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Abstract

We prove the monotonicity of the second-order moments of the discrete approximations to the
heat equation arising from the Jordan-Kinderlehrer-Otto (JKO) variational scheme. This issue ap-
pears in the study of constrained optimization in the 2-Wasserstein metric performed by Carlen and
Gangbo for the kinetic Fokker-Planck equation. As an alternative to their duality method, we provide
the details of a direct approach, via Lagrange multipliers. Estimates for the fourth-order moments
in the constrained case, which are essential to the subsequent alternate analysis, are also obtained.
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1 Introduction

In this paper we prove the monotonicity of the second-order moments of the discrete approximations to
the heat equation arising from the Jordan-Kinderlehrer-Otto (JKO) variational scheme [9]. The issue
appeared in the study of constrained optimization in the 2-Wasserstein and was left open by Carlen and
Gangbo in [4]. As an alternative to their duality method, we provide the details of a direct approach,
via Lagrange multipliers. We also obtain estimates for the fourth-order moments in the constrained case,
which are essential to the subsequent alternate analysis in [5].

Carlen and Gangbo [4] perform a comprehensive study of constrained optimization in the space of
probability densities with finite second-order moments over R

N . An application is provided by the same
authors in [5] where a kinetic Fokker-Planck equation, related to the Boltzmann equation by the grazing
collisions limit, is investigated by means of steepest descent in the Wasserstein metric. The equation
reads

∂f

∂t
+ v · ∇xf = θ

[

∆vf + ∇v ·

(

v − u

θ
f

)]

, (1.1)
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where

u(x) :=

∫

RN

vF (x, v)dv and θ(x) :=
1

N

∫

RN

|v − u(x)|2F (x, v)dv

are the bulk velocity and the temperature, respectively. We need also define the useful quantity F (x, v) :=
f(x, v)

/ ∫

RN f(x, v)dv, which represents the conditional velocity distribution of f at x ∈ T N , the N -
dimensional torus. The total energy and the momentum of f are, respectively,

E[f ] :=
1

2

∫∫

T N×RN

|v|2f(x, v)dvdx, U [f ] :=

∫∫

T N×RN

vf(x, v)dvdx.

The evolution (1.1) increases the Boltzmann entropy and conserves mass, energy and momentum. Carlen
and Gangbo set up a multiple-step implicit variational scheme in the Wasserstein metric, the so-called
“splitting scheme” [5], which is adapted to the typical kinetic dynamics of the Boltzmann equation.
For the Boltzmann equation, the two basic mechanisms at work are streaming and collisions. In the
case of the kinetic Fokker-Planck equation, the collision mechanism is replaced by steepest descent of
the relative entropy. The implicit variational scheme implements these mechanisms alternatively at the
discrete level. The conservation of the second-order moment (energy) with respect to the velocity variable
is not a feature retained by the discrete scheme and can only be proved to hold in the vanishing time-step
limit. Discussed in [5] and resolved in the companion paper [4] is a modification of a specific part of the
variational scheme (the one accounting for collisions) which imposes conservation of energy even at the
discrete level.

Let µ, ν be two probability measures on R
N with finite second-order moments.

Definition 1. The Wasserstein distance is defined as

d(µ, ν) := inf
p∈P (µ,ν)

(
∫∫

RN×RN

|x− y|2dp(x, y)

)1/2

,

where P (µ, ν) is the set of all Borel probabilities on R
N × R

N with marginals µ and ν, respectively.

Note: By abuse of notation, we use d(f, g) for any two probability densities f, g with finite second-order
moments to mean the Wasserstein distance between the corresponding probability measures. Likewise,
d(µ, f) may be used for a probability µ and a probability density f (both having finite second-order
moments).

Next, we recall the algorithm in [5]. Fix an initial density f0(x, v) and a time-step τ > 0. For any
integer k ≥ 1, one performs the following steps:
(1) Streaming: let f̃k(x, v) := fk−1(x− τv, v);

(2) Define: F̃k(x, v) := f̃k(x, v)
/ ∫

RN f̃k(x, v)dv, then

ũk(x) :=

∫

RN

vF̃k(x, v)dv and θ̃k(x) :=
1

N

∫

RN

|v − ũk(x)|
2F̃k(x, v)dv.

