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Abstract

We treat the evolution as gradient flow with respect to the Wasserstein distance on a special

manifold and construct the weak solution for the initial-value problem by using a time-discretized

implicit scheme. The concept of Wasserstein kernel associated with one-dimensional diffusion

problems with Neumann boundary conditions is introduced. Based on this, features of the initial

data are shown to propagate to the weak solution at almost all time levels, whereas, in a case of

interest, these features even help obtaining the weak solution. Numerical simulations support

our theoretical results.
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1 Introduction

1.1 Overview

This work is organized as follows: first we present the general problem and the main tools pertaining
to the present approach. We define the Wasserstein kernel, then we use it in two different instances
to prove convergence of the time-interpolants (based on the minimizers from the implicit schemes)
to the weak solution. Convergence for a nonhomogeneous porous medium equation with exponent
γ = 2 is analyzed first, followed by a much more detailed study of a Stefan problem. The latter
includes numerical simulations that confirm the theoretical results.

Let us begin by recalling the setting in [15]. Basically, there we study the N -dimensional general-
ization of the following nonhomogeneous diffusion problem:

ut − f(u)xx = g(x, t, u) in (0, 1) × (0, T ) and f(u)x = 0 on {0, 1} × (0, T ), (Pf )

where f : [0,∞) → R, g : R
3 → R are functions with certain properties (see [15]; the cases studied

here are encompassed). Let 0 < T <∞. We recall the following:
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Definition 1. A function u ∈ L∞((0, 1) × (0, T )) is a weak solution for (Pf ) if it satisfies f(u)x ∈
L1((0, 1) × (0, T )) and

∫ T

0

∫ 1

0

{

uζt − f(u)xζx + g(·, ·, u)ζ
}

dxdt = −

∫ 1

0

u0ζ(·, 0)dx,

for all ζ ∈ C∞
c ([0, 1] × [0, T )).

We also have a weaker notion, given by:

Definition 2. A function u ∈ L∞((0, 1) × (0, T )) is a generalized solution for (Pf ) if it satisfies

∫ T

0

∫ 1

0

{

uζt + f(u)ζxx + g(·, ·, u)ζ
}

dxdt = −

∫ 1

0

u0ζ(·, 0)dx,

for all ζ ∈ C∞
c ([0, 1] × [0, T )) such that ζx(0, t) = ζx(1, t) = 0 for all t > 0.

Consider now two Lebesgue integrable nonnegative functions u1 and u2 of same positive total mass.
We recall the definition of the Wasserstein distance of order 2 as found in [7], [14], [12], etc.. For
this purpose we introduce

P (u1, u2) :=

{

nonnegative Borel measure µ on [0, 1]× [0, 1]

∣

∣

∣

∣

∫ 1

0

∫ 1

0

ξ(x)dµ(x, y) =

=

∫ 1

0

ξ(x)u1(x)dx and

∫ 1

0

∫ 1

0

ξ(y)dµ(x, y) =

∫ 1

0

ξ(y)u2(y)dy for all ξ ∈ C[0, 1]

}

as the set of all admissible transfer plans between the nonnegative finite measures (of the same total
mass) u1dx and u2dx.

Definition 3. The (square of the) Wasserstein distance (of order 2) is defined as

d(u1, u2)
2 := inf

µ∈P (u1,u2)

∫ 1

0

∫ 1

0

|x− y|2dµ(x, y).

Properties of the Wasserstein distance will be referenced as they are used throughout this paper.

As Kinderlehrer and Walkington discuss in [10], the functional:

Sf (u) :=

∫ 1

0

Φf (u)dx, u ∈ Mu∗ (see (1.3) below),

is decreasing along the trajectories of (Pf ), where Φf satisfies yΦ′
f (y)−Φf (y) = f(y), but one cannot

realize u as the gradient flow of the functional Sf in a conventional sense. We demonstrate in [15]
that, formally, a solution for (Pf ) is a gradient flow of Sf on a certain manifold w.r.t. the Wasserstein
distance. This is done by means of the equivalence between the Wasserstein distance and a certain
induced distance on Mu∗ (proved by Otto in [13]). The approximants for the weak solution are
obtained by time-step discretizing the gradient flow. Next, we go briefly over this construction.
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1.2 Preliminaries

Let u∗ ∈ L1(0, 1) be nonnegative of positive total mass and let h > 0 be fixed. We define the
nonlinear functional F [h, u∗] : Mu∗ → [0,∞) by:

F [h, u∗](u) =
1

2h
d(u, u∗)2 + Sf (u). (1.1)

The gradient flow of Sf on Mu∗ w.r.t. the Wasserstein distance admits a time-step discretization
of the form (see [13], [12]):

Minimize F [h, u∗](u) among all u ∈ Mu∗ , (1.2)

where

Mu∗ :=

{

u : (0, 1) → [0,∞)

∣

∣

∣

∣

u is measurable and

∫ 1

0

udx =

∫ 1

0

u∗dx

}

. (1.3)

We will now state the following:

Proposition 1. The minimization problem (1.2) admits a unique solution.

For the proof, see [8], [12] and [15]. The proof of the main theorem of the next section uses a
construction based on the following corollary (a trivial iterative application of Proposition 1).

Corollary 1. The following iterative scheme has a unique solution denoted by {uh
k}k≥1:

For k ≥ 1, uh
k minimizes F [h, vh

k−1] in Mvh

k−1

, (1.4)

where

vh
k := uh

k +

∫ (k+1)h

kh

g(·, τ, uh
k(·))dτ, k ≥ 0. (1.5)

The Euler equation of the above variational principle is computed in [10] following an argument
due to Otto (see [12]). It is thus proved that:

∫ 1

0

∫ 1

0

(y − x)ξ(y)dµ(x, y) − h

∫ 1

0

f(uh
k)ξ′dx = 0, (1.6)

where µ is the (unique) optimal transference plan (see [4]) for vh
k−1 and uh

k and ξ is any smooth and
compactly supported function. The proof is based on the so-called variation of domain technique
involving the push-forward density uε (see the remark below). By letting ξ = ζ ′ and taking into
account that (y− x)ζ ′(y) = ζ(y)− ζ(x) + (1/2)ζ ′′(s)(y− x)2 for some s between x and y we obtain:

∫ 1

0

∫ 1

0

(y − x)ξ(y)dµ(x, y) =

∫ 1

0

∫ 1

0

{

ζ(y) − ζ(x) +
1

2
ζ ′′(s)(y − x)2

}

dµ(x, y)

≤

∫ 1

0

(uh
k − vh

k−1)ζdx +
1

2
‖ζ ′′‖∞d(v

h
k−1, u

h
k)2.

where we used the marginal property. This, combined with the previous identity, yields (in view of
replacing ζ by −ζ also):

∣

∣

∣

∣

∫ 1

0

uh
k − vh

k−1

h
ζdx−

∫ 1

0

f(uh
k)ζ ′′dx

∣

∣

∣

∣

≤
1

2h
‖ζ ′′‖∞d(v

h
k−1, u

h
k)2, (1.7)
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which is the so-called approximate Euler equation.

Remark: In the definition of the push-forward density uε, the authors of [10] use the variation
y = ψ(x, ε) defined as the solution of the autonomous

dy

dε
= ξ(y), y|ε=0 = x, for x ∈ [0, 1].

It turns out that ψε = ψ(·, ε) is invertible satisfying ψ−1
ε = ψ−ε and maps [0, 1] onto itself if ε is

small enough and ξ is smooth and compactly supported in (0, 1). A short proof is given at the end
of this paper (see Appendix). Thus, uε is defined as

uε :=
u ◦ ψ−1

ε

(ψε)′ ◦ ψ
−1
ε

,

and it is the push-forward by ε of the probability density u. It is easy to see that uε is also a
probability density, being precisely the variation used in (1.4) to give (1.6) (see [10]).

It is known there exists an increasing bijection (the Monge-Kantorovich mass transfer gradient)
φ : [0, 1] → [0, 1] such that

d(vh
k−1, u

h
k)2 =

∫ 1

0

(x − φ(x))2uh
k(x)dx, (1.8)

and, for all ξ ∈ C([0, 1] × [0, 1]),

∫ 1

0

∫ 1

0

ξ(x, y)dµ(x, y) =

∫ 1

0

uh
k(y)ξ(φ(y), y)dy. (1.9)

One can also prove that if 0 < δ ≤ u0 ≤ M < ∞ a.e. in (0, 1), then all uh
k and vh

k have the same
property (see [12], [11], [15]). From these we deduce (for details, see [11], [15])

f(uh
k)x −

1

h
(φ− id[0,1])u

h
k = 0 a.e. in [0, 1], (1.10)

which, by integration against ξ, gives back (1.6) for ξ not necessarily compactly supported (definitions
1 and 2 require broader classes of test functions). Why do we need to approximate u0 by functions
bounded from below away from 0? Because the Wasserstein distance is less degenerate in this case.

