ρ ∈ AC1

cont(0, T ;Pac1 (R)) we just need to check ρ ∈ AC1(0, T ;Pac1 (R)). Set

g(t, y) :=
u(y)

y4 + t+ 1
, h(t, y) :=

u(y)

(y4 + t+ 1)2
=

g(t, y)

y4 + t+ 1
,

so that, after some computations, we discover

∂tF (t, y) =
H(t,∞)

G(t,∞)

[
G(t, y)

G(t,∞)
− H(t, y)

H(t,∞)

]
,

where

G(t, y) :=

∫ y

−∞
g(t, z)dz, H(t, y) :=

∫ y

−∞
h(t, z)dz.

We can easily see that G(·,∞) and H(·,∞) are bounded on [0, T ] away from zero and infinity.
Thus, the integrability of ∂tF is equivalent to that of

G(t, y)

G(t,∞)
− H(t, y)

H(t,∞)
= F (t, y)− H(t, y)

H(t,∞)
.

But H̃(t, ·) := H(t, ·)/H(t,∞) is the c.d.f. of the density h̃(t, ·) := h(t, ·)/
∫
R h(t, z)dz, which

has uniformly (with respect to t) bounded first moment. Same is true about ρ(t, y) =
g(t, y)/

∫
R g(t, z)dz. So,∫
R
|∂tF (t, y)|dy ≤ sup

[0,T ]

[
H(t,∞)

G(t,∞)

]
‖F (t, ·)− H̃(t, ·)‖L1(R) = cW1(ρt, h̃t) ≤ C <∞
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for all t ∈ [0, T ], i.e. ∂tF ∈ L∞(0, T ;L1(R)) ⊂ L1((0, T )× R). Thus,

W1(ρs, ρt) = ‖Ms −Mt‖L1(I)= ‖F (s, ·)− F (t, ·)‖L1(R)≤
∫ t

s
‖∂tF (τ, ·)‖L1(R)dτ,

(see, e.g., [14] for the equality in the middle) and thus, since ∂tF ∈ L∞(0, T ;L1(R)), we deduce
ρ ∈ AC∞(0, T ;P1(R)) ⊂ AC1(0, T ;Pac1 (R)). Since ρ > 0 everywhere, we use Proposition 3.2
and (Trans) to reconstruct the velocity

v(t, y) = −∂tF (t, y)

ρ(t, y)
∈ C([0, T ]× R) .

Since ∂tF is differentiable in y everywhere in [0, T ] × R and ρ is positive and nowhere differ-
entiable in y, we infer v is not differentiable in y at each point (t, y) where ∂tF (t, y) 6= 0. Fix
t ∈ [0, T ] and assume there are y1 < y2 ∈ R such that ∂tF (t, y1) = ∂tF (t, y2) = 0, i.e. F (t, yi) =
H̃(t, yi) for i = 1, 2. Thus, there exists y1 < ȳ < y2 such that ∂y[F (t, ·)− H̃(t, ·)](ȳ) = 0, i.e.
ρ(t, ȳ) = h̃(t, ȳ), which is equivalent to ȳ4 + t + 1 = G(t,∞)/H(t,∞). This equation has at
most two real solutions, so v(t, ·) is differentiable at at most three points. Thus, (ρ, v) satisfies
the assumptions of Theorem 3.4, while v violates those of Proposition 3.6.

3.2 Case of higher integrability

Here we show that uniqueness of the Lagrangian description of an absolutely continuous curve
of probability measures may also be a consequence of some higher integrability enjoyed by the
densities in space-time. The reader will note that the full power of Corollary 2.12 was not
needed to prove Theorem 3.4 (we only needed existence of a Lagrangian map X̃ associated to
ρ̃; its explicit nature, provided by Theorem 2.11, was irrelevant to the proof). The theorem
below will use both Corollary 2.12 (to provide a Lagrangian description for ρ̃) and Theorem
2.11 (applied to ρ). We first present a helpful lemma.

