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Abstract

The Lagrangian description of absolutely continuous curves of probability measures on
the real line is analyzed. Whereas each such curve admits a Lagrangian description as a
well-defined flow of its velocity field, further conditions on the curve and/or its velocity are
necessary for uniqueness. We identify two seemingly unrelated such conditions that ensure
that the only flow map associated to the curve consists of a time-independent rearrangement
of the generalized inverses of the cumulative distribution functions of the measures on the
curve. At the same time, our methods of proof yield uniqueness within a certain class for
the curve associated to a given velocity, i.e. they provide uniqueness for the solution of the
continuity equation within a certain class of curves.

1 Introduction

Consider the problem
0 X(t,z) =v(t,X(t,z)), under X(0,z)= Xo(z), v €1, (Flow)

where I is the interval (0,1) and Xo: I — R, v: (0,7) x R — R are given functions. Note that
the solution X is written as a function of two variables in order to account not only for the
time-variable but also for the initial value prescribed for X. If Xg = Id in I and the solution
exists and is unique for all x € I, loosely speaking, the function X is called the classical flow
of v. The terminology comes primarily from Fluid Dynamics: if v stands for the velocity of
fluid flow, then X (¢, x) accounts for the position at time ¢ of the fluid particle that was initially
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(t = 0) at position z (if Xo = Id) or, more generally, Xo(z). This equation is the basis for
the Lagrangian description of fluid flow (where the trajectory of a particle is observed through
time). If £! is the Lebesgue measure on R and iy := X;u L' (le. w(B) = LY(X;1(B))
for all Borel sets B C R), then we get the Eulerian description of the distribution Xoxyx
(where £'|;=: x) as it is transported by the velocity v: this means (u,v) solves the Continuity
FEquation

Ot + Oy(pv) =0 in (0,7) x R (CE)

from Fluid Mechanics in the sense of distributions. It is worth mentioning that (Flow|) and
(C'E)) are closely connected to the Transport Equation

OF +v0yF =0 in (0,T) x R. (T'rans)

Indeed, the cumulative distribution function F; of p; formally satisfies the above equation (see
Proposition (3.2 below).

If v = v(t,y) is sufficiently smooth, one can formally take the derivative of both sides of the
equation with respect to z to verify that the spatial derivative u = 9, X (¢, x) satisfies

Ou(t,z) = Oyu(t, X (t, ) u(t,z), u(0,z) = Xy(x). (1.1)

The solution procedure shows that

u(t,z) = Xi)(z) exp </Ot d,0(s, X (s,2)) ds).

Whereas we have not really found an explicit solution (because dyv depends on X), we can
conclude that X{(x) > 0 implies 9, X (¢,z) > 0 for all (¢,z) € (0,7) x I, which shows that for
every t € (0,T), the function x — X (¢, z) is strictly increasing, with positive slope everywhere.
This, when referring to , is in agreement with the intuition that “nice” velocities v preserve
in time the order of the positions of particles on the real line, or, equivalently, the characteristics
do not cross. If v is not smooth enough to justify our little calculation above, then the order
need not be preserved through time. This has fundamental implications in scalar Conservation
Laws, where the crossing of characteristics is responsible for the formation of shocks. Our goal
in this paper is to study conditions under which =z — X (¢, x) stays monotone nondecreasing
for all times ¢t € [0,7) if X is itself monotone nondecreasing. The meaning of “conditions”
is quite vague at this point; however, they shall not be imposed on the velocity v, but rather
on the Eulerian flow whose Lagrangian characterization is provided by . Under
the minimal assumptions we shall impose on u, the velocity v will be uniquely determined by
w from (in some precise sense). Thus, our endeavor will be to study under the
constraint that X;ux = p: be given for all ¢t € [0,7] in the form of an absolutely continuous
curve of probability measures [3].

DiPerna & Lions [7], Ambrosio [I] (also, see [5] for a good survey on such problems) have
addressed the questions of existence, uniqueness and stability for reqular Lagrangian flows, i.e.
solutions X of such that Xt#ﬁd < CL? for some positive real constant independent
of t € [0, 7). In the Sobolev case (there is a similar version if only certain BV regularity on



v is assumed), the almost (minor improvements are available [5]) state-of-the-art uniqueness
result covers only velocities

v € L®((0,T) x RELRY n LY([0, T); WhHP(REG RY)) - for some p > 1.

It is proved that if v is this regular, then its regular Lagrangian flow, if it exists, then it
is unique. We had originally planned a complete departure from that setting, as our initial
goal was to investigate the uniqueness of the Lagrangian flow associated to a given absolutely
continuous path of probability measures (see Definitions and below). Thus, no explicit
conditions on the velocity v were to be made, even though any assumption on the curve of
measures will implicitly reflect on the (unique) velocity associated to it. We have managed
to stay true to this goal only in part; see the main result Theorem which covers the
case of higher integrability for the densities on the curve. However, while analyzing the case
of continuous densities (Theorem the other main result) we discovered that a continuous
velocity would not only yield uniqueness for the Lagrangian flow associated to the curve, but
it would also give uniqueness for the continuity equation within the class of absolutely
continuous curves of probabilities [3]. Thus, in Theorem we also make the continuity
assumption on v.

We would like to make it clear that we only deal with solutions of that are absolutely
continuous curves of probability measures: it is easy to construct examples of velocities v and
distributional solutions of originating at a given probability pg but whose masses change
in time, and/or become negative. Indeed, one may take any smooth and positive density po
that vanishes at +oo and set p(t,y) := (1 — t)|1 — t|po(y): then p is a distributional solution
for with v(t,y) = 2Fo(y)/[(1 — t)po(y)] if t € [0,1) U (1,00) and v(t,-) =0if t =1 (Fp
is the cumulative distribution function of pg). Note that while p(0,-) is a smooth probability
density, the mass of p(¢,-) decreases in time and p(¢,-) even goes below zero for ¢ > 1. Such
solutions of are non-physical in Conservation Laws or Thermodynamics (for example),
where this equation is also used to express precisely conservation of mass for p; furthermore,
as p usually denotes a physical quantity (such as material density or absolute temperature), it
is also important in applications that it does not pointwise go below zero.

It is convenient to introduce the definition of Flow of a Borel map, which is the Lagrangian
flow restricted to the one-dimensional case. We take I := (0,1), which ensures the measure
X #El |1= X4 x is a probability measure, but everything we achieve in this paper can be trivially
extended to any bounded interval.

Definition 1.1 (Flow of a Borel map). Let v : [0,7] x R — R and Xy : I — R be Borel
functions. We say that X : [0,T] x I — R is a flow map for v if

(i) the map [0,T] ot — X(t,z) is absolutely continuous for a.e. x € I;
(ii) 0 X (-, z) =v(-, X (-, ) for a.e. z € 1.

Furthermore, we say that X : [0,T] x I — R is a flow map for v starting at Xy if, beside
(i), (ii), the following is satisfied:

(iii) X(0,z) = Xo(z) for a.e. x € 1.



We have seen earlier that any solution X of will be nondecreasing in x provided that X
and v are regular enough to justify . It is, however, this regularity that might not be there,
which will enable solutions that are not nondecreasing in x (see Example below). Examples
and however, illustrate that there are even irregular v for which only nondecreasing
solutions exist. By one-dimensional Optimal Transport, it is known that there is a bijective
correspondence between the closed, convex cone of monotone nondecreasing functions in L?([)
and the metric space P2(R) endowed with the quadratic Wasserstein distance (see, e.g., [10]).
This implies [I0] (due to the uniqueness of the velocity for a given AC? curve) there is a
bijective correspondence between paths M € H := H(0,T;L?*(I)) consisting of monotone
nondecreasing maps M; and curves p € AC%(0,T; Pa(R)), via Mygx = pue. It was also proved
in [I0] that M satisfies in the sense of Definition Thus, the initial value problem
admits a solution in H if and only if v is the velocity associated with some curve
€ AC?(0,T;P2(R)). We shall see that one can obtain such a curve from by defining
pe = Xyxx; thus, we shall see that if X is nondecreasing, then as soon as admits
a solution X € H, it automatically admits the solution M € H consisting of the monotone
rearrangements of the maps X;. Thus, it comes as a very natural question to investigate when

(Flow) has only spatially nondecreasing solutions.