By this we mean (see [5]) φ is given by φ =
(

V h
k−1

)−1
◦ Uh

k , where V h
k−1(x) =

∫ x

0
vh

k−1(y)dy, U
h
k =

∫ x

0 u
h
k(y)dy. Corroborating this and (1.10) we infer that, provided that 0 < δ ≤ u0 ≤ M < ∞,

Uk := Uh
k satisfies







(

f(U ′
k)

)′
(x) = 1

hU
′
k(x)

(

V −1
k−1(Uk(x)) − x

)

a.e. in (0, 1),
Uk(0) = 0,
Uk(1) = Vk−1(1),

(1.11)

where Vk := V h
k and f(U ′

k) = f(uk) ∈ Lip(0, 1) (see [15]). We now give the following definition:

Definition 4. The boundary-value problem (1.11) is called the kth Wasserstein kernel associated
with the problem (Pf ).
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In the remaining sections of the paper we will put this concept to use. Two main cases are
discussed; a one-phase Stefan problem and a nonhomogeneous porous medium equation. Following
[8] we define, for h > 0, the interpolation uh : [0, 1]× (0,∞) → [0,∞) by:

uh(x, t) = uh
k(x) for kh ≤ t < (k + 1)h and x ∈ [0, 1], k ≥ 0 integer . (1.12)

The following is true:

Proposition 2. As h ↓ 0, we have (up to a subsequence):

uh ⇀ u weakly ? in L∞((0, 1) × (0, T )), (1.13)

where u ∈ L∞((0, 1) × (0, T )) satisfies:

lim
h↓0

∫ T

0

∫ 1

0

{

f(uh)xζx − g(·, ·, uh)ζ
}

dxdt =

∫ 1

0

u0ζ(·, 0)dx +

∫ T

0

∫ 1

0

uζtdxdt, (1.14)

for all ζ ∈ C∞
c ([0, 1] × [0, T )). Consequently,

lim
h↓0

∫ T

0

∫ 1

0

{

f(uh)ζxx + g(·, ·, uh)ζ
}

dxdt = −

∫ 1

0

u0ζ(·, 0)dx−

∫ T

0

∫ 1

0

uζtdxdt, (1.15)

for all ζ ∈ C∞
c ([0, 1] × [0, T )) that satisfy ζx(0, ·) ≡ ζx(1, ·) ≡ 0.

For the proof we refer the reader to [10], [15]. It is based on integrating (1.7) over [kh, (k + 1)h]
and then summing up for k = 1, ..,

[

T/h
]

− 1. Note that, as f is, generally, nonlinear, we cannot

simply use (1.13) to identify the l.h.s. in (1.15) as the desired
∫ T

0

∫ 1

0 f(u)ζxxdxdt (the problem in [8]
is linear, so the identification works there). Based on a technique due to Otto ([12]), we prove the
identification in [15] by showing the precompactness of {uh}h or {f(uh)}h under some additional
hypotheses on f . In what follows we employ the Wasserstein kernel ODE’s to identify these limits
in some special cases.

2 Heat flow and porous media

This section explores the case f(s) = sγ for some γ ≥ 1. Fix h > 0 for the moment, use the
simplified notation uk := uh

k and let Vk−1(x) :=
∫ x

0
vk−1(y)dy, Uk(x) :=

∫ x

0
uk(y)dy and I := (0, 1).

As we observed in [15], uk may be assumed to be Hölder continuous (exponent 1/γ) and, since uγ
k

is Lipschitz, it follows that uk is differentiable a.e. and

u′k =
u2−γ

k

γh

(

V −1
k−1 ◦Uk − idI

)

a.e. in (0, 1). (2.1)

2.1 Homogeneous problems

If g ≡ 0, we get Vk = Uk and we can write (2.1) as

u′k = cu2−γ
k

(

U−1
k−1 ◦ Uk − idI

)

a.e. in (0, 1), (2.2)
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where c := 1/(γh). Therefore, Uk is the solution for







U ′′(x) = c
(

U ′(x)
)2−γ(

U−1
k−1(U(x)) − x

)

for a.e. x in (0, 1),
U(0)= 0,
U(1)= 1.

(2.3)

We have already seen in [15] that 0 < δ ≤ u0 ≤ M < ∞ implies 0 < δ ≤ uh
k ≤ M < ∞ for all k, h

(valid in N dimensions). As an immediate consequence, the weak solution for

ut −
(

uγ
)

xx
= 0 in (0, 1) × (0,∞) and

(

uγ
)

x
= 0 on {0, 1} × (0,∞) (2.4)

with initial u(·, 0) = u0 satisfies δ ≤ u ≤ M a.e. in (0, 1) × (0,∞). We now show that the weak
solution generated by monotone initial data preserves the same monotonicity at almost all time
levels. Later, we will prove a similar result for the Stefan problem (in that case, we even employ
this feature to obtain the generalized solution).

Lemma 1. If uk−1 is nondecreasing (nonincreasing) and bounded away from zero and infinity, then
so is uk.

Proof: Observe first that both Uk−1 and Uk are strictly increasing and lie in C1,1/γ(0, 1). Assume
uk−1 is nondecreasing. We deduce that Uk−1 is convex on (0, 1). Suppose now that there exists a
small subinterval (a, b) ⊂ (0, 1) on which Uk < Uk−1. Since (2.2) implies

u′k = cu2−γ
k

(

U−1
k−1(Uk) − U−1

k−1(Uk−1)
)

a.e. in (0, 1), (2.5)

we deduce u′k < 0 a.e. in (a, b). As δ ≤ uk ≤ M a.e. in (0, 1) and uγ
k ∈ Lip(0, 1), it follows

uk ∈ Lip(0, 1). Thus, (2.5) shows uk is decreasing on (a, b). Consequently, Uk is strictly concave on
any subinterval on which it lies below Uk−1. Since Uk−1 is convex, we infer that the graphs of Uk−1

and Uk cannot share the same endpoints (as required) unless, of course, Uk−1 ≤ Uk on [0, 1]. Also,
Uk must be convex on [0, 1], otherwise (2.5) would again be contradicted. Indeed, Uk ≥ Uk−1 shows
that uk is nondecreasing (due to (2.5)) on (0, 1). The other case follows likewise. �

Next we prove that the convergence stated in Proposition 2 has one important property.

Lemma 2. Within the hypotheses of the previous theorem we have

uh(·, t) ⇀ u(·, t) weakly in L1(0, 1) for a.e. t > 0. (2.6)

Proof: First, observe that uh
k−1 is a competitor in (1.4). It follows

1

2h
d(uh

k , u
h
k−1)

2 + Sf (uh
k) ≤ Sf (uh

k−1), k ≥ 1.

By summing up these inequalities for k = 1..∞ we obtain

∞
∑

k=1

d(uh
k , u

h
k−1)

2 ≤ 2hSf (u0) = Ch. (2.7)

Fix ξ ∈ C∞
c (0, 1). For T < ∞ there exists C > 0 such that for all positive integers m, n with

max{m,n}h ≤ T , we have, as a consequence of (2.7), the triangle inequality for d and the Schwartz
inequality:

d(uh
m, u

h
n)2 ≤ C|m− n|h.
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We now claim that
∣

∣

∣

∣

∫ 1

0

ξudx−

∫ 1

0

ξu∗dx

∣

∣

∣

∣

≤ ‖ξ′‖∞d(u, u
∗).

Indeed, by (1.9) we have

∫ 1

0

ξudx−

∫ 1

0

ξu∗dx =

∫ 1

0

(ξ(x) − ξ(φ(x)))u∗(x)dx

and the claim is thus proved by using a first-order Taylor estimate, then Hölder’s inequality for p = 2

applied to
(

u∗
)1/2

and id − φ and then taking (1.8) into account. Therefore,

∣

∣

∣

∣

∫ 1

0

ξuh(t)dx −

∫ 1

0

ξuh(t′)dx

∣

∣

∣

∣

≤ C‖ξ′‖∞(|t− t′| + h)1/2, (∀)t, t′ ∈ (0, T ).

Now let t ∈ (0, T ) and note that for any δ > 0, we have

∣

∣

∣

∣

∫ 1

0

ξuh(t)dx −

∫ 1

0

ξu(t)dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0

ξuh(t)dx −
1

2δ

∫ t+δ

t−δ

∫ 1

0

ξuhdxds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2δ

∫ t+δ

t−δ

∫ 1

0

ξuhdxds−
1

2δ

∫ t+δ

t−δ

∫ 1

0

ξudxds

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2δ

∫ t+δ

t−δ

∫ 1

0

ξudxds−

∫ 1

0

ξu(t)dx

∣

∣

∣

∣

.

The first and second terms of the right hand side converge to zero due to the previous inequality
and (1.13). As for the third term, it is no longer the case to use the smoothness of u as the authors
of [8] do to prove that it converges to zero for every t > 0. This does, however, hold for a.e. t > 0.