Lemma 3.11. Let 1 ≤ p < ∞, 1 < q ≤ ∞, and let ρ ∈ ACq(0, T ;Pacp (R)) with L1-velocity v
(assumed to exist if p = 1). Denote by Mt the optimal maps pushing χ forward to ρt for all
t ∈ [0, T ] and define Mt := M0 if t < 0 and Mt := MT if t > T . Then

lim
h→0

∫ T

0

∥∥∥∥Mt+h −Mt

h
− Ṁt

∥∥∥∥q
Lp(I)

dt = 0. (3.19)

Proof. By Theorem 2.11 we have that M ∈W 1,q(0, T ;Lp(I)), which implies∥∥∥∥M(t+ h, ·)−M(t, ·)
h

− Ṁ(t, ·)
∥∥∥∥
Lp(I)

≤ −
∫ t+h

t
‖Ṁ(s, ·)− Ṁ(t, ·)‖Lp(I) ds,

so ∥∥∥∥M(t+ h, ·)−M(t, ·)
h

− Ṁ(t, ·)
∥∥∥∥
Lp(I)

−−−→
h→0

0
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for all t ∈ (0, T ) which are Lebesgue points for [0, T ] 3 t 7→ Ṁ(t, ·) ∈ Lp(I), i.e. for a.e.
t ∈ [0, T ]. Also, if f(t) := ‖Ṁ(t, ·)‖Lp(I) and Mf is its Hardy-Littlewood maximal function,
we get, for t ∈ (0, T ) and sufficiently small |h|,∥∥∥∥Mt+h −Mt

h
− Ṁt

∥∥∥∥
Lp(I)

≤ f(t) +Mf(t).

The right hand side is guaranteed to lie in Lq(0, T ) only if q > 1. Thus, if 1 ≤ p < ∞ and
1 < q ≤ ∞ we get (3.19) by Dominated Convergence. QED.

Just as Theorem 3.4, the theorem below makes multiple claims; beside the uniqueness of the
Lagrangian description we also have the uniqueness of solutions for (CE) within a certain class
(see Remarks 3.14 and 3.15 below).

Theorem 3.12. Let 1 ≤ p <∞ and 1 < q <∞, and set r := q?(1 + 1/p?), s := 1 + p?. If

ρ ∈ ACq(0, T ;Pp(R)) ∩ Lrloc(0, T ;Ls(R)) =: U [p, q],

let

S[ρ] := {ρ̃ ∈ U(p, q) : ρ̃(0, ·) = ρ(0, ·) and (∃) λ ∈ R such that ρ ≤ λρ̃ or ρ̃ ≤ λρ}. (3.20)

(The inequalities above are to be understood in the L2–a.e. sense.) Then, for any ρ ∈ U [p, q],
its L1–velocity v (if p = 1 we assume v exists) is the velocity of no other curve in S[ρ].
Furthermore, the only Lagrangian flow map X ∈ W 1,1(0, T ;L1(R)) associated to some ρ ∈
U(p, q) starting at a given X0 (such that X0#χ = ρ0) is given by Xt = Mt ◦ g0. Here, Mt are
the optimal maps such that Mt#χ = ρt for all t ∈ [0, T ], and g0 is the a.e. unique χ-preserving
map such that X0 = M0 ◦ g0.

Proof. Consider ρ ∈ U [p, q]. Fix some ρ̃ ∈ S[ρ] such that ρ̃ ≤ λρ for some λ ∈ R (if such
constant does not exist, then there exists λ ∈ R such that ρ ≤ λρ̃ ; in this case one only needs
to interchange the roles of ρ and ρ̃ in this proof) and assume X̃ : [0, T ] × I −→ R is a flow
map associated to (ρ̃, v) (X̃ exists and lies in W 1,q(0, T ;Lp(I)), according to Corollary 2.12).
Let g : [0, T ]× I −→ I defined by

g(t, x) := F (t, X̃(t, x)), where F (t, y) :=

∫ y

−∞
ρ(t, z) dz.