A study of the regularity of the monotone rearrangements of maps belonging to a time-
continuous family of maps was performed by Loeper in [I1]. It is proved that the distributional
time derivative is a signed measure. This is very weak by comparison to what we achieve here,
but it covers a much more general case: arbitrary spatial dimension, and the family of maps
is not necessarily the flow of a map.

Example 1.2. Let us consider the (Borel) function v : [0,2] x R — R given by

(t,y) = t_Ll if t €0,2\{1}, w(1,")=0.

Clearly, v is analytic everywhere except on the fiber {1} x R. It is easy to see that X (¢t,z) :=
(1 — t)x satisfies X € H (it is, in fact, analytic and bounded in (0,2) x I) and is a solution
for for this particular v. Note that X; is nondecreasing only if ¢ € [0, 1], and strictly
decreasing otherwise. However, by setting

M(t,z)=(1—-t)xift € [0,1] and M (¢t,z) = (1 —t)(1 —x) if t € (1,2],

we observe that M € H is also a solution with My(x) = x for all z € I. The maps M, are
the monotone rearrangements of the maps X;. So, this is an example where has other
solutions, beside monotone non-decreasing ones. It also illustrates that once a solution exists,
there will also exist a monotone non-decreasing solution, as discussed above.

The obvious issue with Example is that, whereas for t > 1 we get decreasing solutions,
the solution X} is still nondecreasing (and, thus, coincides with M) for all ¢ € [0, 1]. It is not
difficult to modify the example in such a way that the time threshold ¢ = 1 is replaced by an
arbitrarily small positive time. However, the natural question is whether it is true that for
any solution X € Wh4(0,T; LP(I)) of with Xy = Id there exists a time horizon ¢ > 0
such that X; is nondecreasing for all ¢ € [0,¢]. As the next example will show, this is false.



Following a suggestion by Alberto Bressan, we have constructed a velocity v and its flow X
such that for any € > 0 there exists a time 0 < ¢, < € for which X;_ is not nondecreasing.

Example 1.3. Let v : [0,1] x I — R given by v(t,y) = 2sgn(2~™2 — t)y/1 — 2=7 —y for all
positive integers n, all 1 — 27"t <y <1 —-27" and all t € [0, 1], i.e.

o(t.y) = 2/1—-2n—y ifl1-2"""<y<1-2"" 0<t<272
T /T2 —y 12y <1 o2 22 < ],

If n > 2 is an integer, define the function X : [0,1] x I — I by

1-2"—(t—V1I-2"n—g)P2ifl-21""<z<1-2"0<t<\V/1-2"—x

1—-27" ifl-—2l""< <1 —2"—2 1l /12 n_p<t<l1
X(t,x)y=<{ 1-277 if1—-27"—2"1lcp<1-27" V1-2"—g<t<2™?
1—2"—(t—2""2)2 if1 -2 "2 lagp<]—2" 272 <t <22
1—21-n if1—2m—92mlaogp<]—92™m 22 <<,

If n = 1 we remove the last branch from the above definition and cut ¢ off at 1 in the penultimate
branch.

Note that X (0,z) = =z for all x € I and holds in the classical sense for all x €
IN{1 —27" : n positive integer }. If x = 1, then is satisfied in the classical sense for
t €[0,1]. If x =1 — 27" for some integer n > 2, then X (-, z) is continuous in ¢ on [0, 1]. So
is 0, X (-, x) except at t, = 21-7/2 where it has a jump discontinuity. The differential equation
is satisfied in the classical sense on both sides of t,, so it is satisfied in the integral
sense over the whole time interval [0, 1].

Thus, is satisfied in the integral sense for all x € I and all ¢ € [0,1]. Also, note that
on each interval I,, := (1 —2""1 1 —2"") we have the following property: for all t € [27"/2,1]
the map X (¢,-) maps the left half of the interval to a single value, namely 1 — 27", Then it
maps the right half to a single value as well, namely 1 — 2=" — (t — 27/2)2 which lies strictly
below 1 — 27" for t € (272 1] (see the interrupted line vs the solid line in Figure . Thus,
X(t,-) is not Lebesgue a.e. equal to a nondecreasing function over I,, for any integer n > 2
and any t € (2_"/ 2 1]. Since 2-"/2 approaches zero as n — oo, we deduce that, for arbitrarily
small ¢ > 0, the function X (¢,-) is not Lebesgue a.e. equal to a nondecreasing function over
(0,1).

Since both X and v are bounded, we infer X € W1°°(0,1; L?(I)) C H, so all the requirements
on X are satisfied.

Finally, note that Example can be eagsily modified to make satisfied in the classical
sense for all ¢ € (0,1) (see Figure [1). Indeed, one may replace the fourth branch in the
definition of X above by the quadratic w, (t) = a,t? + byt + ¢, such that un(2*"/2) =1-2"",
O (272) = 0 and u, (1) = 1 — 21" For a, = —1/(2"/2 —1)%,b,, = 21/ /(2"/2 —1)2 ¢, =
1 =28 [1 =287/ /(27/2 — 1)?], and t € [277/2, 1] this function will satisfy the differential
equation Oyu, = —\/ dan(uy, — ¢p) + b2. Thus, it suffices to replace the formula in the second
branch of the definition of v above by f(y) = —[2/(2%2 —1)]y/1 -2 —yif 1 - 21" <y <
1—-2""and 272 <t < 1.
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Figure 1: (Flow) satisfied in the classical sense for Example

Not only does Example provide an instance where the non-uniqueness of the flow (albeit
classical) manifests instantaneously for ¢ > 0 (as we have seen there are solutions other than
the monotone ones for arbitrarily small positive time), but it also gives instantaneous mass
concentrations (Dirac deltas) in the measures X x (as a result of X; developing flat portions
instantaneously). The following example shows that this can occur even if the flow is unique
(i.e. consisting of monotone nondecreasing maps).

Example 1.4. Let 0 < T < 1/2 and v: [0,7] x R — R given by

1
v(t,y)=0 if y<0 and v(t,y):% it y>0.

One can prove that

—t
X(t,z)=0 if 0<zx<t and X(t,x):% if t<a<1

is the only solution to (Flow]). Note that X; develops a flat portion as soon as ¢t > 0.

Furthermore, as the following example shows, it is also possible that there are two different
monotone solutions X and Y for (Flow)). The example is constructed along the lines of



the classical v(t,z) = y/|z[, which is often used to illustrate non-uniqueness for the initial
value problem & = \/m , (0) = 0. This example helps justify why the constraint “Xyuy is
prescribed” is used here as a criterion to sort out between solutions. In [I], the author uses
this example towards the same goal. The criterion chosen there is different from ours: it is the
reqularity of the flow, as described earlier.

Example 1.5. Let v(t,y) = 2+/|y — 1|, T =1 and note that

1+(t—Vi—2)|t—V1—2 if t € 0,v1—x]
Xo(t, o) =41 ift € [V1—2,e4+V1—1 (1.2)
1+ (t—ec—Vi-a)|t—e—VI—z| ifte[Vi—z+e]]

satisfies for any 0 < € < 1 (see Figure 2) (the various ranges of ¢ that do not make
sense in the above definition are not to be used: for example, when x = 0 we only use the first
branch to get X¢(t,0) = 2¢t—t2 for all t € [0, 1], or, when e ++/1 — 2 > 1 the function is defined
only on two pieces, namely [0,1/1 — z] and [\/1 — x,1]). The maps X} are all nondecreasing
(one needs to carefully write X¢(¢,-) for fixed ¢ as a function of = to check that), yet different
for different ¢; see Figure 2 (c). One can easily check that the solution X¢ is classical (C! in
time) and, since it is bounded on (0,7) x I, provides a bound on X¢ as well. Thus,
X¢ € H trivially. In terms of measures 1; := X4, this means that there are infinitely (in fact,
a continuum; one for each 0 < ¢ < 1; see Figure [2| (a),(b)) many curves u € AC?(0,1;P2(R)),
all originating at pp = x and sharing the same velocity v.