(3) Collisions: steepest descent of the relative entropy

H(G|M) :=

∫

RN

G(v)

M(v)
log

G(v)

M(v)
dM(v).

For any x, minimize the functional

F → d2(F̃k(x, ·), F ) + 2τ θ̃k(x)H(F |MF̃k(x,·))
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over all densities on R
N with finite second-order moments. The Maxwellian MG is given by

MG(v) := (2πθ)−N/2 exp{−|v − u|2/(2θ)},

where u and θ are the bulk velocity and, respectively, the temperature corresponding to G.

(4) Define fk(x, v) = Fk(x, v)
∫

RN f̃k(x, v)dv, where Fk is the minimizer from the previous step.

The authors propose [5] replacing the relative entropy H(F |MF̃k(x,·)) by simply the negative Boltzmann

entropy H(F ) =
∫

RN F logFdv at step (3) while imposing conservation of energy at the discrete level.
Though more natural (on account of the evolution properties), this approach is difficult due the constraint
not being closed in the appropriate topology. Furthermore, the analysis subsequent to this change in the
discrete scheme requires [4] estimates on the fourth-order moments of the minimizers which now need to be
proved for the constrained variational problem. Whereas the desired estimates in the unconstrained case
(i.e. pertaining to the scheme given above) are quite straightforward consequences of the displacement
convexity of the fourth-order moment functional, things turn out to be more subtle in the constrained
case. The issue is left open in [4] and we address it successfully towards the end of this paper. To solve the
constrained variational problem, the authors of [4] construct an argument based on the dual variational
characterization of the Wasserstein distance in a functional setting. Optimization in this setting is often
more convenient due to some helpful compactness properties [7]. Thus, it is known [3], [7] that

N −
1

2
d2(f0, f) = inf

{
∫

RN

(uf0 + vf)dx

∣

∣

∣

∣

u(x) + v(y) ≥ x · y, df0(x)df(y) a.e.

}

.

The optimal pair (u, v) comes from a dual pair of convex functions whose gradients provide the optimal
transportation of f0 onto f and viceversa. The constrained minimization problem can be recast into a
maximization problem in terms of (u, v) and some additional parameters acting as Lagrange multipliers.
More precisely, denote by η∗(s) the exponential es−1, which is the Legendre transform of η(s) = s log s
for s ≥ 0 and η(s) = +∞ if s < 0. Then, it is proved in [4] that the constrained minimization problem
discussed above is equivalent to the maximization of

J(α, β;u, v) := (1 + β/2)N −

∫

RN

uf0dx− τ

∫

RN

η∗
(

α · y + β|y|2/2 + v(y)

τ

)

dy,

where α ∈ R
N and β ∈ R act as Lagrange multipliers for the momentum and energy constraints,

respectively.
The first open problem left in [4] is, basically, to find a way to circumvent much of the difficulty incurred
by this quite involved maximization problem by building on the unconstrained case analyzed in the
seminal paper [9]. The rest of this section provides a more detailed account of what we accomplish in
this work.

Given a probability density ρ0 on R
N with finite second-order moment, one seeks to minimize

I [ρ0; τ ](ρ) :=
1

2τ
d2(ρ0, ρ) +

∫

RN

ρ(x) log ρ(x)dx, (1.2)

over all ρ ∈ M having the same mean and variance as ρ0, where τ > 0 and

M :=

{

ρ : R
N → [0,∞)

∣

∣

∣

∣

∫

RN

ρ(x)dx = 1,

∫

RN

|x|2ρ(x)dx < +∞

}

.