Indeed, this is just the Lebesgue theorem applied to f(t) :=
∫ 1

0 ξ(x)u(x, t)dx. �

Due to (1.12) and the fact that the set of all essentially nondecreasing (nonincreasing) functions in
Mu0

is closed under weak L1 convergence, we infer

Proposition 3. If u0 is nondecreasing (nonincreasing) and bounded away from zero and infinity,
then so is the weak solution u for (2.4) at almost every time level.

2.2 A nonhomogeneous problem for γ = 2

Let us consider the following problem:






ut −
1
2 (u2)xx = u a.e. in (0, 1)× (0, T ),

(u2)x = 0 on {0, 1} × (0, T ),
u(·, 0)= u0 in (0, 1).

(2.8)

Due to (2.1), at each step k, Uk is the unique solution for the boundary value problem:






hU ′′(x) = V −1
k−1(U(x)) − x a.e. in (0, 1),

U(0) = 0,
U(1) = Vk−1(1).

(2.9)

The uniqueness follows by the maximum principle (see [1]) applied to −U ′′ + a(x)U = 0 with
U(0) = U(1) = 0 where, as usual, U := U1 − U2, V := Vk−1 and a(x) := 1/

(

hv
(

V −1(yx)
))

where

1

h

(

V −1
(

U1(x)
)

− V −1
(

U2(x)
)

)

=
1

hv
(

V −1(yx)
)

(

U1(x) − U2(x)
)
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for some yx between U1(x) and U2(x). Note that vk−1 := V ′ is positive and bounded away from

0 and infinity. For simplicity, let us assume that 0 < δ ≤ u0 ≤ M < ∞ satisfies
∫ 1

0 u0dx = 1, i.e.
U0(1) = 1. Now, (1.5) implies

Vk(x) := Uk(x) + h

∫ x

0

uk(y)dy = (1 + h)Uk(x),

for all x ∈ I and all 0 ≤ k ≤ n− 2. In particular, (2.9) implies Uk(1) = (1 + h)k. We now introduce
the new, rescaled functions:

Sk := Uk/(1 + h)k (2.10)

which obviously satisfy Sk(0) = 0 and Sk(1) = 1. One can also check that Sk is, in fact, the unique
solution of:







h(1 + h)kS′′(x) = S−1
k−1(S(x)) − x a.e. in (0, 1),

S(0) = 0,
S(1) = 1.

(2.11)

(Of course, S0 = U0.) Consequently, sk := S′
k is the (unique up to a set of measure 0) solution of

the minimization scheme:

sk minimizes:
1

h(1 + h)k
d(s, sk−1)

2 +

∫ 1

0

s2dx (2.12)

among all s ∈ M.

(Here M := Mu0
with u0 ≡ 1.) Our plan is to show that the set of interpolants

{

sh
}

h↓0
, con-

structed in the same way as
{

uh
}

h↓0
but based on sh

k rather than uh
k , is precompact in L1(0, 1). It is

easy to show how this leads to the precompactness of
{

uh
}

h↓0
in L1(0, 1). Indeed, note that (2.10)

implies sh
k := (1+h)−kuh

k so the definition of uh gives uh(t) = (1+h)[t/h]sh(t) for all t ∈ (0, T ). But
then (1 + h)[t/h] → et as h → 0 and thus our claim is proved. Therefore, if we can find s such that
sh → s both in L1(Q) and a.e. in Q, then uh → ets := u in L1 and a.e. which renders u the desired
weak solution.
The existence of sk as the unique minimizer for (2.12) is again insured by Proposition 1.

Proposition 4.
{

sh
}

h↓0
is precompact in L1((0, 1) × (0, T )).

Proof: The proof follows closely the proof of the precompactness of
{

sh
}

h↓0
in [12]. We will

only justify the main ingredients; the way they are glued together is precisely as referred. The
precompactness in space is once again not an issue since all it takes is the fact that I = (0, 1) is

convex and the uniform boundedness of
{(

sh
)2

x

}

h↓0
in L2. To justify this, we need to go back to

the proof in [12] and observe that the following remains true

‖(s2k)x‖L2(I) ≤
C

h
(‖sk‖∞)1/2d(sk−1, sk). (2.13)

Note that the constant C > 0 is independent of k, h and it comes from the fact that 1 ≤ (1+h)k ≤ eT .
The uniform boundedness of the sk’s is also obvious.
Precompactness in time will be a consequence of an inequality of type (2.14). As all the sk’s have
now the same mass (unit mass), we can apply Otto’s argument from [12] to obtain

∫ 1

0

(sh
k+j − sh

k)
(

(sh
k+j)

2 − (sh
k)2

)

dx ≤
C

h
d(sh

k , s
h
k+j)

[

d(sh
k , s

h
k−1) + d(sh

k+j , s
h
k+j−1)

]

, (2.14)
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for some C > 0 independent of k, j, h. Finally, we need to verify that there exists some C > 0 such
that

n−1
∑

k=1

d(sh
k−1, s

h
k)2 ≤ Ch.

Since sh
k minimizes the functional in (2.12) we have

1

h(1 + h)k
d(sh

k , s
h
k−1)

2 +

∫ 1

0

(sh
k)2dx ≤

∫ 1

0

(sh
k−1)

2dx,

for all k ≥ 1. Summing from 1 to n− 1 and taking into account that 1 ≤ (1 + h)k ≤ eT we obtain
the desired estimate. �

Remark: The proposition remains valid even if f(u) = u2/2 is replaced by any function f satisfying

cx ≤ f ′(x) ≤ Cx, for all x ≥ 0

for some c, C > 0. g(x, t, u) = u can also be replaced by g(x, t, u) = αu for some α ≥ 0.

Next we will try to understand to what extent the ideas above can be applied in the case of a
general r.h.s.. It is easy to see that, for a general g in one-dimension, Sk solves:







hVk−1(1)S′′(x) = T−1
k−1(S(x)) − x a.e. in (0, 1),

S(0) = 0,
S(1) = 1,

(2.15)

where

Tk−1(x) :=
Vk−2(1)

Vk−1(1)
Sk−1(x) +

1

Vk−1(1)

∫ x

0

∫ kh

(k−1)h

g(y, τ, Vk−2(1)S′
k−1(y))dτdy.

Therefore,

sh
k := S′

k minimizes
1

hVk−1(1)
d(s, thk−1)

2 +

∫ 1

0

s2dx,

where thk−1 := T ′
k−1. Again sh(x, t) := uh(x, t)/V h(t) where V h(t) :=

∫ 1

0 u
h(x, t)dx = V h

k−1(1) for

k =
[

t/h
]

. As before, we would like to know whether the convergence of {sh} in L1 implies the
convergence of {uh}. It is easy to see that the convergence of {V h} a.e. in (0, T ) as well as its

boundedness from above and from below away from zero would suffice. As V h
k−1(1) =

∫ 1

0
uh

kdx, the
desired boundedness follows trivially. For convergence (up to a subsequence) we have the following
lemma (valid for Ω in arbitrary dimension):

Lemma 3.
{ ∫

Ω u
h(x, t)dx

}

h↓0
is precompact in L1(0, T ).

Proof: Choose an arbitrary ξ ∈ C∞
c (0, T ) and mote that

∫ T

0

(
∫

Ω

uh(x, t)dx

)

ξtdt = ξ(h)
n−1
∑

k=1

ξ(kh)

∫

Ω

(

uh
k−1 − uh

k

)

dx.

As
∫

Ω

(

uh
k−1 − uh

k

)

dx =

∫

Ω

(

uh
k−1 − vh

k−1

)

dx = O(h),

we obtain
∣

∣

∣

∣

∫ T

0

(
∫

Ω

uh(x, t)dx

)

ξtdt

∣

∣

∣

∣

≤ CT‖ξ‖L∞(0,T ),

i.e.
{ ∫

Ω u
h(x, t)dx

}

h↓0
is bounded in BV (0, T ). �
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Remark: It is obvious, due to (1.13), that (up to a subsequence)

∫

Ω

uh(x, t)dx) →

∫

Ω

u(x, t)dx in L1(0, T ) and a.e. in (0, T ).

As all the sh
k ’s and the thk ’s are of unit mass, we can readily write a variant of (2.14):

∫ 1

0

(sh
k+j − sh

k)
(

(sh
k+j)

2 − (sh
k)2

)

dx ≤
C

h
d(sh

k , s
h
k+j)

[

d(sh
k , t

h
k−1) + d(sh

k+j , t
h
k+j−1)

]

, (2.16)

for some C > 0 independent of k, j, h. We can also show, as before,

n−1
∑

k=1

d(sh
k , t

h
k−1)

2 ≤ Ch.

In order to complete the proof of the precompactness of {sh} we need a bound of d(sh
k , s

h
k+j) in

terms of quantities of the type d(sh
i , t

h
i−1). Unfortunately, we have not been able to obtain such a

bound.