We have g0 = F0 ◦ X̃0 = F0 ◦ X0, which satisfies g0#χ = χ. Thus, note that we obtain the
desired conclusions by proving that g is time-independent, then using the proved claim (3.7)
in the present context. Clearly, X̃t#χ = ρ̃t implies Ft#ρ̃t = gt#χ =: ϑt for all t ∈ [0, T ], which
leads to ∫ 1

0
ζ(x)ϑt(dx) =

∫ 1

0
ζ(gt(x))dx =

∫
R
ζ(Ft(y))ρ̃t(y)dy

≤ λ

∫
R
ζ(Ft(y))ρt(y)dy = λ

∫ 1

0
ζ(x)dx
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for all nonnegative ζ ∈ Cc(I). Thus, ϑt is a Borel probability such that ϑt � χ and (its
density) ϑt ∈ L∞(I) with uniform bound with respect to t ∈ [0, T ]. By Theorem 2.11, we
know that the equality Ṁ(t, y) = v(t,M(t, y)) between the distributional time-derivative of M
(family of optimal maps Mt#χ = ρt) and vt ◦M holds L2-a.e. in (0, T ) × (0, 1). Thus, there
exists a set of times T ⊂ (0, T ) of full Lebesgue measure such that for each t ∈ T we have
Ṁ(t, y) = v(t,M(t, y)) for χ–a.e. y ∈ (0, 1). Let At denote the set of all such y’s for a given
t ∈ T . Note that 1 = ϑt(At) = χ(g−1t (At)) (due to gt#χ = ϑt). For any x ∈ g−1t (At) we have
gt(x) ∈ At, so Ṁ(t, g(t, x)) = v(t,M(t, g(t, x))). Since L1(g−1t (At)) = 1, we conclude that

for a.e. t ∈ (0, T ) we have Ṁ(t, g(t, x)) = v(t,M(t, g(t, x))) for a.e. x ∈ I. (3.21)

But the support of ρ̃t is included in the support of ρt, which means, due to X̃t#χ = ρ̃t,

Mt ◦ gt = Mt ◦ Ft ◦ X̃t ≡ X̃t Lebesgue a.e. in I. (3.22)

Thus, according to (3.21), for Lebesgue a.e. t ∈ [0, T ] we have

Ṁ(t, g(t, x)) = v(t, X̃(t, x)) for Lebesgue a.e. x ∈ I,

which means
˙̃X(t, x) = Ṁ(t, g(t, x)) for Lebesgue a.e. x ∈ I. (3.23)

Now, fix an arbitrary ε > 0 sufficiently small. By (3.19), we have

lim
h→0

∫ T−ε

ε

∥∥∥Mt+h −Mt

h
− Ṁt

∥∥∥q
Lp(I)

dt = 0.

Since gt#χ = ϑt and ϑ ∈ L∞((0, T )× I), we deduce

lim
h→0

∫ T−ε

ε

∥∥∥Mt+h ◦ gt −Mt ◦ gt
h

− Ṁt ◦ gt
∥∥∥q
Lp(I)

dt = 0,

which means, in view of (3.22) and (3.23),

lim
h→0

∫ T−ε

ε

∥∥∥Mt+h ◦ gt − X̃t

h
− ˙̃Xt

∥∥∥q
Lp(I)

dt = 0.

But we also have X̃ ∈W 1,q(0, T ;Lp(I)), so (3.19) yields

lim
h→0

∫ T−ε

ε

∥∥∥X̃t+h − X̃t

h
− ˙̃Xt

∥∥∥q
Lp(I)

dt = 0.

It follows that

lim
h→0

∫ T−ε

ε

∥∥∥X̃t+h −Mt+h ◦ gt
h

∥∥∥q
Lp(I)

dt = 0. (3.24)

Since ρt has no atoms, Mt is strictly increasing for all t ∈ (0, T ), thus

gt+h(x) 6= gt(x)⇐⇒Mt+h ◦ gt+h(x) 6= Mt+h ◦ gt(x)
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for any t ∈ (ε, T − ε) and any h sufficiently small. Consequently, (gt+h(x)− gt(x))/h is either
0 or

gt+h(x)− gt(x)

h
=
Ft+h ◦ X̃t+h(x)− Ft+h(Mt+h ◦ gt(x))