As far as uniqueness for goes, Example shows that in general there might be more
than one curve whose velocity v is. This accounts for a non-uniqueness “mechanism”, which
we now dub multiple-curve (MC) condition on the velocity v. Thus, Example provides a v
satisfying (MC) (or, we could say “vis (MC)”). If v is not (MC), then we say v is (SC) (single-
curve). Examples of v with (SC) are abundant; any continuous v that is also Lipschitz in the
y-variable would do, as this implies pointwise existence and uniqueness for &(t) = v(t, z(t)) for
any initial x = x(0). But this regularity is not necessary, as we remark next.

Remark 1.6. We have seen that the velocity from Ezample[1.]] produces a single flow map X .
If we use it to compute the curve p = Xyx, we get py = téo+ (1 —1t)x (the convex interpolation
between the Dirac mass at 0 and x ), and one can check p € AC%(0,T; Po(R)). Thus, v is (SC)
(even though it is discontinuous) and its (unique) curve develops atoms as soon ast > 0.

Thus, if a velocity v is (MC), there is no hope for a uniqueness result for , as each
curve of probabilities associated with v will produce its own distinct solution (consisting of
the optimal maps). The question of whether the family of optimal maps is the only solution
becomes pertinent again once we prescribe the curve associated with v. This is yet another
motivation for undertaking the present analysis.

Our main contribution is identifying sufficient conditions on a path p € AC?(0,T;P,(R))
to ensure that the path M € W19(0,T; LP(I)) consisting of the optimal maps such that
Myyx = p is the unique solution to (Flow) which pushes x forward to p. As a byproduct
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Figure 2: (Flow) has different monotone solutions for Example

of our approach, uniqueness for the continuity equation (C'E]) also arises within a precisely
defined class of solutions; within that class, the velocity v will be an (SC) velocity.

As we have already pointed out, the idea of treating these first-order differential equations
as depending on the parameter given by the initial data is not new [5], [1], [4]. This should
come as no surprise, given that such equations describe the flow of a scalar field, which is the
reason why they are instrumental to the Lagrangian description of particle motion. However,
the proposed approach is novel in that it is based on the connection between the flow equation
and one-dimensional Optimal Transport. In our opinion, exploring the close link between
, , and is worth pursuing before more complicated, higher-order PDE’s
are studied. The main idea here stems precisely from the analysis of ODE’s of the type
performed by taking into account the dependence of solutions on initial data.

If the velocity v is a “nice” function, the whole theory is simple and well-understood. Other-
wise, the misleading simplicity of (C'E]) does not warn the researcher of the hazards involved



with its analysis. Its connection with offers a glimpse into that, since can be
too general to be handled easily. These issues have been recognized and have been the object
of deep mathematical works [1], [4] etc. Our present work fills some knowledge gap even in the
simplest of cases (spatial dimension one).

The paper is organized as follows: Section 2 begins by briefly recalling the definition of
some objects essential to our presentation, such as Wasserstein distance/space, absolutely
continuous curves of probability measures, generalized inverse etc. Then a necessary and
sufficient condition on the regularity Lagrangian flow is proved in order for the associated
path of measures to possess AC-regularity. The main result of Section 2 is Theorem [2.11
which shows that, quite generally, AC' paths consisting of probabilities absolutely continuous
with respect to the Lebesgue measure admit Lagrangian descriptions provided by the family
of optimal maps. Section 3 focuses on two different types of conditions under which the said
Lagrangian description is unique: Theorem explores the case of continuous densities and
velocities by a direct method (loosely connected to the narrative from Section 2), whereas
Theorem [3.12] is more deeply indebted to the results from Section 2 as it analyzes the case
where the densities enjoy some precisely quantified integrability (no conditions imposed on
the velocity in this case). Theorem also provides a uniqueness result for the continuity
equation within a reasonably general class of solutions. Theorem does the same,
albeit in a more restrictive setting. In both cases, the uniqueness results for the Lagrangian
flow and the uniqueness results for the continuity equation are obtained concomitantly from
our method of proof. We conclude with Section 4, where we discussed open problems and
possible applications.

2 Lagrangian Flows associated to ACY(0,7;P,(R)) curves

If 1 <p<ooandd>1is an integer, we denote by P,(R?) the p-Wasserstein space on R, i.e.
the set of Borel probabilities on R? with finite p-moment and endowed with the p-Wasserstein

metric )

W,y (u, v) := inf { (IE[|X - ym)g : law(X) = p, law(Y) = y}.

Also, in this paper PgC(Rd) stands for the set of all Borel probability measures p € P,(R%)

which are absolutely continuous with respect to the Lebesgue measure £%. Let us begin by
recalling the definition of AC%(0, T; P,(R%)) (see [3]):

Definition 2.1. If 1 < p < 0o and 1 < ¢ < o0, a path [0,T] >t — p; € Pp(R?) is said to lie
in AC(0,T;P,(R?)) provided that there exists 3 € L1(0,T) such that

t
W (s, pe) < / B(r)dr for all0 < s <t <T.

It is proved in [3] that if 1 < p < oo, then any such curve admits a Borel velocity v :
(0,7) x R* — R? of minimal norm in the sense that:

(11, v) satisfies (CE)) in the sense of distributions in (0,T) x R? (2.1)



v(t,) € LP(u(t,-); RY) for ae. t € (0,T) and (0,T) > t — ||v(t, M er(ue,)ray€ LU0, T); (2.2)

T
/ vt )l Lp(u(2,);reydt is minimal among all velocities satisfying (2.1) and (2.2).  (2.3)
0

Moreover, it is showed in [3] that this “velocity of minimal norm” is unique, in the sense that
if v1 and vq satisfy (1), (2), (3) above for a.e. t € (0,7'), then vi(¢,-) = va(t,-) s a.e.

Note that ACY(0,T; P,(R%)) ¢ ACY(0,T;P1(RY)) for all 1 < p < oo and 1 < g < oo.

More can actually be said if d = 1; the proof of the proposition below is borrowed, with

minor modifications, from [12]. It shows that on the line there is at most one integrable (in
the sense specified below) velocity, the minimality condition on its norm being redundant.

Theorem 2.2. Consider a path u € AC(0,T;P1(R)) for some 0 < T < oo. Then there
exists at most one Borel velocity v for yu such that v € L*(u) (as a function of both time and
space) for a.e. t € (0,T). More precisely, if v1, va : (0,T) x R — R are Borel maps such
that v; € L*(p) for i = 1,2, and such that both (u,v1) and (u,v2) satisfy in the sense
of distributions, then for Lebesgue a.e. t € (0,T) we have v1(t,-) = va(t,-) in the u(t,-)-a.e.
sense.

Proof: By subtracting (C'E]) written for both (i, v1) and (u,v2) and by taking test functions
o(t,y) = £(t)¢(y), the equations above readily yield

/ u(t,y)¢' (y) pu(t,dy) = 0 for a.e. t € (0,T) and any ¢ € CH(R),
R

where u 1= v; —v2. Fix e > 0 and ¢ € C.(R). If ¢ =0 on [R, +00), consider, for each natural
number n > R, the function

ffoo d(z)dz ify <mn,

D, (y) == w(y —n) ifn<y<n+1, (2.4)
0 ity>n+1
where w € C1[0,1] such that w(0) = f_ROO ¢(z)dz, w(l) = 0 and W' (0) = 0 = &'(1). Clearly,
®,, € C}(R). Thus,
n+1
/RU(t,y)qb(y) u(t, dy) +/ u(t, y)w'(y —n) u(t,dy) = 0 for ae. t € (0,T) .

n

We have |w'(y — n)|< [|w'||ge(o,)=: C for all n > R and all y € (n,n + 1). Since u(t,-) €
L'(u(t,-)) and p(t,-) is a Borel probability for Lebesgue a.e. ¢t € (0,T), we conclude that for
such ¢ and any € > 0 we have

‘/R“(tay)qb(y)u(t,dy) <e

if n is sufficiently large. Due to the arbitrariness of € and ¢, the proof is concluded.  QED.