3 A Stefan problem

3.1 The classical solution

Let θ0 be a nonnegative, measurable function on [0,∞) supported in [0, 1) and normalized to satisfy

|{θ0 > 0}|+

∫ 1

0

θ0dx = 1. (3.1)

By a classical solution for the one-phase, one-dimensional Stefan problem on [0,∞) with initial data
θ(·, 0) ≡ θ0 and natural boundary conditions θx(0, ·) ≡ 0, we understand a pair (θ(x, t), r(t)) with
θ(·, t) ∈ C1[0, r(t)) ∩ C2(0, r(t)) for t > 0, θ(x, ·) ∈ C1(r−1(x),∞) and x = r(t) a differentiable
function such that







































θt − θxx = 0 for t > 0, x ∈ (0, r(t)),

θ(r(t), t) = 0 for t > 0,

D−
x θ(r(t), t) = −r′(t) for t > 0,

θx(0, t) = 0 for t > 0,

θ(x, 0) = θ0(x) for x ∈ [0,∞),

θ(x, t) = 0 for t > 0 and x > r(t).

(3.2)

A dual formulation (see [6], [9]) involves the inverse t = s(x), the equation thus becoming







































θt − θxx = 0 for x ∈ [0, a), t > s(x),

θ(x, s(x)) = 0 for x ∈ [0, a),

D−
x θ(x, s(x))s

′(x) = −1 for x ∈ [s−1(0), a),

θx(0, t) = 0 for t > 0,

θ(x, 0) = θ0(x) for x ∈ [0,∞),

θ(x, t) = 0 for x ∈ [s−1(0), a) and s(x) > t,

(3.3)
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where 0 < a ≤ ∞ such that s(x) ↑ ∞ as x ↑ a. Therefore, for the existence of a classical solution
we require that r be invertible with r−1 = s and r((0,∞)) = (r(0), a). The region occupied by the
liquid at time t > 0 is therefore (0, r(t)) while the ice occupies the region (r(t), 1). The function
θ represents the temperature and x = r(t) stands for the transition layer between the two states
(liquid/solid).
Assuming that (3.2) has a classical solution (which must be positive in the liquid region), it is not
hard to see that this solution satisfies, for every t > 0, the conservation

r(t) +

∫ r(t)

0

θ(x, t)dx = r(t) +

∫ 1

0

θ(x, t)dx = 1. (3.4)

This is obtained by simply differentiating the first term w.r.t. t and using θt = θxx on (0, r(t))
and the side x-derivative condition at (r(t), t). The curve x = r(t) can be proved to be monotone
increasing. Indeed, as θ > 0 in the liquid region (to the left of (r(t), t)) and θ(r(t), t) = 0, we infer
that θx(r(t), t) ≤ 0, i.e. r′(t) ≥ 0. We have seen that r is also invertible as a function from (0,∞)
onto (r(0), a) and (3.3) ensures r′ 6= 0 everywhere. Therefore, r′(t) > 0 for every t ∈ (0,∞).

In what follows, we make the extra-assumption

θ0 is decreasing on [0, 1]. (3.5)

We specify that throughout this section f is said to be decreasing if (x− y)(f(x)− f(y)) ≤ 0 for all
x, y ∈ Dom(f). We say that f is strictly decreasing if it is decreasing and one-to-one. (Decreasing
is replaced by increasing if ≥ replaces ≤.)
Note that (3.5) is in accordance with our intuition of the monotonicity of the temperature at the
moment the heat source is switched off and right before the system starts evolving under no boundary
heat exchange regime. Also, let us further assume (for the moment) that x = r(t) is continuously
differentiable and:

θ0 ∈ C[0, 1] ∩ C1[0, r(0)) and D−
x θ0(r(0)) = −r′(0) < 0. (3.6)

Proposition 5. The function θ(·, t) is monotone decreasing on [0, 1] for every t ≥ 0.

Proof: Suppose θ(·, t0) is decreasing for some t0 ≥ 0 (we know this happens for t0 = 0). As
r′(τ) ≥ ε > 0 in some small one-sided neighborhood V of x0 = r(t0) on the curve x = r(t)
(say, x = r(t) for t0 < t < t1) we find θx < −ε < 0 in V . Due to the smoothness of θ inside
∪t>0{t}× (0, r(t)) we find that there exists c > 0 such that θx < −ε/2 in the region W bounded by
V , its translated by c to the left (denoted by Vc) and the lines t = t0 and t = t2 for some t2 ∈ (t0, t1).
The vertical through x0 intersects ∂W again at the point (x0, t

′) for some t′ > t0. The maximum
principle applied to θx (which also satisfies the heat equation) in the rectangle Rc = (0, x0)× (t0, t

′)
ensures that θx ≤ 0 in Rc. To the right of Rc, θx is again nonpositive (by the construction of W ).
Therefore, we have found a t′ > t0 such that θ(·, t) is decreasing for all t ∈ [t0, t

′). This leads to
the fact that the set T of all t > 0 for which θ(·, t) is decreasing is open in [t0,∞). Due to the
smoothness of θ inside the liquid region we also infer that T is closed in [t0,∞). Since we may pick
t0 = 0, the proof is concluded. �

3.2 K↓: a manifold of monotone decreasing functions

Recall that the enthalpy U of θ is defined as the multivalued application U := θ+H(θ) (of course, we
assume latent heat L = 1) where H is the Heaviside graph. A special element is given by u := 1 + θ
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if θ > 0 and u := 0 if θ = 0. By abuse of language, we can refer to any u ∈ U as an enthalpy

(see [15]). Thus, (3.4) becomes
∫ 1

0
u(x, t)dx = 1 for all t > 0. Also, as (3.4) is satisfied, we deduce

0 < r(t) < 1 for all t > 0. Therefore, we envision to fashion a nonnegative generalized solution (see

Definition 2) in the interval (0, 1) that satisfies
∫ 1

0 u(x, t)dx = 1 for a.e. t > 0. Indeed, since θ ≡ 0 to
the right of x = r(t), we can simply extend it by 0 to the right of x = 1 obtaining the solution for our
problem. We will also see that the artificial assumption (3.6) (which only was adopted to prove the
previous proposition) may be dropped. Thus, under (3.4) and (3.5), we will construct a generalized
solution for (3.2) that turns out to be “almost classical” (and weak). This means that the jump of
the spatial derivative of θ across the interface x = r(t) will only satisfy D−

x θ(r(t), t) = −r′(t) for a.e.
t > 0 and θ will be continuous except possibly on a set of zero one-dimensional Haussdorf measure.
The interface itself is only continuous and strictly increasing; therefore, only a.e. differentiable.
Let us consider the problem:















ut − θxx = 0 in (0, 1) × (0,∞),
u∈ θ +H(θ) in (0, 1) × (0,∞),
θx = 0 on {0, 1}× (0,∞),

θ(·, 0) = θ0 in (0, 1).

(P )

We will define the function α : [0,∞) → [0,∞) by

α(z) := 0 if z ∈ [0, 1] and α(z) := z − 1 if z ∈ (1,∞). (3.7)

Note that the temperature is retrieved by θ := α(u), i.e. u ∈ θ +H(θ) is equivalent to θ = α(u).
Assume (θ, r) is a classical solution for (3.2). Then it is easy to prove that a special u ∈ θ +H(θ)

(given by u := 1 + θ if θ > 0 and u := 0 if θ = 0) satisfies
∫ 1

0 u(x, t)dx = 1 (due to (3.4)) for all t
and is, in fact, a weak solution for (P ) (with u0 := 1 + θ0 if θ0 > 0 and u0 := 0 if θ0 = 0) in the
sense of Definition 1 (and, consequently, a generalized solution in the sense of Definition 2).

An adaptation of an important uniqueness result due to Brezis and Crandall (see [3], [15]) suc-
cessfully applies here to show that, if θ0 (and so u0) is essentially bounded, then the temperatures
θε := α(uε) converge strongly in L2

loc([0, 1] × (0,∞)) to θ := α(u), where uε, u are the generalized
solutions for (P ) for initial data uε

0 and u0 respectively such that uε
0 → u0 strongly in L2(0, 1) (see

[15] for proof). Therefore, from now on we can prove our results for uε
0 ∈ θ0 + H(θ0) given by

uε
0 := 1 + θ0 if θ0 > 0 and uε

0 := ε if θ0 = 0 (for some 0 < ε < 1). Indeed, it will become clear that
the existence and certain properties of the solution uε (due to the above mentioned convergence)
apply to u, i.e. the solution for (P ) with initial data u0 ∈ θ0 +H(θ0) given by u0 := 1 + θ0 if θ0 > 0
and u0 := 0 if θ0 = 0.
In this case, (1.11) reads







θ′k(x) = 1
huk(x)

(

U−1
k−1(Uk(x)) − x

)

a.e. in (0, 1),
Uk(0) = 0,
Uk(1) = 1,

(3.8)

where Uk is the antiderivative of uk that vanishes at 0 and θk := α(uk) ∈ Lip(0, 1) (see [15]).
We now define

K↓ := {u ∈ K | u is essentially bounded and decreasing on (0, 1)}, (3.9)

and based on (3.8) we will prove the following

Lemma 4. If uk−1 ∈ K↓ and is bounded away from zero and infinity, then so is uk and uk ∈ K↓.
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Proof: Observe first that both Uk−1 and Uk are strictly increasing and absolutely continuous.
As uk−1 ∈ K↓ we deduce that Uk−1 is concave on (0, 1). Suppose now that there exists a small
subinterval (a, b) ⊂ (0, 1) on which Uk > Uk−1. From (3.8) we write

hθ′k = uk

(

U−1
k−1(Uk) − U−1

k−1(Uk−1)
)

a.e. in (0, 1), (3.10)

which implies θk is strictly increasing on (a, b) (as it is Lipschitz continuous). It follows (due to its
nonnegativity) that θk > 0 in (a, b), i.e. uk > 1 and θk = uk−1 in (a, b). We infer uk|(a,b) ∈ Lip(a, b)
and (3.10) now reads

hu′k = uk

(

U−1
k−1(Uk) − U−1

k−1(Uk−1)
)

> 0 a.e. in (a, b).