We also define, more generally,

P2 :=

{

ν − Borel probability on R
N

∣

∣

∣

∣

∫

RN

|x|2dν(x) < +∞

}

.
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Thus, for given u ∈ R
N and θ > 0, if we denote by

Eθ,u :=

{

ν ∈ P2

∣

∣

∣

∣

∫

RN

xdν(x) = u,

∫

RN

|x− u|2dν(x) = θ

}

(1.3)

and take ρ0 ∈ Eθ,u ∩ M, we wish to prove the existence of a minimizer in Eθ,u ∩ M for I [ρ0; τ ] defined
in (1.2). Since Eθ,u ∩ M is not closed in the L1-weak topology, the constrained minimization problem
formulated above requires more work than the unconstrained one. However, as it will be seen in the sequel,
one can successfully build an argument based on the results in [9]. To explain, the duality argument used
in [4], although natural and enlightening, appears complicated and could readily be replaced, as the
authors of [4] observe, by an easier one based on Lagrange multipliers if one knew that the unconstrained
minimizer ρ1 ∈ M of I [ρ0; τ ] satisfied

∫

RN

|x|2ρ1(x)dx >

∫

RN

|x|2ρ0(x)dx, (1.4)

i.e. the minimization
inf
ρ∈M

I [ρ0; τ ](ρ) (1.5)

increased the second-order moments. The inequality (1.4) is only conjectured in [4].

We shall work within a more general setting and instead of ρ0 ∈ M we shall consider some probability µ
which is not necessarily absolutely continuous with respect to LN , but simply lies in P2. Our motivation
will become clear when we analyze the case of equality in (1.6) below.
It is enough to read the proof [9] of the existence (and uniqueness) of the minimizer in M to realize that
the assumption µ � LN is nowhere used; only µ ∈ P2 is essential. Therefore, we can deliver stronger
statements. First, the existence of the minimizer ρ1 of (1.5) in M:

Proposition 1. Let τ > 0 and µ ∈ P2 be fixed. Then, there exists a unique minimizer of I [µ; τ ] over
M.

Next we give the main theorem.

Theorem 1. For every µ ∈ P2 and every τ > 0, the minimizer

ρ1 := arg min
ρ∈M

I [µ; τ ](ρ)

satisfies
∫

RN

|x|2ρ1(x)dx ≥ Nτ +

∫

RN

|x|2dµ(x). (1.6)

To see how the constrained problem can be solved based on this observation, the reader may now skip
directly to Section 4. The next statement will also be proved.

Proposition 2. Within the above notation and hypotheses,
∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2dµ(x) = 2Nτ − d2(µ, ρ1). (1.7)

We then have:

Corollary 1. Within the above notation and hypotheses,

d2(µ, ρ1) ≤ Nτ. (1.8)

Section 2 explores the regularity of the unconstrained minimizer ρ1. We obtain enough regularity to
enable us to prove our main result, Theorem 1. This will be done in Section 3. In Section 4 we use
Theorem 1 to obtain existence and uniqueness of the minimizer in the constrained manifold. Finally,
in Section 5 we obtain an estimate on the fourth-order moments of the minimizers arising from the
constrained variational problem, estimate which was conjectured in [4].
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2 Regularity of the minimizer

This section is concerned with the regularity of the minimizer. The results will be needed in the next
section.

2.1 The general case

Let us consider the addition of an extra term to (1.2), namely an energy given by a smooth potential
ψ : R

N → [0,∞) satisfying
|∇ψ(x)| ≤ C[1 + ψ(x)], x ∈ R

N . (2.1)

Thus, for given µ ∈ P2, we obtain

Iψ[µ; τ ](ρ) :=
1

2τ
d2(µ, ρ) +

∫

RN

ψ(x)ρ(x)dx +

∫

RN

ρ(x) log ρ(x)dx (2.2)

which, in case µ comes from a density ρ0, is the functional used in [9] to iteratively construct approxi-
mations to the solution of the Fokker-Planck IVP

∂ρ

∂t
= ∇ · [ρ∇ψ] + ∆ρ, ρ(·, 0) = ρ0. (2.3)

Although most of our work is concerned with the case ψ ≡ 0, a notable exception is Section 4, where
quadratic potentials are utilized.