The following is an obvious consequence.
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Corollary 2.3. Let 1 < p < oo and 1 < q < oo and p € ACY0,T;P,(R)) be given. Then,
there exists at most one Borel map v : (0,T) x R — R such that (u,v) satisfies (2.1) (with
d=1) and

T
1 .
ve Ll (n), ie. /0 /R\v(t,y)],u(t,dy)dt < 0. (2.5)

This uniqueness result enables us to make the following definition:

Definition 2.4. Let 1 < p < oo and 1 < ¢ < oo and p € ACY0,T;Pyp(R)) be given. If it
exists, the Borel map v : (0,T) x R — R such that (2.1) and (2.5 are satisfied is called the

L' —wvelocity associated to yu.

If p =1, then even when d = 1 and p(t,-) € P{“(R) for all t € (0,T), a velocity v satisfying

(2.1) and (2.5) may not exist.

Example 2.5. Let M : (0,1) x (0,1) — R be the family of optimal maps given by:

(t.2) x if x €[0,1—1),
’x =
1+z ifzell—t1]

for all t € (0,1). Also, M(0,z) = x and M(1,2) = 1+ z for all x € [0,1]. Then we can
easily compute the curve p(t,-) = My x to obtain p(t,-) = Xx[0,1—¢ + X[2—t,2, Which shows that
p(t,-) € Py¢(R) for all p > 1 and for all ¢ € [0, 1]. However, for all 0 <s <t <1

% 1-s % 1
»(Ps, Pt) (/ |M(s,z) — M(t,z)" dac) :</ 1d$> =|t—s|r,
1-t

and this is bounded by f 7)dr for some 8 € L'(0,1) if and only if p = 1 (in which case we
may take S =1 € L>(0, 1)) Thus, p € AC™(0,1;P{“(R)) but p ¢ ACY(0,1;P,(R)) for any
l1<p<ooandany 1l <g < oo.

Next, assume that the L'-velocity v associated to p exists. Then, for all ¢ € C(R), the
function ¢ — [ ©(y)p(t, dy) is absolutely continuous on [0, 1] and

% Rs@(@/)p(t, dy) = Av(t,y)w’(y)p(t,dy) at a.e. £ € (0,1),

1-t 2
—e1=)+e-0= [ e+ [ ooy

for a.e. t € [0,1]. Take ¢ € C}(R) such that ¢ = 1 on [0,5/8] and ¢ = 2 on [11/8,2]. Then
the above equality must be satisfied, in particular, at a.e. ¢t € (3/8,5/8); this yields 1 = 0,
a contradiction. In conclusion, we have produced an example of a curve lying in the “most
regular” subset of the AC?(0,1;P;(R)) families of curves (namely, AC*(0,1; P{¢(R))), and
yet whose L'-velocity does not exist.
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Example 2.6. Let f(z) = (1 —Inz)"!, so that f/(2) = 271(1 —Inz)~2 for z € (0,1). Then
f € L*>®0,1) and f' € L?(0,1) if and only if p = 1, so that f € WH1(0,1) but f ¢ W'r(0,1) for
any p > 1. Set g(x) := min{—f'(x), —e/4} and note that ¢ is continuous on (0, 1], increasing on
(0,e71) and constant on [e~1,1]. Just like f/, we have g € LP(0, 1) if and only if p = 1. Finally,
let M(t,x) := f(t)g(z) for all (¢,x) € [0,1] x(0,1) (f(0) = 0 in the right-limit sense) to see that
the curve [0,7] 3 t — p(t,-) =: M(t,-)x lies in AC(0,1;P1(R)) but not in AC?(0,1;P,(R))
for any 1 < p < oo and any 1 < ¢ < co. Furthermore, the flat portions in the graphs of M (t,-)
yield Dirac masses in the measures p(t,-) for all ¢ € [0, 7] (while the increasing portions show
that these measures are not purely discrete). So, p ¢ AC*(0,1;P{¢(R)). However, in spite
of its very basic AC(0,1;P;(R)) regularity, one can easily see that v(t,y) = f'(t)y/f(t) if
t € (0,1] is the L'-velocity of p. To recapitulate, here we have a curve with no better than
ACY(0,1;P1(R)) regularity, but for which the L!-velocity exists.

Remark 2.7. We have included the condition “the L'-velocity v is assumed to exist if p = 1"
in the upcoming statements, whenever the results apply to AC1(0,1; PE¢(R)) curves with their
velocities. Examples and [2.6 show that this condition is neither redundant nor vacuous in
the case p = 1.

The most general problem discussed here assumes only Borel regularity on v and we
only study solutions X belonging to some time-Sobolev spaces W14(0, T'; LP(I)). The reason
for this extra-requirement on the object introduced in Definition will become clear in this
section, where we prove that any map X as in Definition which also satisfies X;ux = pt
for all t € [0,T] for some p € AC(0,T;P,(R)) must, in fact, lie in W14(0,T; LP(I)). This
also means that the time-derivative along paths X (-,z) € WH1(0,T) which is denoted by
X (-,x) € L*(0,T) coincides £2-a.e. with the functional derivative X € L4(0,T; LP(I)) of X.
This definition turns out to be equivalent to requiring that X € W14(0,T; LP(I)) satisfy

¢
X(t,a:):X(s,:c)—l—/v(T,X(T,x))dT for Laex €T andevery 0 < s <t <T.
S

On the other hand, we shall prove that a solution X of in the sense of Definition
belongs to W14(0, T; LP(I)) if and only if [0, 7] 3 t — Xy x =: p; belongs to AC?(0, T; Pp(R)).
This has the important consequence that if a map X € Wh4(0,T; LP(I)) solves ([Flouw]), then
so does M, where M, is the monotone rearrangement of X; for all ¢ € [0,7]. The theorem
we prove next establishes the connection between the regularity of an absolutely continuous
curve of probabilities and that of its Lagrangian description. Note that there is no claim at
this point that said description be unique; this result applies to any flow map associated to
the given curve.

Theorem 2.8. If X : [0,T] x I — R is a Lagrangian flow map associated to the Borel map
v:[0,T] x R — R, then the following are equivalent:

(1) Xpx = p € ACU0,T;Py(R)) and v is its unique L'-velocity field (or, simply, the velocity
field associated to p). In fact,

(0.7) 2 t = 0l o) € L9(0, 7). (2.6)
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(2) X € W.l’q(O,T; LP(I)), in which case 0;X coincides a.e. in (0,T) x I with the functional
derivative X of X.

Proof. (1)==(2). Note that

T T z
vkt de= [ [ xtar ac)”

so ;X € L4(0,T; LP(I)) C L*((0,T) x I). Now,
t
X(t0)| < [Xo(o) + [ [ols, X(s,0)]| ds
0
t
= 1Koy < IXo@ oy + [ 10X ppds forall ¢ € 0.7)
Thus, X € L*(0,T; LP(I)) C L*((0,T)x I). Since X (-,z) € W1(0,T) for a.e. x € I, we have
T T
/ Orp(t,x) X (t,x) dt = —/ o(t, 2)Oy X (t,x)dt for all o€ CH(0,T) x I).
0 0
We use X,9,X € L'((0,T) x I) to conclude
T T
/ /8tgo(t,a:)X(t,x) dx dt = —/ /np(t, )0, X (t,x)dxdt forall e CH(0,T) x I).
0o Jr o JI

Thus, X € WhHe(0,T; LP(I)) and 8, X = X a.e. in (0,T) x I.