Consequently, Uk is strictly convex on any subinterval on which it exceeds Uk−1. Since Uk−1 is
concave, we infer that the graphs of Uk−1 and Uk cannot share the same endpoints (as required)
unless, of course, Uk−1 ≥ Uk on [0, 1]. Similarly it can be proved that Uk must be concave on [0, 1],
otherwise (3.10) would again be contradicted. Indeed, Uk ≤ Uk−1 shows that θk is decreasing (due
to (3.8)) on (0, 1). Therefore, there exists 0 < rk < 1 (the inequalities are strict due to (3.4)) such
that {θk > 0} = [0, rk). This means uk = θk + 1 and is also decreasing on [0, rk), i.e. Uk is concave
on (0, rk). Also, θk = 0 a.e. in [rk , 1) and, again due to (3.8) (also because 0 < δ ≤ uk), it follows
that Uk = Uk−1 a.e. in [rk, 1). Consequently, Uk is concave on [0, 1], i.e. uk ∈ K↓. �

Obviously, the following now holds:

Corollary 2. If u0 ∈ K↓ and is bounded from above and from below away from 0, then so is uk and
uh

k ∈ K↓ for all k, h.

Due to the considerations above and Lemma 2, u(·, t) ∈ K↓ for almost all t > 0. Observe that, even
with α being convex on [0,∞) and uh(·, t) ⇀ u(·, t) in L1(0, 1) for a.e. t > 0, it does not necessarilly
follow that α(uh(·, t)) ⇀ α(u(·, t)) in L1(0, 1) to give us a weak solution. We can actually go even
further and state that, even if the weak L1 limit of α(uh) exists as in (1.15), we still cannot infer
convergence to α(u) in any reasonable sense. In [15] we approximate α by smooth functions and
then prove precompactness of {uh}h↓0 to infer existence for the approximate problem. Then we pass
to the limit by using a consequence of a technique inspired by [3].
As stated in the beginning of this paper, here we plan to use monotonicity to compensate and
obtain the desired weak convergence. More precisely, our next goal is to prove that if we start with
a decreasing u0, we can, by the same means, look for and actually find a weak solution in K↓ (defined
in (3.9)).
Let us first state one fundamental lemma.

Lemma 5. If {vn}n ⊂ K↓ such that vn ⇀ v in L1(0, 1) then v ∈ K↓ and α(vn) ⇀ α(v) in L1(0, 1).

Proof: Obviously, K↓ is closed under L1 weak convergence. We will concentrate our efforts on
demonstrating that

vn ⇀ v implies α(vn) ⇀ α(v) weakly in L1(0, 1), (3.11)

where vn for all n and v lie in K↓. Fix ξ ∈ L∞(0, 1) and denote an :=
∫ 1

0 α(vn)ξdx. We will deduce

that {an}n converges to l :=
∫ 1

0
α(v)ξdx by showing that any subsequence of {an}n contains a

subsequence convergent to l. For every n denote xn ∈ [0, 1] the level-1 “threshold” vn(xn −0) ≥ 1 ≥
vn(xn+0) and x∗ the corresponding for v. That is, x∗ is the smallest satisfying v(x−0) ≥ 1 ≥ v(x+0).
Take now any subsequence of {vn}n and out of it extract a subsequence (we do not relabel) {vn}n

such that {xn}n is monotone. We encounter three possibilities:
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• xn ↓ 0!

Here it is easy to show that x∗ = 0 and it only happens when v ≡ 1 a.e.. We want to prove now
that

∫

{vn>1}

(vn − 1)ξ =

∫ xn

0

(vn − 1)ξ → 0.

As
∫ xn

0

ξdx → 0 and

∣

∣

∣

∣

∫ xn

0

vnξdx

∣

∣

∣

∣

≤ ‖ξ‖∞

∫ xn

0

vndx,

it suffices to show
∫ xn

0
vn → 0. Let m be a positive integer greater than 2. As vn ⇀ v ≡ 1 we deduce

that, for sufficiently large n, we have

1

m− 1
>

∫ 1/m

0

vn since

∫ 1/m

0

vn →
1

m
.

As xn ↓ 0 and so xn will eventually be smaller than 1/m, for even larger n we will have

1

m− 1
>

∫ xn

0

vn ≥ 0,

so the claim is proved.

• xn ↑ 1!

Again, we obtain that v ≡ 1 and the rest of the proof follows as before.

• xn ↑ x∗ ∈ (0, 1) or xn ↓ x∗ ∈ (0, 1)!

W.l.o.g. consider the second situation. As
∫ xn

0
ξ →

∫ x∗

0
ξ trivially, we only need to prove that

∫ xn

0 vnξ →
∫ x∗

0 vξ. We have

∫ xn

0

vnξ −

∫ x∗

0

vξ =

∫ x∗

0

(vn − v)ξ +

∫ xn

x∗

vnξ.

The first integral tends obviously to zero. The second integral does the same if we take into account
that the vn’s are uniformly essentially bounded in every small left-sided neighbourhood of x∗. Indeed,
fix δ > 0 such that 0 < x∗ − δ. If that were not the case then, for every M > 0, there would exist N
such that vN ≥ M on (0, x∗ − δ) (due to the fact that vN is decreasing). For M large enough, the
integral of vN would then exceed 1, contradicting thus vN ∈ K. �

Now we are ready for:

Theorem 1. If u0 ∈ K↓ then there exists a generalized solution u ∈ L∞((0, 1) × (0,∞)) satisfying
u(·, t) ∈ K↓ for almost all t > 0.

Proof: We can restrict all work to K↓ and we find the minimizers uh
k (defined in (1.4)) and,

consequently, all uh(·, t)’s (see (1.12)) lying in K↓ (Corollary 2). It follows u(·, t) ∈ K↓ for a.e. t > 0,
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where u is the one from Proposition 2 (as K↓ is closed under weak L1 convergence). According to
the same proposition, all that remains to be proved is

lim
h↓0

∫ ∞

0

∫ 1

0

α(uh(x, t))ξxx(x, t)dxdt =

∫ ∞

0

∫ 1

0

α(u(x, t))ξxx(x, t)dxdt, (3.12)

for all the appropriate test functions ξ. For this, it suffices to choose a t > 0 for which (2.6) holds
and then use Lemma 5 to deduce α(uh(·, t)) ⇀ α(u(·, t)) in L1(0, 1). Then consider the x-integrals
over (0, 1) against ξxx(·, t) (which converge), integrate w.r.t. t and take into account that

fh(t) :=

∫ 1

0

α(uh(x, t))ξxx(x, t)dx =

∫

{uh(·,t)>1}

{

uh(x, t) − 1
}

ξxx(x, t)dx

is, in fact, uniformly bounded since uh(·, t) ∈ K. Therefore, as the time integral is actually with
finite limits due to ξ, we use dominated convergence to infer (3.12). �

Remark: It is interesting to investigate whether we can, in fact, drop the monotonicity of θ0, i.e.
relax (3.5) to read

0 < θ0 ≤M <∞ on [0, r(0)) and θ0 = 0 on [r(0), 1]. (3.13)

We can easily make slight changes to the argument from the proof of Lemma 5 and apply it to the
set (instead of K↓)

KM
1,ε = {u ∈ K

∣

∣ M ≥ u ≥ 1 a.e. on [0, γ), u = ε ≤ 1 a.e. on [γ, 1] for some γ ∈ [0, 1]},

where 1 ≤ M < ∞. This is in view of considering u0 := 1 + θ0 if θ0 > 0 and u0 := ε < 1 if θ0 = 0.
It is not, however, that obvious how to prove an alternative to Lemma 4 with KM

1,ε instead of K↓.
This is exactly what we do below.

Lemma 6. If uk−1 ∈ KM
1,ε, then uk ∈ KM

1,ε for all integers k ≥ 1.