Proposition 3. For every τ > 0 and every µ ∈ P2, the minimizer ρ1 of (2.2) over M lies in W 1,1(RN )
and

∇ρ1(x) =

{

1

τ
[∇Φ(x) − x] −∇ψ(x)

}

ρ1(x) for a.e. x ∈ R
N , (2.4)

where Φ : R
N → R is the unique ρ1dx-a.e. convex function such that ∇Φ#ρ1 = µ [3]. Furthermore, the

function ρ̃ : R
N → (0,∞) given by

ρ̃(x) := exp

{

1

τ

[

−
|x|2

2
+ Φ(x)

]

− ψ(x)

}

is integrable in R
N and

ρ1(x) = ρ̃(x)

/
∫

RN

ρ̃(y)dy for a.e. x ∈ R
N . (2.5)

Proof: According to [9],

∫∫

RN×RN

(y − x) · ξ(y)dp(x, y) − τ

∫

RN

ρ1(x)[∇ · ξ(x) −∇ψ(x) · ξ(x)]dx = 0 (2.6)

for all ξ ∈ C∞
c (RN ; RN ). Furthermore [11],

∫∫

RN×RN

ϕ(x, y)dp(x, y) =

∫

RN

ρ1(y)ϕ(∇Φ(y), y)dy

for all ϕ ∈ C(RN × R
N ) of at most quadratic growth. Applying this to ϕ(x, y) := x · ξ(y) gives, in view

of (2.6),

∫

RN

ρ1(x)∇ · ξ(x)dx = −

∫

RN

ρ1(x)

{

1

τ

[

∇Φ(x) − x
]

−∇ψ(x)

}

· ξ(x)dx := −

∫

RN

U(x) · ξ(x)dx (2.7)
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for all ξ ∈ C∞
c (RN ; RN). It is easy to see, by (2.1) and the minimizing property of ρ1, that U ∈

L1(RN ; RN ). Thus, ρ1 ∈ W 1,1(RN ) and (2.4) holds. Since ρ1 is a probability density in R
N , for R > 0

large enough we have

1 ≥

∫

BR

ρ1dx =: αR > 0, where BR :=
{

x ∈ R
N

∣

∣ |x| ≤ R
}

. (2.8)

In what follows, fbR denotes the restriction to BR of a function f defined on R
N .

Since Φ is convex and ψ is smooth in R
N satisfying (2.1),

g :=
1

τ

(

ΦbR−
1

2
|Id|2bR

)

− ψbR ∈W 1,∞(BR).

This implies

e−g ∈W 1,∞(BR) and ∇ρ1bR =
1

τ
(ρ1bR)∇g ∈ L1(BR; RN).

Thus,
e−g ∈ W 1,∞(BR) and ρ1bR ∈ W 1,1(BR)

which allows to infer
e−g(ρ1bR) ∈W 1,1(BR)

and

∇
[

e−g(ρ1bR)
]

= e−g
[

∇ρ1bR−
1

τ
(ρ1bR)∇g

]

= 0 a.e. in BR.

Along with (2.8), the last equation leads to

ρ1bR = αRe
g

/
∫

BR

egdy a.e. in BR.

We now let R ↑ ∞ and note that αR ↑ 1 to conclude the proof. QED.

2.2 Discrete comparison principle

In this subsection we discuss the case where µ is absolutely continuous with respect to the Lebesgue
measure and comes from a density ρ0 ∈ L∞(RN ). Our choice of discussing the essentially bounded case
resides in the discrete comparison principle that we state and prove next. Although based on earlier work
by different authors [1], [6], [11], [12], [14], there are significant issues arising due to the unboundedness
of the domain and the singularity of the logarithmic function at zero. Therefore, we find this result
interesting in itself. Also, higher regularity for the minimizer is obtained.

Proposition 4. If ρ0 ∈ M∩L∞(RN ), then the minimizer ρ1 of (1.5) is also essentially bounded in R
N

and satisfies
‖ρ1‖∞ ≤ ‖ρ0‖∞.

Proof: Let φ(z) = z log z and let M ≥ ‖ρ0‖∞ be fixed. Take p ∈ P (ρ0, ρ1) to be the optimal transfer
plan [7], [15], and let E := {ρ1 > M} be assumed to satisfy |E| > 0. Then p((RN\E)×E) > 0. Otherwise

M |E| <

∫

E

ρ1dx = p(RN ×E) = p(E ×E) ≤ p(E × R
N ) =

∫

E

ρ0dx ≤M |E|,
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which is a contradiction. Now define w0 and w1 by
∫