2)=—=(1). To prove p € AC%(0,T;P,(R)) note that the fact that (Xs x X is a transport
( p P #X
plan between p, and p; implies

t
W(ps, pt) < | Xs = Xell o) < / 1 X (7, )l ppydr forall 0<s<t<T. (2.7)
According to [3], the fact that the map [0,7] 3 t — || X(t, M ro(ry lies in L7(0,T) implies
p € ACI(0,T;Py(R)) C AC(0,T;P1(R)). It is now enough to prove (2.6) (which implies (2.4))

and the fact that (p, v) satisfies (C'E) as distributions. Property (2.6) follows immediately (via
Xixx = pr and the a.e. identification ;X = X) from

T T a/p T
[k = [ ([ xeara)a= [, @ @)

Since any ¢ € CL(I) is Lipschitz, we have that for a.e. = € I the function [0,T] > ¢ ~
©(X(t,7)) lies in WH1(0,T) and its a.e. derivative is ¢’ (X (t,7))9, X (¢,7). Or, equivalently,
for a.e. x € I, we have (we use ([F'low|) for the second equality)

T T
/ E()e(X (L 2))dt = — / (1) (X (t, 2))0,X (¢, 2)dt
0 0
T
= —/ () (X (t,z))v(t, X (t,z))dt for all € € C1(0,T).
0
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But both integrands are in L'((0,T) x I), so by Fubini’s Theorem the above equality can be
integrated in x, then we can change the order of integration to get

T T
- X i = — ! X))v X X or a 1 .
/0 £(t) /1 (X (t,2))dudt /0 (1) / o (X (¢, 2))u(t, X (£, 2))dadt for all € € C1(0,T)

I

Since Xiux = pt, the above translates into

T T
/0 é(t)/Rw(y)pt(dy) dt = —/0 E(t)/ﬂgw’(y)v(t,y)pt(dy) dt. (2.9)

This proves that v is, indeed, a velocity for p. O

Remark 2.9. Due to the uniqueness of the L'-velocity v (when it exists) for a given p €
ACY(0,T;P1(R)), every time we refer to a Lagrangian flow map X for v under the constraint
XiaX = pt, we may simply call it a Lagrangian flow map associated to p.

It has been known since Fréchet [9] that any Borel map S defined on (in our case) I can be
monotonically rearranged over I, i.e. there exists a nondecreasing map M : I — R such that
x(S71(B)) = x(M~Y(B)) for all Borel sets B C R. In other words, there exists a nondecreasing
function M such that the Lebesgue measure of the pre-images of any Borel set through S and
M coincide. This function satisfies

M(z)=inf{y € R : F(y) >} for all z € (0,1),

where F' is the cumulative distribution function of the Borel probability measure p := Sy,
i.e. M is the generalized inverse of F'. It also turns out that F' is the generalized inverse of M.

Remark 2.10. If i has no atoms, then Fyup = x optimally, M is strictly increasing and
Fo M =1d. We also have that if i < L', then M o F =1d on the support of p.

We continue with the main result of this section.

Theorem 2.11. Let p € ACY(0,T;Pg¢(R)) for some 1 < p < oo and 1 < q < oo. Ifp=1,
assume also that the L' ~velocity of p exists. Denote by M (t,-) the optimal map pushing forward
X to p(t,"). Then M € WY4(0,T; LP(I)) and it is a flow map associated to p.

Proof. Since

Iy = [ 000,0) dy = W)

IN

o1 (W;’(pt, o)+ [P pule) dy>

IN

T p
2P~ [(/ HthL”(Pt)dt) +/\y|ppo(y) dy] <oo forallte0,T]
0 R
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and

T a/p T .
P _
/0 </I|v(t,M(t,x))| dx) dt = /0 Hvt”LP(pz) dt < oo,

it suffices to prove that v(t, M (t,z)) is the distributional time-derivative of M to obtain the
desired thesis.

Consider a standard mollifier n°(y) = n(y/e)/e for 0 < e < 1 and let
pa(t? ) = 778 * p(ta ')a Ea(t? ) = 778 * [U(t7 ) ,O(t, )] :

Here, n € C°(R) is supported in [—1, 1], nonnegative, even and /77 = 1. Thus, for fixed
R

y € R,z — n°(z — y) is smooth and supported in [y — &,y + ¢]. So, it can be used as a test
function in (C'E]) to deduce that

0,T] >t /R?f(z —y) pr(2)dz = p°(t,y)

is absolutely continuous and

O (t,y) = /R@z[?f(z —y)]u(t, 2) p(t, 2) dz = — /R(qf)’(y —2)o(t, 2) p(t, z) dz = — O, E°(t, y)
for a.e. t € [0,7]. Now let F¢(t,-) and F(t,-) be the cumulative distribution functions of
p(t,-) and p(t,-), respectively. Note that since p(t,-) € L'(R), we have that

p(t,-) — p(t,-) strongly in L}(R),
e—0t

which implies
Yy

F¥(t,y) - F(t,y)| < / P°(t,2) = plt, 2)] dz —— 0 (2.10)

o0 e—0t

uniformly in y € R. Also, F*(t,-) is smooth with 0, F*(t,y) = p(t,y) for all t and y.
Since p € ACY(0,T;P1(R)), we deduce that

/’Z/‘ p(t,y)dy < C < oo for all t.
R

We also have that ¢ — F*<(t,y) is absolutely continuous for a.e. y € R, with 0, F¢(t,y) =
—E4(t,y). Indeed, this comes as a consequence of 0;p°(t,y) = —0,E°(t,y). In order to prevent
some integrability issues, we also introduce a cut-off function in y, namely, & € C(R) such
that & (y) =y if [y[< k, &k(y) = 0 if [y[> 3k and [ (y)| < min{2|y|, &k + 1}, [§.(y)] < 1 for all
y € R. Let » € C}(I) and note that

[0,T] >t = &(y) e(F°(t,y)) p°(t,y)
is also absolutely continuous for a.e. y € R, with
0
5 Gk(po Fg)p‘ﬂ = &) @' (F(t,y)) OF (t,y) p°(t, y) + &k (y) L(F=(t,)) Oep® (. y)

= — [ﬁk(y) @' (F=(t,y)) E°(t,y)) p°(t,y) + &k (y) ©(F=(t, ) 9y E°(t,y)|,
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i.e., for any ¢ € C1(0,T), we have:

T
/C )&k (y) p(F= (2, y))pe(hy)dt:/o C(t)[ﬁk(y)@'(Fs(ty))Es(t,y))pe(t,y) (2.11)

+ &(y) (FE(t,y)) Oy E° (t, y)} dt for a.e. y € R.

We would like to integrate the above equality in y over R, then integrate by parts over R the
last term in the right hand side; for this we need to show both sides are integrable over R.
First,

T . T
/0 C(1) &k y) p(F= (L, y)) p°(4,y) dt’ < 2||C||<><>||90Hoo/0 lylp°(t,y) dt,

and we continue by noticing that

/\ylp tydy—/ly!/ p(t, z) dzdy
Z/R</R\y|n€(y—2)dy> p(t, z) dz
< [ ([ (et =1t 21 dy) ot 2) s
= [lpte.yaz+ [ oty [ i) dy

1
§/|z]p(t,z) dz + Ce, WhereC::/ ly|n(y) dy
R -1

Thus, / 1€k (y)| p°(t,y) dy is bounded by a finite constant which is independent of ¢ and 0 <
R

e < 1. So, (t,y) — &(y) (F(t,y)) p°(t,y) is in L°°(0, T; L*(R)), with bounds independent of
€ €(0,1) and k. As for the right hand side of (2.11)), we see that:

1
[E=(t,y)| < /R?f(y—Z) [v(t, 2)| p(t, 2) dz < — maxnll|ve]l£1(p,)-

Thus,
C
| L6t (P ) B 7 0.00)] iy < S oilzso 19
where we absorbed the uniform bound on / 1€k (y)| p°(t,y) dy proved above in the constant C.
R

Note that the right hand side of this inequality lies in L'(0,T), so

(t,y) = &k(y) ¢ (F<(t,y)) E5(t,y) p°(t, y)

is in L'((0,T) x R) (even though, in this case, the bound may be of order e~1).
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Finally, the last term in (2.11)) is & (y) p(F=°(t,y)) Oy E°(t,y) and it satisfies

[ [P o, )] ay < e+ Dllelos [ [ 1092 ot 2) o 2) dzdy
R

=+ Dllele [ ([ 169 -2 dy) ote.2) (e, )

= e (k+ Dlieloolln | loE M, )):

so it lies in L'((0,T) X R) as well. Since [0,T] 3 ¢ = [[u(t, )| ,1(p(z,)) lies in L1(0,T), we deduce
that can be integrated with respect to y over R and Fubini’s Theorem may be applied
to discover, after a spatial integration by parts of the last term in the right hand side (which
leads to the cancelation of the first term in the right hand side), that

/ /ik e(Fe(t,y)) p°(t,y) dy dt = / /ﬁk e(F(t,y)) E*(t,y)) dy dt,

(2.12)
with integrands in L'((0,T) x R).