X̃t+h(x)−Mt+h ◦ gt(x)

X̃t+h −Mt+h ◦ gt(x)

h
,

where we have used (3.22) and the fact that Ft ◦Mt ≡ Id in I for all t ∈ [0, T ] (this is due to
ρt being atom-free, i.e. Ft is continuous on R). Thus,∣∣∣∣∣gt+h(x)− gt(x)

h

∣∣∣∣∣ =

∣∣∣∣∣−
∫ X̃t+h(x)

Mt+h◦gt(x)
ρt+h(y) dy

∣∣∣∣∣
∣∣∣∣∣X̃t+h(x)−Mt+h ◦ gt(x)

h

∣∣∣∣∣,
where we used that F ′t+h = ρt+h and the convention −

∫ b
a f = 0 if a = b.

Since ρt ∈ L1+p?(R) for all t ∈ [0, T ], we deduce it has a maximal functionMρt ∈ L1+p?(R)
such that ‖Mρt‖Ls(R) ≤ Cp ‖ρt‖Ls(R) for some finite constant Cp depending only on p.
By the definition of the Hardy-Littlewood maximal function, we get:∣∣∣∣gt+h(x)− gt(x)

h

∣∣∣∣ ≤Mρt+h(X̃t+h(x))

∣∣∣∣∣X̃t+h(x)−Mt+h ◦ gt(x)

h

∣∣∣∣∣ . (3.25)

Note that X̃t+h#χ = ρ̃t+h, s = 1 + p? and ρ̃t+h ≤ λρt+h imply (if p > 1)∫
I

(Mρt+h)p
?

(X̃t+h(x)) dx =

∫
R

(Mρt+h)p
?
(y) ρ̃t+h(y) dy

≤ λ ‖ρt+h‖Ls(R)

∥∥∥(Mρt+h)p
?
∥∥∥
Ls? (R)

= λ ‖ρt+h‖Ls(R) ‖Mρt+h‖
p?

Ls(R)

≤ λCp ‖ρt+h‖sLs(R) .

Thus, ∥∥∥Mρt+h ◦ X̃t+h

∥∥∥
Lp? (I)

≤ λCp ‖ρt+h‖
1+ 1

p?

L1+p∗ (R) , since s = 1 + p?.

This inequality is also obvious if p = 1. Consequently, we can apply Hölder’s inequality to
(3.25) to get ∥∥∥∥gt+h − gth

∥∥∥∥
L1(I)

≤ λCp ‖ρt+h‖
1+ 1

p∗

L1+p∗ (R)

∥∥∥∥∥X̃t+h −Mt+h ◦ gt
h

∥∥∥∥∥
Lp(I)

.

If 1 < q <∞, Hölder’s inequality for the time-integral now gives

(3.26)

∫ T−ε

ε

∥∥∥∥gt+h − gth

∥∥∥∥
L1(I)

dt

≤ λCp
(∫ T−ε

ε
‖ρt+h‖

q?(1+ 1
p?

)

Ls(R) dt

)1/q?
∫ T−ε

ε

∥∥∥∥∥X̃t+h −Mt+h ◦ gt
h

∥∥∥∥∥
q

Lp(I)

dt

1/q

.
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Note that ρ ∈ Lrloc(0, T ;Ls(R)) implies

∫ T−ε/2

ε/2
‖ρt‖rLs(R) dt < ∞, so if we introduce

f(t) := ‖ρt‖rLs(R), we have f ∈ L1(ε/2, T − ε/2). This gives

lim
h→0

∫ T−ε

ε
|f(t+ h)− f(t)| dt = 0,

which yields

lim
h→0

∫ T−ε

ε
‖ρt+h‖rLs(R) dt =

∫ T−ε

ε
‖ρt‖rLs(R) dt <∞.

Together with (3.24) and (3.26) and the arbitrariness of ε, this implies

lim
h→0

∫ T−ε

ε

∥∥∥∥gt+h − gth

∥∥∥∥
L1(I)

dt = 0 for all ε > 0 sufficiently small.