RN

w0ξdx =

∫∫

(RN\E)×E

ξ(x)dp(x, y) and

∫

RN

w1ξdx =

∫∫

(RN\E)×E

ξ(y)dp(x, y),

for all ξ ∈ C(RN ). It is easy to check that 0 ≤ w0 ≤ ρ0 ≤M and 0 ≤ w1 ≤ ρ1. Then, the equality (valid
for all ξ ∈ C(RN × R

N ))

∫∫

RN×RN

ξ(x, y)dps(x, y) =

∫∫

RN×RN

ξ(x, y)dp(x, y) + s

∫∫

(RN\E)×E

(

ξ(x, x) − ξ(x, y)
)

dp(x, y),

defines for every s� 1 a plan ps ∈ P (ρ0, ρs) with ρs := ρ1 − s(w1 − w0) ∈ M. Then

1

2τ
d2(ρ0, ρs) +

∫

RN

φ(ρs)dx (2.9)

≤ I [ρ0; τ ](ρ1) +

∫

RN

[φ(ρs) − φ(ρ1)]dx −
s

2τ

∫∫

(RN\E)×E

|x− y|2dp(x, y)

according to the definition of d and ps. Due to the convexity of φ and the fact that w integrates to 0, we
have

∫

RN

[φ(ρs) − φ(ρ1)]dx ≤

∫

RN

(ρs − ρ1) log ρsdx

= −s

∫

RN

[log ρs − logM ]wdx

= −s

∫

E

[log(ρ1 − sw1) − logM ]w1dx+ s

∫

RN\E

[log(ρ1 + sw0) − logM ]w0dx.

We have used w0 = 0 in E and w1 = 0 in R
N\E. We now return to the right hand side of the equation

above and rewrite it as

−s

{
∫

E

[log(ρ1 − sw1) − log ρ1]w1dx+

∫

E

[log ρ1 − logM ]w1dx

+

∫

RN\E

[logM − log(ρ1 + sw0)]w0dx

}

=: −s(T1 + T2 + T3).

Obviously, T2 > 0. As for T1, we have that

0 ≤ [− log(ρ1 − sw1) + log ρ1]w1 ≤ [log ρ1 − log((1 − s)ρ1)]w1 ≤ −ρ1 log(1 − s) in E

if 0 < s < 1. Thus, T1 ↑ 0 as s ↓ 0.
The study of T3 is next. We write

logM − log(ρ1 + sw0) = log
M

ρ1 + sw0
≥ − log(1 + s)

since both ρ1 and w0 are less than M in R
N\E. Consequently, since w0 ≤ ρ0χRN\E in R

N ,

T3 ≥ − log(1 + s)

∫

RN

w0dx ≥ − log(1 + s).

Therefore,

−s

{

1

2τ

∫∫

(RN\E)×E

|x− y|2dp(x, y) + T1 + T2 + T3

}

< 0
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for sufficiently small s > 0. The minimality of I [ρ0; τ ](ρ1) (by (2.9)) is contradicted, i.e. 0 ≤ ρ1 ≤M a.e.
in R

N . QED.

Now it can be shown [11]:

Proposition 5. For every τ > 0 and every ρ0 ∈ M∩L∞(RN ), the minimizer ρ1 of (1.5) lies in H1(RN )
and

∇ρ1(x) =
1

τ
[∇Φ(x) − x]ρ1(x) for a.e. x ∈ R

N , (2.10)

where Φ : R
N → R is the unique ρ1dx-a.e. convex function such that ∇Φ#ρ1 = ρ0 [3]. Consequently,

ρ1 ∈ M∩ L∞(RN ) ∩H1(RN ) ∩W 1,∞
loc (RN ).

Remark: Thus, we have ρ1 ∈ M ∩ W 1,1(RN ) ∩ W 1,∞
loc (RN ) because Φ is locally Lipschitz. Also, if

µ comes from an essentially bounded density ρ0, then ρ1 gains some extra regularity, more precisely
ρ1 ∈ M∩ L∞(RN ) ∩H1(RN ) ∩W 1,1(RN ) ∩W 1,∞

loc (RN ). However, as we shall see in the next section,

ρ1 ∈ M∩W 1,1(RN ) ∩W 1,∞
loc (RN ) (2.11)

is enough for our purposes.

3 Monotonicity of the second-order moments

Let us begin by stating a helpful lemma. The result follows by Lemma 10.4.5 in [2].