Next, we let ¢ — 07 and use the uniform convergence of F¢(t,-) to F(t,-) and the L!(R)-
convergence of p(t,-) to p(t,-), along with that of E*(¢,-) to v(t,-)p(t,-) to infer that for each
t € [0,T] we have (since & is continuous and compactly supported)

0= [ &) oF ) () dy — [ 6w (P plt.s)dy
e— R
and
/ L) $(F(6,9) ¥ (t,y) dy —— / €4 (y) (F(t, ) v(t, )p(t, y) dy.

By some well-known convolution properties of L!-functions (note also that p(t, -) is nonnegative,
as a probability density), we have

UE(B)] < (k+ Dllplloo and [VE@)] < (k 4+ D)l[@lloollo(, ) L1 (o) -

Next we let ¢ — 07 in (2.12)) and use Dominated Convergence over [0, 7] to get

T
/ / &) o(F(t, ) plt, y) dy dt = /<<t> /R E4) o(F(t, ) v(t, ) p(t, ) dy dt.

But |£:(v)|< 2|y, |€k]l00< 1 and &;(y) and &, (y) converge pointwise to y and 1, respectively,
for all y € R. Recall that the first moment of p(t,-) is bounded uniformly with respect to ¢,
and that vp € L'((0,T) x R). Thus, we may let k¥ — oo and use Dominated Convergence on
[0,7] x R to get

T T
/ 0 / yo(F(t, ) plt,y) dy dt = — / ¢() / S(F(t ) ot y) plt,y) dyde.  (2.13)
0 R 0 R
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We now use the fact that
p(t,) < LY implies F(t,M(t,z)) =z for a.e. z € (0,1), (2.14)

and that M4 x = p; to conclude:

T 1 T 1
/O () /0 () M(t,2) da dt = — /O () /0 o(t, M(t,2)) () da dt

for all ¢ € CL0,T), ¢ € CHI). Thus, the distributional time-derivative of M(t,x) is
v(t, M(t,x)). Of course, the last displayed equality and the uniform L? — LP bounds obtained
in the first paragraph of this proof also imply that for a.e. x € I the function ¢ — M(t,x)
is absolutely continuous on [0,7] and its a.e. time derivative is v(-, M(-,z)), so M is as in
Definition [} O

Now let X : I — R such that Xoux =: pp < LY. If Fy is the c.d.f. of pg and My : I — R is
the optimal map pushing x forward to pg, then gg := Fyo Xy is the Lebesgue a.e. unique map
such that goxx = x and Xo = My o go. This is the polar decomposition [4] of Xj.

Corollary 2.12. Let p € ACY(0,T;Py¢(R)) for some 1 <p < oo and1 < qg<oo. Ifp=1
assume also that the L'—velocity of p exists. Then for any Xo : I — R such that XouX = po
there exists a flow map X € WH4(0,T; LP(I)) associated to p that starts at Xo. More precisely,
X can be chosen such that X; = My o gy for all t € [0,T], where M is the family of optimal
maps associated to p, and gg is the measure-preserving map such that Xo = My o gg.

Proof. Let Xg = My o gg be the polar decomposition of X as recalled above. There exists a
Borel set A C I such that x(A) =1 and

t
M(t,z) = My(z) +/ v(s, M(s,z))ds for all t € [0,T] and all z € A.
0
But 1 = x(4) = X(gal(A)) due to gogx = X, 50 go(z) € A for L'-a.e. x € I. Thus,
t
M(t,go(z)) = Mp(go(x)) +/ v(s, M(s,go(w)))ds for all t € [0,T] and L'-a.e. x € A.
0

Thus, X; := M, o g satisfies (Flow|) with X (0,-) = Xp. O

3 Uniqueness for the Lagrangian flow and for the Continuity
Equation

In this section we identify sufficient conditions for the uniqueness of the Lagrangian flow.
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3.1 Continuous Case

Lemma 3.1. If I C R is an open interval, then CL(I) is separable with respect to the C*(I)
topology.

Proof. Assume first that I = (a,b) is bounded and fix ¢ € C.(I) with ¢ ::][go = 1. Define
I
the operator S : C.(I) — CL(I) by

se(@) = [ “e(2)de - € / " o(2)dz

(note that, indeed, this acts between the specified spaces).
We next see that S is onto by checking that S(f’) = f for any f € CL(I). It is also linear and
continuous with respect to the sup norm. Indeed, since (S¢) (x) = &(x) — £p(z), we have

IS¢ o + 1(8€) ||oe < C Il¢]l o for some C' < oo independent of & € C.(I).

Thus, the S§parability of C,(I) with the sup norm implies the separability of C}(I) with respect
to the CL(I)-norm.

If I is unbounded, we can write it as a countable union of bounded intervals to conclude. [J

Proposition 3.2. Let I,J be two open intervals, J be unbounded below and U = (p,w) €
LY(I x J;R?) with div U = 0 in the sense of distributions. Then, for a.e. y € J the function
Y

F(t,y) = / p(t, z) dz lies in WYL (I) and F(-,y) = —w(-,y). Furthermore, if J 3 y — w(-,y)
is continuous in L}, (I)-weak and p(t,-) € L'(J) for all t € I, then the above conclusions hold
for all y € J.

Proof. For every ¢ € C1(I) and ¢ € C}(J) we have

/1 £t) ( /J ot 2)C(2) dz> dt = — /l £(t) < /J w(t, ) (2) dz> dt. (3.1)

Fix k € Z,k > 2 and consider:

(0 if ze(—o0,—k—1],

2+ k+1 if ze(—k-1,—k|,
C(z) =<1 it ze (—k,y),

—kz+ky+1 if z€(yy+1l,

0 if z>y+1,

which is continuous, compactly supported and piecewise linear on R. Let {¢"} -, C C}(J) be
such that (" —— (i uniformly, and
n—oo

¢y — (. everywhere except at z = —k — 1, —k,y,y + %
n o0
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(where (j is not differentiable) and such that H(C”)'HOO < 2k. Then we can pass to the limit

in (3.1) with ¢ = (" to get

/g / (, 2)Co(2) d= dt = /g [/ (t,z)dz—k/yw}cw(t,z)dz] dt.

Since p,w € L'(I x J), we can pass to the limit in

e [oteoaeren [ wna] a

by Dominated Convergence to get (as k — 00):

y+z )
lim /I ]é w(t, 2)(t) d dt = /1 EWVF (L, y) dt (3.2)

By Lemma there exists a sequence {§,},~>; C CL(I) dense in C}(I) with respect to the
C(I) topology. Fix such & = &, in (3.2) above. The fact that

- /Iw(t, Den(t)dt € LM(J)

implies there exists a sequence of measurable subsets A,, of J with £! (J\A,) = 0 such that
every y € A, is a Lebesgue point for this mapping. Thus, at any such y we have

kli_)ngo/][y+k (t,2)&n(t) dzdt = l;n;o][yy—‘_k/]w(t, 2)En(t) dt dz = /Ifn(t)w(t,y) dt. (3.3)

Let A= ) Ay, so that £! (J\A) = 0 and (3.3) holds for all y € A and all n > 1. By (3.2)),
n>1
we get,

/ﬁn w(t,y)dt = /§n F(t,y)dt foralln>1andallye A

By the density described above and the fact that F(-,y) € L'(I) and w(-,y) € L*(J) for a.e.
y € J, we deduce

/f(t) (t,y)dt = /{ w(t,y)dt for a.e. y € Jandall £ € CL0,T).
I

Thus, we conclude that the function ¢ — F(t,y) € WHL(I) for a.e. y € J and its distributional
derivative is F'(-,y) = —w(-,y). In particular,

b
F(b.y) = Flay) == [ wit.y)i (3.4)

for all a, b € I with a < b and a.e. y € J, and we will use this to prove the second statement.
Pick an arbitrary yp € J and consider a sequence {y,}n>1 C J such that y, — yo and
holds for y = y,, for all n > 1. Then we get that holds for gy as well by passing to the
limit as n — oo. Indeed, p(t,-) € L(J) for all t € I implies F(t,-) is continuous on J for all
t € I. To pass to the limit in the right hand side we use that w(-,y,) converges to w(-, o)
weakly in L'(a,b). Thus, holds for all a, b € I and all y € J. O
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Remark 3.3. Since p(t,-) € LY(J) for a.e. t € I, we infer F(t,) € L¥(J) with spatial
derivative Oy F (t,-) = p(t,-) € L*(J). If w = vp for some Borel map v =v(t,y) and X (t,z) =
v(t, X (t,x)) in some well-defined sense, then a formal calculation reveals

OF(t, X(t,z))] = F(t,X(t,x))+ 0, F(t,X(t,x))X(t,x)
= —w(t,X(t,z))+ pt, X(t,x))v(t, X(t,x)) = 0. (3.5)

So, provided that p(0,-) = x and X(0,-) = Id;, we deduce F(t,X(t,z)) = x for all t € [0,T)
and a.e. x € I. This fact has far reaching consequences, as we shall see below.