We are trivially led to∫ T

0

∫
I
ϕ(t, x)

gt+h(x)− gt(x)

h
dx dt −−−→

h→0
0 for any ϕ ∈ C1

c ((0, T )× I),

i.e. ∫ T

0

∫
I
ϕ̇(t, x)g(t, x) dx dt = 0 for all ϕ ∈ C1

c ((0, T )× I),

which implies g ∈W 1,∞(0, T ;L∞(I)) with functional derivative ġ ≡ 0. �

There is another case, which is not covered by the statement of Theorem 3.12, but follows
easily from it.

Corollary 3.13. Same conclusions as in Theorem 3.12 hold if r = s =∞.

Proof: Since for all 1 ≤ p < ∞ and all 1 < q < ∞ we have Pp(R) ⊂ P1(R) (with the
inequality W1 ≤ Wp between the metrics) and L∞loc(0, T ;L∞(R)) ⊂ Lrloc(0, T ;L∞(R)) (where
r = q?(1 + 1/p?), as above) we see that Theorem 3.12 applies to the case

ρ ∈ ACq(0, T ;Pp(R)) ∩ L∞loc(0, T ;L∞(R))

as well, simply as a result of the inclusion ACq(0, T ;Pp(R)) ⊂ ACq(0, T ;P1(R)). �

Remark 3.14. A comparison among all solutions of (CE) lying in AC1(0, T ;Pac1 (R)) may be
defined in the spirit of (3.20) above, i.e. ρ, ρ̃ ∈ AC1(0, T ;Pac1 (R)) are said to be comparable
if there exists λ ∈ R such that for all t ∈ [0, T ] we have either ρ(t, ·) ≤ λρ̃(t, ·) or ρ̃(t, ·) ≤
λρ(t, ·), L1–a.e. in R. This is reminiscent of comparison principles used in PDE to establish
uniqueness, yet there are major differences. Our λ (in classical studies λ = 1) accounts for
the constraint that ρ is a probability density at all times and should therefore be at least 1
(λ = 1 implies trivially ρ = ρ̃). Also, we do not prove a comparison principle for (CE) with
AC1(0, T ;Pac1 (R)) solutions. Instead, the above theorem gives us uniqueness of solutions in
the same comparison class to the initial-value problem (for any ρ0 ∈ P1(R)) associated with
(CE).
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Remark 3.15. For any ρ ∈ AC1(0, T ;Pac1 (R)) we can define an equivalence relation on
AC1(0, T ;Pac1 (R)) by ρ̃ ∼ ρ if ρ(0, ·) ≡ ρ̃(0, ·) Lebesgue a.e. in R and there exists 1 ≤ λ < ∞
such that λ−1ρ ≤ ρ̃ ≤ λρ, L2–a.e. in [0, T ]×R. Then Theorem 3.12 and Corollary 3.13 apply
to conclude that, under the given conditions, no two distinct curves in the same equivalence
class share the same velocity.

4 Open Problems and future work

Here we would briefly like to remind the reader that it is unclear how much the conditions on
ρ can be relaxed in order for the uniqueness results to remain true. It is possible, for example,
that it is sufficient for ρ to be absolutely continuous with respect to the Lebesgue measure at
all times for the corresponding Lagrangian flow to be unique (or maybe one can require even
less: that ρ has no atoms at all times).

The present study is fundamentally one-dimensional spatially and a generalization to higher
spatial dimensions will require some extra-regularity on the velocity and its flow. The article
[13] shows that (Flow) will generally not be satisfied by the monotone (rather, cyclically
monotone in higher dimensions) rearrangements regardless of the choice of velocity (as the
velocity associated with an absolutely continuous curve of probabilities is not unique, in general,
in multi-d). However, said reference shows that if the curve consists of absolutely continuous
measures, there is one velocity whose Lagrangian flow is the family of optimal maps. Let
Mt := ∇Pt denote the optimal map (for quadratic cost, see [4]) pushing the Lebesgue measure
restricted to the unit cube in Rd to the measure ρt on the curve. The c.d.f. of ρt is replaced by
the gradient of the Legendre transform P ∗t of the convex function Pt, i.e. Ft := ∇P ∗t . Formally,
the fact that ∇P ∗t ◦ ∇Pt = Id in the unit cube leads to, in light of Ṁ(t, x) = v(t,M(t, x)),

∂tF (t, y) +∇F (t, y)v(t, y) = 0.