Proof: First we note that only a negligible set of zeros of θk lies in (0, rk−1) := {uk−1 > 1}.
Otherwise, denote by Ok := {θk = 0} ∩ (0, rk−1) and assume meas(Ok) > 0. As θk ∈ W 1,∞(0, 1)
it follows that both θk and θ′k vanish a.e. in Ok. This implies two things: first, uk ≤ 1 a.e. in
Ok and secondly, by (3.8) we obtain Uk−1 = Uk a.e. in Ok. The latter implies uk−1 = uk a.e. in
Ok and, as uk−1 > 1 a.e. in (0, rk−1), it contradicts the former. Therefore, θk > 0 and so uk > 1
a.e. in {uk−1 > 1}. Since uk−1 ∈ KM

1,ε, we deduce the graph of Uk−1

∣

∣

[rk−1,1]
is a straight line of

slope ε connecting (rk−1, Uk−1(rk−1)) and (1, 1). Observe now that Uk(rk−1) ≤ Uk−1(rk−1). If not,
we proceed as in the proof of Lemma 4 and deduce that the graph of Uk would miss the endpoint
(1, 1). Now, if Uk(x) = Uk−1(x) for some x ∈ [rk−1, 1], then Uk−1 = Uk on [x, 1], i.e. uk = ε a.e.
in [x, 1]. Indeed, if the two graphs part again to the right of x, then Uk becomes strictly convex
or strictly concave (see the proof of Lemma 4) and misses the prescribed endpoint at (1,1). Let
rk := min{x ∈ (0, 1) | uk = ε a.e. in [x, 1]}. All we need to show is uk > 1 a.e. in (0, rk). We
have seen that this is true in (0, rk−1). As noted, on (rk−1, rk) the graph of Uk is below that of
Uk−1. Therefore, θ′k < 0 a.e. in (rk−1, rk) which means θk 6= 0 (i.e. θk > 0) a.e. in (rk−1, rk). This
concludes our proof. �

We can now state the more general result:

Theorem 2. If u0 ∈ KM
1,ε then there exists a generalized solution u ∈ L∞((0, 1)× (0,∞)) satisfying

u(·, t) ∈ KM
1,ε for almost all t > 0.

Therefore, it suffices for the initial data θ0 to be bounded from above, strictly positive a.e. in
(0, x0) and identically zero in (x0,∞) to obtain existence of the weak solution for (P ).
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3.3 The free boundary and the regularity of θ

Let us now assume that 0 ≤ θ0 ≤ M < ∞ and (3.5) holds. Also assume that (3.1) stands, i.e.

|{θ0 > 0}| +
∫ 1

0 θ0dx = 1. As indicated in the previous section, let us fix 0 < ε < 1 and let
uε

0 ∈ θ0 +H(θ0) be given by uε
0 := 1 + θ0 if θ0 > 0 and uε

0 := ε if θ0 = 0. Then let

ηε :=

∫ 1

0

uε
0dx = 1 + ε|{θ0 = 0}|.

Recall that uε,h
k satisfies











(

θε,h
k

)′
(x) = 1

hu
ε,h
k (x)

((

U ε,h
k−1

)−1
(U ε,h

k (x)) − x
)

a.e. in (0, 1),

U ε,h
k (0) = 0,

U ε,h
k (1) = ηε,

(3.14)

where U ε,h
k is the antiderivative of uε,h

k that vanishes at 0 and θε,h
k := α(uε,h

k ) ∈ Lip(0, 1) (see
[15]). Note that U ε

0 is strictly increasing and concave (of supraunitary slope) up to r0 := min{r ∈
[0, 1], θ0(r) = 0} (0 < r0 < 1 due to (3.1) and (3.5)) and U ε

0(x) = ε(x − 1) + ηε for x ∈ (r0, 1].
(In this context, supraunitary slope means, obviously, uε

0 > 1). We will prove by induction that all

U ε,h
k ’s have a similar structure. As proved in [15], all θε,h

k ’s are Lipschitz continuous functions on

[0, 1]. They are also decreasing due to Corollary 2. We show that the sequence
{

rε,h
k

}

k
is increasing,

where rε,h
k := min{r ∈ [0, 1], θε,h

k (r) = 0}. As anticipated, assume that U ε,h
k−1 looks like U ε

0 , i.e. it is

strictly increasing and concave (of supraunitary slope) up to rε,h
k−1 and U ε,h

k−1(x) = ε(x− 1) + ηε for

x ∈ (rε,h
k−1, 1].

Lemma 7. If θε,h
k−1 is essentially decreasing on (0, 1) then so is θε,h

k and rε,h
k ≥ rε,h

k−1. Also U ε,h
k−1 ≥

U ε,h
k a.e. in [0, rε,h

k ) and U ε,h
k (x) = ε(x− 1) + ηε for a.e. x ∈ [rε,h

k , 1].

Proof: The first statement follows from Lemma 4. The rest is a fairly simple exercise consisting of
a more in-depth geometrical exploitation of the proof of the same lemma. First suppose rε,h

k < rε,h
k−1.

Then
(

θε,h
k

)

=
(

θε,h
k

)′
= 0 a.e. in (rε,h

k , 1) and (3.14) implies U ε,h
k−1 = U ε,h

k a.e. in (rε,h
k , 1). In

particular, U ε,h
k−1 = U ε,h

k a.e. in (rε,h
k , rε,h

k−1) and so uε,h
k−1 =

(

U ε,h
k−1

)′
=

(

U ε,h
k

)′
= uε,h

k a.e. in

(rε,h
k , rε,h

k−1). Also, since θε,h
k = 0 a.e. in (rε,h

k , rε,h
k−1), it follows that

(

U ε,h
k

)′
= uε,h

k ≤ 1 a.e. in

(rε,h
k , rε,h

k−1). However, uε,h
k−1 > 1 a.e. in (rε,h

k , rε,h
k−1) (because θε,h

k−1 > 0 there), so we arrive to a
contradiction.
The second part follows easily as we observe that θε,h

k = 0 and thus U ε,h
k−1 = U ε,h

k a.e. in [rε,h
k , 1]. �

Remark: As θε,h
k = uε,h

k − 1 on [0, rε,h
k ) (i.e. the set where uε,h

k > 1) and θε,h
k is Lipschitz continuous

we infer that uε,h
k is decreasing and Lipschitz continuous on [0, rε,h

k ) bounded from below by 1. Then

it jumps at rε,h
k to ε where it stays up to 1.

Let uε,h be the standard time interpolant of the uε,h
k ’s (see (1.12)) and uε be the weak solution for

(P ). If we let U ε,h(x, t) :=
∫ x

0 u
ε,h(y, t)dy and U ε(x, t) :=

∫ x

0 u
ε(y, t)dy note that, due to Lemma 5,

U ε,h(·, t) → U ε(·, t) pointwise in (0, 1) for a.e. t > 0.

Since uε,h(x, t) = uε,h
[t/h](x) in [0, 1], we infer that for a.e. t > 0 we have U ε,h

[t/h] → U ε(·, t) in [0, 1]

pointwise. Of course, U ε(·, t) is also concave and, if we consider a subsequence of {h} (still denoted
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by {h}) such that {rε,h
[t/h]}h is monotone, we easily see that U ε(·, t) has almost the same structure

as U ε,h
[t/h]. That is, there exists rε(t) ∈ [0, 1] (the limit of {rε,h

[t/h]}h) such that
(

U ε
)′

(·, t) = uε(·, t)

is decreasing on (0, 1), uε ≥ 1 on [0, rε(t)) and uε(·, t) = ε on (rε(t), 1]. Also, due to Lemma 7,
t→ rε(t) is increasing.
Therefore, we have just given a sketch of the proof of the following

Proposition 6. There exists an increasing function t → rε(t) ∈ [0, 1] defined for a.e. t > 0 such
that uε(·, t) is decreasing for any such t and

uε(·, t) ≥ 1 on [0, rε(t)) and uε(·, t) = ε on [rε(t), 1]. (3.15)

As we have already mentioned in the previous section, there exists a weak solution u for (P ) with
initial data u0 := 1 + θ0 if θ0 > 0 and u0 := 0 if θ0 = 0 such that θε → θ (where θ = α(u) as before)
strongly in L2((0, 1) × (0, T )) and a.e. in (0, 1) × (0, T ). We now prove the following

Proposition 7. There exists an increasing function t → r(t) ∈ [0, 1] defined for a.e. t > 0 such
that u(·, t) is decreasing for any such t and

u(·, t) ≥ 1 on [0, r(t)) and u(·, t) = 0 on [r(t), 1]. (3.16)

Proof: We obviously have θε(·, t) → θ(·, t) strongly in L2(0, 1) and for a.e. t > 0. Then, as in [15],
the maximal monotone operators theory implies uε(·, t) ⇀ u(·, t) weakly in L2(0, 1). Consequently,
U ε(·, t) → U(·, t) pointwise in (0, 1), where U(x, t) :=

∫ x

0
u(y, t)dy. Therefore, U(·, t) is also concave

and consider a subsequence (still indexed by ε) such that {rε(t)}ε is monotone. Assume this subse-
quence converges to something that we denote by r(t). Then, ηε ↓ 1 also as ε ↓ 0 and we easily infer
(3.16) by (3.15). The previous proposition also ensures that rε is increasing as a function of t. It is
not hard to see that the same property is now passed to r. �

Note that, due to (3.4), 0 < r(t) < 1 for all t for which it is defined. Let us define r(t) := limτ↑t r(τ)
at those t’s where it was not previously defined. Thus, r is defined everywhere on (0,∞) and is
increasing. Therefore, r = r(t) is continuous possibly with the exception of a countable set of t’s in
(0,∞). At those t’s we redefine it to satisfy r(t) := limτ↑t r(τ). Thus, r becomes left-continuous.