The following statement makes three distinct claims: first, the joint continuity in time-space
of v ensures that the continuity equation has at most one solution p € AC*(0, T; P{¢(R))
whose density p = p(t,z) is jointly continuous in time-space. Secondly, if such continuous
solution exists, then it is also unique within the larger class AC*(0, T; P{¢(R)) (no continuity
of densities imposed). Finally, the Lagrangian description of such jointly continuous solution
(if it exists) is unique (it is precisely the one provided by Corollary [2.12).

Theorem 3.4. Let ACL, ,(0,T;P{(R)) be the set of all p € ACT(0,T;P¢(R)) such that p €
C([0,T)xR). Ifv € C([0,T] xR), then there exists at most one curve p € ACL,,,(0,T; P{€(R))
originating at a given probability density po € C(R) whose velocity v is. Furthermore, if such
a curve exists, then it is also the unique AC(0,T;P¢(R)) curve starting at po and whose
velocity v is. Finally, its only Lagrangian description X € WH1(0,T; L' (R)) starting at a
gwen X (such that Xoux = po) is given by Xy = My o go. Here, M; are the optimal maps
such that Myyx = pi for all t € [0,T], and go is the a.e. unique x-preserving map such that
Xo = MO © 4go-

Proof. Consider the curves p € ACL .(0,T;Pf¢(R)) and p € AC(0,T;P{¢(R)) such that
p(0,-) = po = p(0,-). Let, as usual, F(¢,-) be the cumulative distribution function of p(t, ).
Furthermore, let X € WbH1(0, T; LY(I)) be a Lagrangian flow map associated with p; indeed,
we know from Corollary that we can, for example, take X = M o gg, where M is the
family of optimal maps such that ]\th#x = p for all t € [0, 7], and go is the x-preserving map
from the polar decomposition of Xg = Myo gy = Mo go = X(O, -). Our strategy is to analyze
the function

g(t,x) :== F(t,X(t,z)), for all (t,z) € [0,T] x I.

We will show that g(-,z) € WH1(0,T) for a.e. x € I and §(-,z) = 0. Since
g(0,2) = F(0,X(0,2)) = F(0,X(0,2)) = go(z) for a.e. z €1,
this will imply
g(t,x) = go(z) for all t € [0,T] and a.e. = € I. (3.6)

Note that the above displayed equalities hold because My = My (since p(0,-) = po = 5(0,))
and pg < L' (see (2.14)). In fact, gives that F'(t, M(t,-)) =1Id a.e. in I for all ¢t € [0,T7,
where M, are the optimal maps pushing x forward to p(t,-). Before we justify , let us
show why that yields the desired thesis. The claims are:

g(t,z) = go(z) for all t € [0,T] and a.e. = € I implies p(t,-) = p(t,-) for all t € [0,T] (3.7)
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and )
Xt = M, o g for all t € [0,T7, (3.8)

i.e. p = p and the Lagrangian flow is necessarily the one consisting of a time-independent
rearrangement of the optimal maps pushing x forward to p;. Indeed, note that (3.6)) implies

Frupr = X = gouX = greX = Frp[XiwX] = Fyupy for all ¢ € [0, 7).

Since both F; and F} are nondecreasing, we infer (by the uniqueness of the optimal map pushing
pi forward to x) F(t,y) = F(t,y) for pr-a.e. y € R. Thus, d,F(t,y) = d,F(t,y) for L'-a.e. yin
the interior of the support of p;, i.e. p(t,-) = p(t,-) Lebesgue a.e. in the interior of the support
of p;. This means that both densities give rise to the same probability (note that the continuity
of either density is not necessary here). Finally, since we now know f(t# X = pt = Myux, we
can write f(t = M, o s; as the polar factorization of Xt. So,

gozgt:FtoXt:FtoMtOStZSta

which proves claim (3.8)).

Now let us get on with the proof that g(-, z) is absolutely continuous. Fix x € (0, 1) for which
t+ X(t,x) is in WH1(0,T), and so we have

Xt x) = Xo(x) + /Oti((s,x) ds = Xo(x) + /Otv(s,f((s,x)) s
for t € [0, 7). This implies
X (t,2)| < [Xo(@)| + [ X (.0 o) = Cl) < +oo for all ¢ € [0,T].
To show that t — g(t,x) is absolutely continuous on [0,T] (i.e. g(,x) € WH1(0,T)) let us

notice first that g(-,z) € L>(0,T), so it all amounts to proving that there exists f € L'(0,T)
such that forall 0 <a <b<T:

b
l9(b, 2) — gla, )] < / f(t)dt.

As expected, we begin by estimating

’g(b7$) _g(aax)| = ‘F(b,)g(b,.%')) - F(av*{z(a7$))| B _
< |F(b7X(ba$)) *F(b,X(a,SU)M + |F(b,X(CL, 1:)) *F(CL,X(CL,I’))‘
=:F| + Es.
We have:
X(b,az) B B
E—/ b, dg( max >Xb,x—Xa,w,
e p(b,y) dy 011" e ? | X (b, z) — X(a,z)|
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since | X (a, x)| |)~((b x)| < C’( ) < +oo and p € C([0,T] x R).

Let max { P, \v\} =: #(R) < +oo for all finite R > 0. Thus,
[0T}><[ RR} [0T]><

b .
By <. #(C(2) / X (s, 2)| ds. (3.9)

We use Proposition [3.2] to estimate E:

b
|F(b, X (a,2))~ F(a, X (a,2))]| < / [o(t, X (a,2))|p(t, X (a,2))dt < [#(Cx))*(b—a). (3.10)

By (3.9) and (3.10) we conclude that for a.e. z € (0,1) the function g(-,z) is absolutely
continuous on [0, 7.

The next step is to prove that
g(-,z) =0, forae. xe€(0,1).

Pick ¢t € (0,7) where )L((t, x) exists in the pointwise sense and let h € R such that —t/2 < h <
(T —t)/2. Set up the difference quotient:

gt +h,x) —g(t,x) Ft+h X({t+h,x))— F(t,f((t,x))‘

h h
CasE I: If X(t 4+ h,z) = X(t,z) for all h such that |h| < § (for some § > 0), then

gt x) = lim Ft+h X(2, x))—F(t X(t,z))

t+h .
:_ilzli%h/ v(s, X (t,z))p(s, X (t,x))ds

= —u(t, X(t,2))p(t, X (t,2))

due to the continuity of s — v(s, y)p(s,y) for all y € R. But X (-, ) is constant on (t—d,t+46),
so v(t, X (t,x)) = X (t,z) = 0 implies §(t,z) = 0.

CASE II: There exists a sequence {hy}, C [—-t/2,(T —t)/2] such that h, — 0 and X (t +
B, x) # X(t,x) for all n > 1.

Then:
gt +hp,x) — g(t,x)  F(t+hp, X+ hy, ) — F(t+ ho, X (8,3)) X(E+ hn, ) — X(t,2)
ha a X(t+ b, 7) — X(t,2) han
F(t+ hy, X(t, ) — F(t, X (t,x))
hn
= F1 + Es.
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We have seen that By —— —v(t, X(t,2))p(t, X (t,x)). So, it suffices to prove F; ——

n—oo n—oo

v(t, X (t,x))p(t, X (t,z)). Note that:

X (t+hn,) X(t+ hp,z)— X(t,z
ElZ][~ ot + ) dy h) .0,
X (t,x) n

Since X (t, ) exists in the pointwise sense (due to our initial choice of t), we have

X(t+ hp,z) — X(t, 2)

hn, n—00

s X(t,2) = v(t, X (L,2)).