A computation of the type (3.5), with F as above and X a flow of v reveals the same formal
result as in the one-dimensional case, i.e. that the Lagrangian flow of v is unique (the one
consisting of the optimal maps). It will certainly be interesting to explore under what condi-
tions and to what extent the above findings can be made rigorous, possibly based on recent
regularity results on P ∗ in space [6] and time [2].

In future work, the authors would like to address some interesting applications of the the-
ory developed here to spatially monotone solutions of Hamilton-Jacobi equations with non-
standard Hamiltonians (sublinear, concave etc) in bounded domains. For example, the equa-
tion

∂tu+H(∂xu) = 0

with H(p) = −1/p is closely related to Burger’s equation

∂tρ+ ∂x(ρ2) = 0 in (0,∞)× R.

If ρ0 is a probability density, then the latter equation has a unique entropy solution ρ that
conserves mass and stays nonnegative at all times (this follows from the closed formula for the
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viscous approximation, see, e.g., [8]). The generalized inverse of its cumulative distribution
function solves the Hamilton-Jacobi equation above in some precise sense. To explain: if ρ0 is,
say, essentially bounded, then so is ρ at all later times and we can therefore use Corollary 3.13
to infer existence and uniqueness of the Lagrangian flow associated to ρ. Since v = ρ in this case
and the Monge-Ampère equation associated withM(t, ·)#χ = ρ(t, ·) is ρ(t,M(t, x))∂xM(t, x) =
1, we obtain that M satisfies the Hamilton-Jacobi equation above in some precise sense (see
Corollary 2.12). Then properties of ρ as the entropy solution for Burger’s equation transfer to
M as the solution of the Hamilton-Jacobi equation via our theory.

Similarly, we know there is a unique bounded solution ρ for the heat equation

∂tρ− ∂xxρ = 0 in (0,∞)× R

if ρ(0, ·) ≡ ρ0 is an essentially bounded probability density on R (see, e.g., [8]). This solution
is also smooth and everywhere positive for all t > 0, and one can show that 1/ρ admits a
classical flow (in space) over [0, 1], i.e. M solves ∂xM(t, x) = 1/ρ(t,M(t, x)) with the properties
M(t, 0+) = −∞, M(t, 1−) = ∞; M(t, ·) is precisely the optimal map pushing χ forward to
ρ(t, ·). Just as discussed above in the case of Burger’s equation, we infer via Corollary 2.12
that M solves the second-order non-standard Hamilton-Jacobi equation

∂tM +
∂xxM

(∂xM)2
= 0.

We expect that an elegant theory of monotone viscosity solutions for such Hamilton-Jacobi
equations in bounded domains can be built around the connection between such equations
(of the general form ut = F (t, x, ux, uxx)) and the corresponding scalar conservation laws or
diffusion equations on the real line. In work in progress we are analyzing this connection in
much more generality than presented above. We would like to emphasize here that the method
of characteristics fails even in these particular cases, and even for “nice”, monotone initial M0.

Acknowledments

Mohamed Amsaad would like to thank the Department of Mathematics of West Virginia
University for its support. Adrian Tudorascu acknowledges the partial support provided by
the Simons Foundation award #246063. The second author wishes to express his gratitude to
Wilfrid Gangbo and Truyen Nguyen for some stimulating discussions that led to the inception
of this project. We also thank Alberto Bressan for his suggestion leading to Example 1.3. Last
but not least, we thank the anonymous referee for indicating ways to clarify the presentation.

References

[1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math.
158 (2004), 227–260.

36



[2] L. Ambrosio, M. Colombo, G. De Philippis, A. Figalli, Existence of Eulerian solutions to
the semigeostrophic equations in physical space: the 2-dimensional periodic case, Comm.
Part. Diff. Eq. 37, No. 12 (2012), 2209–2227.
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