Theorem 3. After possibly redefining θ := α(u) on negligible sets, the following are true:
(i) t→ r(t) is strictly increasing and continuous;
(ii) θ is continuous in (0, 1) × (0,∞) possibly with the exception of a set of zero one-dimensional
Haussdorf measure;
(iii) θ is strictly positive, smooth and satisfies θt = θxx to the left of x = r(t), i.e. in the region
∪t>0{t} × (0, r(t));
(iv) θx(0, ·) ≡ 0 on (0,∞);
(v) θ ≡ 0 to the right of x = r(t), i.e. in the region ∪t>0{t} × (r(t), 1);
(vi) D−

x θ(r(t), t) = −r′(t) for a.e. t > 0;
(vii) θ(x, 0) = θ0(x) in (0, 1) in the limit sense.

Proof: If we let θ = α(u) we infer, since u is null a.e. to the right of r(t) and is also the weak
solution for (P ), that

∫ ∞

0

∫ r(t)

0

{

(1 + θ)ζt + θζxx

}

dxdt = −

∫ r(0)

0

(1 + θ0)ζ(x, 0)dx (3.17)
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for all ζ ∈ C∞
c ([0, 1] × [0,∞)) such that ζx(0, t) = ζx(1, t) = 0 for all t > 0. If we consider any

rectangle
Rt1,t2

a,b := (a, b) × (t1, t2) ⊂ ∪t>0{t} × (0, r(t))

and any ζ ∈ C∞
c (Rt1,t2

a,b ) for 0 < t1 < t2 < ∞ and 0 < a < b < r(t1), we see that (3.17) applied to
such functions ζ translates into the fact that θ is a solution in the sense of distributions of the heat
equation θt − θxx = 0 in Rt1,t2

a,b . Therefore, θ is smooth in Rt1,t2
a,b and satisfies θt − θxx = 0 in Rt1,t2

a,b in
the classical sense (see, say, [1]). We now claim that r(t) = min{x ∈ [0, 1], θ(x, t) = 0}. Indeed, if
that were not the case, then we would have θ(·, t0) = 0 for some t0 > 0 on (r(t0)−δ, 1] (δ sufficiently
small). It is, obviously, easy to construct a rectangle as the one from above (with a = 0) which has
a point from {t0}× (r(t0)− δ, 1] in its interior. According to the maximum principle for the classical
solutions of the heat equation (see [1]) we infer that θ = 0 at any time level between t1 and t0 on the
entire interval (0, 1) (recall that θ is decreasing at almost all time levels). However, that contradicts
the conservation identity (3.4). Therefore, θ is strictly positive and smooth in ∪t>0{t} × (0, r(t))
and identically zero in ∪t>0{t} × [r(t), 1] (after a possible redefinition in a negligible set). (iii) and
(v) are thus proved. Next we would like to prove (ii). In light of all the above, it suffices to prove

lim
x↑r(t)

θ(x, t) = 0 for almost all t > 0.

We now refer the reader again to [15] where we prove that the generalized spatial derivative of θ,
i.e. θx lies in L2((0, 1) × (0, T )) for all finite T > 0. This implies

θx(·, t) ∈ L2(0, 1) for almost all t > 0.

As all θ(·, t) are also in L2(0, 1) (being bounded by M , the upper bound of θ0) we infer that
θ(·, t) ∈ H1(0, 1) for a.e. t > 0. This eliminates the possibility of a jump at r(t) for a.e. t > 0 since
all H1(0, 1) functions are equal almost everywhere to continuous functions (see [2]).
Now we prove that r is continuous everywhere. For this assume that a (finite, of course) jump occurs
at some point t0 > 0. Consequently, there exists ε > 0 such that limt↓t0 r(t) = r(t0) + ε. Note that,
for any t > 0, the function

ζ(x, s) := ζ(s) =











1 on [0, t− δ],
t−s+δ

2δ on (t− δ, t+ δ),

0 on [t+ δ,∞),

for some small δ > 0 can be approximated such that it becomes admissible as a test function in
(3.17). A Lebesgue point argument shows that, by letting δ ↓ 0, we obtain

r(t) +

∫ r(t)

0

θ(x, t)dx = 1 for almost all t > 0. (3.18)

As r is increasing and θ is nonnegative (and 0 to the right of x = r(t)), it follows that there exist
two sequences {t+n }n ↓ t0 and {t−n }n ↑ t0 such that

r(t−n ) +

∫ r(t0)

0

θ(x, t−n )dx = 1 ≥ r(t+n ) +

∫ r(t0)

0

θ(x, t+n )dx. (3.19)

For any tn → t0, if we fix ε > 0, we can write

∣

∣

∣

∣

∫ r(t0)

0

{θ(x, tn) − θ(x, t0)}dx

∣

∣

∣

∣

≤

∫ r(t0)−ε/(4M)

0

|θ(x, tn) − θ(x, t0)|dx+ ε/2,
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where M := ‖θ‖∞. Due to (iii),
∫ r(t0)−ε/(4M)

0 |θ(x, tn) − θ(x, t0)|dx ≤ ε/2 for sufficiently large n.
Consequently,

lim
n↑∞

∫ r(t0)

0

θ(x, t−n )dx =

∫ r(t0)

0

θ(x, t0)dx = lim
n↑∞

∫ r(t0)

0

θ(x, t+n )dx.

This and (3.19) contradict the jump by ε at t0, thus proving the continuity of r.
In order to complete the proof of (i) assume that r ≡ c is constant on (t1, t2), where 0 < t1 < t2 <∞.
Consider now test functions ζ ∈ C∞

c (Rt1,t2
0,1 ). The equality (3.17) easily gives

∫ t2

t1

∫ c

0

{

θζt + θζxx

}

dxdt = 0, for all ζ ∈ C∞
c (Rt1,t2

0,1 ).

Due to (v), we can actually write

∫ t2

t1

∫ 1

0

{

θζt + θζxx

}

dxdt = 0, for all ζ ∈ C∞
c (Rt1,t2

0,1 ). (3.20)

It follows (as before) that θ is a classical solution of the heat equation θt = θxx in the open rectangle
Rt1,t2

0,1 and, again by the maximum principle, θ ≡ 0 in this whole rectangle. Therefore, we arrive to
a contradiction and thus (i) is completed.
To prove (vi) we fix T > 0 and note that, for all ζ ∈ C∞

c ((0, 1) × (0, T )), (3.17) becomes

∫ T

0

∫ r(t)

0

{

(1 + θ)ζt − θxζx
}

dxdt = 0, (3.21)

since θ ≡ 0 along x = r(t) (integration by parts). If we consider the vector field F := (−θx, 1 + θ),

then the r.h.s. of (3.21) can be written as
∫ T

0

∫ r(t)

0 F · ∇ζdxdt. Due to (i) we can apply Green’s
theorem to obtain

∫ T

0

∫ r(t)

0

F · ∇ζdxdt =

∫

Γ

(F · ν)ζds −

∫ T

0

∫ r(t)

0

(∇ · F )ζdxdt,

where Γ is the portion of x = r(t) for 0 < t < T (ζ ≡ 0 on the rest of the boundary). According to
(iii) and (3.21), it follows that ∇ · F ≡ 0 in ∪0<t<T {t} × (0, r(t)) and

∫

Γ

ζ(F · ν)ds = 0 for all ζ ∈ C∞
c ((0, 1) × (0, T )).

Consequently, F · ν = −νxθx + νt(1 + θ) = 0 (the values of θ and θx on Γ are limits from the left)
a.e. along Γ which, according to (i) and θ ≡ 0 along Γ, yields (vi).
(vii) now follows trivially from (3.17). �

Remark: It is not hard to see that (3.5) may be replaced by the weaker (3.13) and Theorem 3
remains true.

Remark: It is easy to see that our solution is the same as the one found in [9] by entirely dif-
ferent means. In [9] one can also find higher regularity results for the free boundary.
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3.4 Asymptotic behavior and numerical simulations

We keep the assumptions on θ0 from the previous section and let (θ, r) be a classical solution as in
(3.2). Recall that Φα is a solution of yΦ′(y) − Φ(y) = α(y) and we pick

Φα(y) = y if y ∈ [0, 1] and Φα(y) = 1 + y log y if y ∈ (1,∞).