X (t+hn,x)
As for ][~ p(t + hn,y)dy, we use the fact that the restriction of p to [t — d,t + d]

X (t,x) _ ~
[-C(z),C(z)] is uniformly continuous, so X (t + hy,x) — X (t,x) implies
X (t+hn,x) B
lim p(t + hn,y) dy = p(t, X (t, z)).

n—oo X(t,x)
This concludes the proof. ]

Remark 3.5. The assumptions on v can be weakened, as it can be seen from the proof. Indeed,
we can only require that v is locally essentially bounded, w := vp satisfy the conditions from
Proposition[3.9, and the map pv = p(t,y)v(t,y) is continuous on [0,T) for ally € R.

Before coming up with an application (Corollary , we need the following:

Proposition 3.6. Let v:[0,7] x R — R satisfy:

(i) ve C([0,T] x R);
(i) For allt € [0,T], v(t,-) € CY(R);

(iii) There exists A € LY(0,T) such that |0yv(t,y)|< A(t) for all (t,y) € [0,T] x R.

Then, for any positive probability density po € C(R) NP1(R), v is the L'-velocity of a curve
p € ACL, (0, T; P¥(R)) originating at po.

Proof. Let us begin by noticing that pg > 0 everywhere implies My is continuous, strictly
increasing on (0,1), and Mp(0+) = —oo, My(1—) = oco. Also, My is the true inverse of the
c.d.f. Fy of po. This shows that both Fy € C}(R) and M, € C1(0,1).

By the classical theory, for each x € I the initial value problem (Flow|) with Xo(z) = My(z)
admits a (unique) solution X (¢t,z). Fix x € [ and —x < h <1 — 1z, h # 0 and let

X(t,z+h) — X(t,2)

Yh(tax) = h )
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so that it satisfies

Yh(t,x) = %[v(t,X(t,x +h)) —v(t, X (t,x))] = fult,z)Y(t, x), (3.11)
where .
fu(t,z) = /0 Oyv(t, (1 —7)X(t,z) + 7X(t,z + h))dr.
Thus,

Vi) = S =M o | ] t ol ).

which gives, in particular,
X (t,z + h) — X(t,2)|< Meton | My(x + h) — Mo(x)]. (3.12)
We get from this that X (¢,-) is continuous in I. Next, we have, for all 7 € [0, 1],

lim Oyv(t, (1 — 7)X(t,z) + 7X(t,z + h)) = Oyv(t, X (¢, x))

h—0

by the continuity of d,v(t,-) and X (¢, ). Due to (iii), we have that for £'-a.e. t € (0,T) and
all 7 € [0, 1]

|0yv(t, (1 —7)X(t,z) +7X(t,z+h))|, [Oyv(t,X(t,x))] < A(t) < oco.

Thus, we use Dominated Convergence to integrate in 7 and get f, (¢, x) ﬁ f(t,x) for a.e.
_>

€ (0,7T). Since A € L'(0,T), we use Dominated Convergence again (for the integrals in ¢ this
time) to infer

tim (17 2) ~ .0l 1 gizy = 0. (3.13)
Consider now .
Y (t,z) := M|(z)exp [/ Oyv(s, X (s,x))ds|, (3.14)
0
i.e. the unique solution of
Y(t,z) = dyv(t, X (t,x))Y (t,z), Y(0,2) = Mj(x). (3.15)

Set Dy (t, ) := Yi(t,x) — Y(t,x) to get, according to (3.11)) and (3.15)),

Dp(t,x) = f(t, %) Dy(t, ) + Ru(t, x),
where f(t,z) := 0yv(t, X (t,z)) and
1
Ry(t,z) == Yu(t,x) /0 [Oyv(t, (1 —7)X(t,z) +7X(t,x + h)) — Oyv(t, X (¢, x))]dr

= Yh(tvx)[fh(tvx) - f(t,l’)]
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The solution procedure yields

wazmw@wﬂé%@mﬂ+K&$@wﬁ[ﬂwm4@

which implies

T
|m@@gJWMmWMQm+/|m@@w}
0
But (3-12) and (3-13) give

T T
/ Ru(t,)|dt = / Ya(t, )| fa(ts ) — F(t, )|t
0 0

SQNWMH%@+2—MM)

Hfh(vx) - f("x)HLl(O,T) E) 0

for all z € I (since My € C1(0,1)). Since

M()((L' + h) — Mo(x)
h

Dy(0,z) = — Mj(x) —= 0 for all z € I,
h—0

we deduce Yy, (¢, x) — Y (t,x) for all (t,z) € [0,T] x I, which means that for all ¢ € [0,T]
—

X(t,-) is differentiable at all z € I and 0, X (¢,z) = Y (¢, x). (3.16)

The formula (3.14) for Y clearly shows (in light of the hypothesis (iii) and the continuity of
X(t,-)) that Y (¢, -) is continuous in I, so we get that X(¢,-) € C1(0,1) for all ¢ € [0,T]. Since
My is strictly increasing in I, we also get from (ziz) and (3.14]) that

e Murom apt (2) < 9, X (1, 2) < Mo a (2),
which yields
oML om) [Mo(y) — Mo(z)] < X(t,y) — X(t,z) < elMLio,m) [Mo(y) — My(z)] (3.17)

for all 0 < z < y < 1. It immediately follows that X(¢,-) is strictly increasing in I and
X(t,04) = —oo and X(t,1—) = oco. If p(t,-) := X(¢,)4x, we have p(t, X (t,2))0, X (t,z) =1
forall z € 1, i.e.

t
exp {—/ Oyv(s, X (s, F(t,y)))ds
0
My(F(t,y))
in light of (3.14)) (here, F'(t,-) is the true inverse of X (¢,-) or, equivalently, the c.d.f. of p(t,-)).
ClearIYa p(O, ) = po-

We claim that p defined above belongs to ACY . (0,T;P(R)) and v is its L'-velocity. First,

we would like to apply Theorem to prove p € AC*(0,T;P1(R)) and that v is the required

p(t,y) = >0 (3.18)
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velocity map; according to said theorem, it is enough to prove that X € W11(0,T; L(I)). let
mo € R denote the first moment of pg and estimate

/R lp(t,y)dy = /I X (¢, 2)|de

mo + /I | X (t,z) — My(z)|dx

IN

IN

mo+/ot/l|v(s,X(s,x))|dxds
< mo+/Ot|>\(5)]/I|X(s,x)|da:ds+/Ot|v(s,0)|ds
< ot [ X6) [1X Gt

where Co :=mo +T'[|v(-,0)|| o 9.7y < 00 (since ¢+ v(t,0) is continuous on [0, 77]). Gronwall’s
Lemma now gives a uniform (with respect to ¢ € [0,7]) bound on the first moment of p(t, -)
or, equivalently, on || X (¢,-)| z1()- Then,

/IIX(t,@Idm < /OT/I|U(S,X(s,x))|dxds
- [ ' [ 1ot lots. s

</ ) [ wlots.yduas + [ Jo(s,0) | ots.dyis

< Moz sup [IX (& ) par + o€, 0)||lzeo,7) < o
te[0,7

Thus, X € WbH(0,T; LY(I)) ¢ WY(0,T; LY(1)), so p € ACH(0,T;P1(R)) and v is its L!-
velocity map (by Theorem ({2.8))).

It only remains to prove that p € C([0,7] x R). The plan is to show first that F is (jointly)
continuous in [0, 7] xR, then use to infer that p has the same property. Since p(t,-) < £!
is a probability density, we have that y — F'(t,y) is uniformly continuous in R, but we would
like to show more: namely that F'(¢,-) is uniformly continuous in R uniformly with respect to
t € [0, 7). For this, denote by w a modulus of continuity for Fp, i.e. w : [0,00) — [0,00)