Next we will show how the decay in the entropy Sα provides the right tool for proving asymptotic
decay to zero of the solution for (P ). Let us write

Sα(u(·, t)) =

∫ r(t)

0

Φα(1 + θ(x, t))dx +

∫ 1

r(t)

Φα(0)dx =

∫ r(t)

0

Φα(1 + θ(x, t))dx,

since Φα(0) = 0. According to Theorem 3, we may compute, for all t > 0,

d

dt
Sα(u(·, t)) = Φα(1 + θ(r(t), t))r′(t) +

∫ r(t)

0

θt(x, t)Φ
′
α(1 + θ(x, t))dx

= r′(t) +

∫ r(t)

0

θxx(x, t)[1 + log(1 + θ(x, t))]dx

= −

∫ r(t)

0

θ2x(x, t)

1 + θ(x, t)
dx. (3.22)

As θ(r(t), t) = 0, we easily infer ‖θ(·, t)‖2
∞ ≤ r(t)

∫ r(t)

0
θ2x(x, t)dx, leading to

d

dt
Sα(u(·, t)) ≤ −

1

r(t)
·

‖θ(·, t)‖2
∞

1 + ‖θ(·, t)‖∞
.

Since 0 < r(0) ≤ r(t) < 1 and Sα(u(·, t)) ≥ 0, it follows

∫ ∞

0

‖θ(·, t)‖2
∞

1 + ‖θ(·, t)‖∞
dt <∞. (3.23)

As the experimental results will show, we seem to be having limt↑∞ ‖θ(·, t)‖L∞(0,1) = 0. In order to
prove this we need to recall that θ has the following important property (see [15]):

if θ0 ∈ L∞(0, 1), then θ ∈ L∞(Q0) and ‖θ‖L∞(Q0) ≤ ‖θ0‖L∞(0,1),

where Qt0 := (0, 1) × (t0,∞) for t0 ≥ 0. Now, if we fix 0 < t0 < ∞, it is a well known fact that
θ
∣

∣

Qt0

is the solution for our equation with initial data θ(·, t0). It follows, after possibly changing the

variable t→ t− t0 to go back and work in Q0, that

θ ∈ L∞(Qt0) and ‖θ‖L∞(Qt0
) ≤ ‖θ(·, t0)‖L∞(0,1).

Therefore, t → ‖θ(·, t)‖L∞(0,1) is essentially decreasing in (0,∞). The word “essentially” may, in
fact, be suppressed due to the smoothness of θ to left of x = r(t). Along with (3.23), this yields

lim
t↑∞

‖θ(·, t)‖L∞(0,1) = 0. (3.24)

We show tables that predict the kind of behavior we have noted and proved. These were obtained
by adapting the C-code (based on the relaxation algorithm) used by Kinderlehrer and Walkington
in [10] and generously provided to us by the authors. The code provides a numerical implementation
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k t = 0.015625 t = 0.0625 t = 0.25 t = 1.0 t = 4.0

00 2.427382 1.949334 1.388693 1.054514 1.010024
01 2.362357 1.924320 1.383408 1.053967 1.010020
02 2.239278 1.874992 1.372722 1.052895 1.010017
03 2.075957 1.802934 1.356408 1.051311 1.010014
04 1.891817 1.710225 1.335211 1.049212 1.010013
05 1.700818 1.598537 1.308621 1.046612 1.010013
06 1.502935 1.471821 1.276945 1.043543 1.010011
07 1.287788 1.340215 1.240152 1.040023 1.010008
08 0.545401 1.225322 1.198408 1.036084 1.010002
09 0.001515 1.155991 1.152050 1.031768 1.009997
10 0.025960 0.001868 1.101533 1.027088 1.009985
11 0.018432 0.025436 1.047650 1.022124 1.009984
12 0.020482 0.018932 0.951794 1.016906 1.009982
13 0.019838 0.019988 0.000872 1.011463 1.009980
14 0.020059 0.020158 0.027815 1.005907 1.009977
15 0.019982 0.019927 0.017717 0.616585 1.009974

Table 1: n = 16, h = 1/1024, ε = 0.02

of time-interpolating the minimizers from Corollary 1.
We consider θ0(x) := 2 − 4x on [0, 1/2] and θ0 := 0 on [1/2, 1]. Observe that θ0 satisfies (3.1). For
ε = 0.02 and ε = 0.005 respectively, we construct the uε

0 ∈ θ0 +H(θ0) as before, i.e. uε
0 := 3− 4x on

[0, 1/2] and uε
0 := ε on (1/2, 1]. A numerical solution uε (uε,h for h = 1/1024) is given at time levels

t = 0.015625, 0.0625, 0.25, 1, and 4 for each ε (Table 1 for ε = 0.02 and Table 2 for ε = 0.005) as a
piecewise constant function on a uniform 16-division of the interval [0, 1]. It is easy to see that the
uε,h’s do stay decreasing in x being greater than 1 first and then jumping to ε where they stay up to
the endpoint 1. The asymptotic behavior is also visible in each table. The code becomes unstable
as ε ↓ 0, therefore we do not give any results for samller ε.

Appendix

Proposition 8. (Variation of domain) Let ξ ∈ Cc(0, 1) be Lipschitz and consider the autonomous
ODE

dφ

dτ
= ξ(φ), φ|τ=0 = x, for x ∈ [0, 1], τ ∈ R. (3.25)

Then, for every x ∈ [0, 1] and every τ with |τ | small enough, the solution φ(τ ;x) lies in [0, 1] and
therefore ξ(φ) is well-defined. Furthermore, φ(τ ; ·) is invertible and φ−1(τ ; ·) ≡ φ(−τ ; ·) for any real
number τ .

Proof: First extend ξ to ζ ∈ C1(R) by letting it be zero both on (−∞, 0] and [1,∞). Note that
ζ itself is Lipschitz continuous and Lip(ζ) = Lip(ξ). Now we replace ξ by its extension ζ in (3.25)
observing that now ζ(φ) makes sense everywhere as ζ is defined on the entire real line.
We have

φ(t+ s;x) = φ(t;x) +

∫ t+s

t

ζ(φ(τ ;x))dτ, t, s ∈ R,
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k t = 0.015625 t = 0.0625 t = 0.25 t = 1.0 t = 4.0

00 2.428561 1.952677 1.404553 1.069223 1.002524
01 2.358358 1.939759 1.399927 1.068909 1.002520
02 2.239327 1.900519 1.390122 1.068270 1.002518
03 2.083282 1.819204 1.375711 1.067289 1.002516
04 1.909051 1.737442 1.357692 1.065919 1.002514
05 1.728137 1.628803 1.335509 1.064123 1.002512
06 1.544491 1.501350 1.309958 1.061819 1.002510
07 1.366275 1.342408 1.279810 1.058953 1.002507
08 0.351146 1.176068 1.244167 1.055442 1.002501
09 0.000102 1.015961 1.200618 1.051212 1.002495
10 0.006610 0.000026 1.147894 1.046178 1.002485
11 0.004548 0.006272 1.085207 1.040286 1.002484
12 0.005164 0.004762 0.495588 1.033497 1.002482
13 0.004909 0.004127 0.000064 1.025797 1.002480
14 0.005066 0.005956 0.010874 1.017258 1.002478
15 0.004973 0.004664 0.002305 0.245824 1.002474

Table 2: n = 16, h = 1/1024, ε = 0.005

and

φ(s;φ(t;x)) = φ(t;x) +

∫ s

0

ζ(φ(τ ;φ(t;x)))dτ.

Upon changing the variable τ → τ + t in the first integral and subtracting the two expressions we
obtain

|φ(t+ s;x) − φ(s;φ(t, x))| ≤

∫ s

0

|ζ(φ(t + τ ;x)) − ζ(φ(τ ;φ(t;x)))|dτ, s > 0.

We fix x and t. As ζ is Lipschitz we can apply the Gronwall lemma and obtain the continuation
property

φ(s;φ(t;x)) = φ(t + s;x), (∀)s > 0, t ∈ R.

Therefore, φ(t; ·) is invertible and φ−1(t; ·) = φ(−t; ·).

Apply the integral form φ(t; ·) = · +
∫ t

0 ζ(φ(τ ; ·))dτ to x and y then subtract to obtain

|φ(t;x) − φ(t; y)| ≤ |x− y| +

∫ t

0

|ζ(φ(τ ;x)) − ζ(φ(τ ; y))|dτ.

The Gronwall lemma gives |φ(t;x)−φ(t; y)| ≤ etLip(ξ)|x− y|, i.e. φ(t; ·) is Lipschitz continuous. We
already know that it is invertible, so φ(t; ·) is strictly monotone and continuous thus mapping [0, 1]
onto the compact interval

[min{φ(t; 0), φ(t; 1)},max{φ(t; 0), φ(t; 1)}].

Analyzing φ(t; 1) = 1 +
∫ t

0 ζ(φ(τ ; 1))dτ note that, due to the continuity of t → φ(t; 1) at t =
0, φ(τ ; 1) gets close to 1 as τ gets small and so, since ζ vanishes near 1, we obtain φ(t; 1) =
1 for all small enough t. Similarly, φ(t; 0) = 0 for all small enough t. This finishes our proof. �
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