Lemma 1. Let Ψ : R
N → R be convex and f ∈ L1(RN ) ∩W 1,∞

loc (RN ) be nonnegative (of positive total
mass). Also, suppose |∇Ψ|f ∈ L1(RN ) and ∇Ψ · ∇f ∈ L1(RN ). Then,

∫

RN

∇Ψ · ∇fdx ≤ 0. (3.1)

By a standard mollification (mollify f ) argument we obtain

−

∫

BR

∇Ψ · ∇fdx =

∫

BR

fd[∆Ψ] −

∫

∂BR

f [ν · TR(∇Ψ)]dHN−1, (3.2)

where [∆Ψ] is a nonnegative Radon measure (due to the convexity of Ψ) and TR is the trace operator
defined on BV (BR) with values in L1(∂BR), linear and continuous [8]. An elementary proof (omitted
here) of Lemma 1 may be given based on (3.2).

We are now ready to prove Theorem 1.
Proof of Theorem 1: Note that

∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2dµ(x) =

∫

RN

[|x|2 − |∇Φ(x)|2]ρ1(x)dx

due to ∇Φ#ρ1 = µ. Thus,

∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2dµ(x) = −

∫

RN

[x+ ∇Φ(x)] · {[∇Φ(x) − x]ρ1(x)}dx

= −τ

∫

RN

[x+ ∇Φ(x)] · ∇ρ1(x)dx. (3.3)

8



Since µ ∈ P2, ρ1 ∈ M and τ∇ρ1 = [∇Φ− Id]ρ1 a.e. in R
N , we deduce Id · ∇ρ1, ∇Φ · ∇ρ1 ∈ L1(RN ). As

Φ is convex and ρ1 ∈ L1(RN ) ∩W 1,∞
loc (RN ) is nonnegative of unit mass, Lemma 1 applies to yield

∫

RN

∇Φ · ∇ρ1dx ≤ 0. (3.4)

By mollifying ρ1 locally (in BR), we deduce

∫

BR

x · ∇ρ1(x)dx =

∫

∂BR

ρ1(y)[ν(y) · y]dH
N−1(y) −N

∫

BR

ρ1(x)dx

for every R > 0. Let R ↑ ∞ and apply dominated convergence to the left hand side and monotone
convergence to the last term in the right hand side to infer that the first term in the right hand side has
a limit, i.e.

lim
R↑∞

R

∫

∂BR

ρ1(y)dH
N−1(y) = N +

∫

RN

x · ∇ρ1(x)dx =: l ∈ R.

The integrability of |Id|ρ1 implies, as a consequence of the co-area formula for L1 functions, that l = 0.
This, along with (3.3) and (3.4), implies (1.6). QED.

We now turn our attention to Proposition 2.
Proof of Proposition 2: It is based on the fact (proved above) that

∫

RN

x · ∇ρ1(x)dx = −N.

Indeed, according to a previous argument,

∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2dµ(x) = Nτ −

∫

RN

∇Φ(x) · [τ∇ρ1(x)]dx

= Nτ −

∫

RN

∇Φ(x) · {[∇Φ(x) − x]ρ1(x)}dx

= Nτ −

∫

RN

|x−∇Φ(x)|2ρ1(x)dx −

∫

RN

x · [∇Φ(x) − x]ρ1(x)dx

= Nτ − d2(µ, ρ1) − τ

∫

RN

x · ∇ρ1(x)dx

= 2Nτ − d2(µ, ρ1),

which concludes our proof. QED.

The next section contains the motivation for our result.

4 Constrained optimization in M

As announced in the introduction, we can now employ (1.4) to prove the existence of a minimizer for
(1.2) over Eθ,u ∩M (defined in (1.3)). In this section, we follow the course of action outlined by Carlen
and Gangbo in [4].

Let us begin with a useful lemma.

9



Lemma 2. Let ρ0 ∈ M and τ > 0 be given. For every λ ≥ 0, denote by ρ(λ) the unique minimizer [9]
for

I [µ; τ ;λ](ρ) :=
1

2τ
d2(µ, ρ) +

∫

RN

ρ(x) log ρ(x)dx+ λ

∫

RN

|x|2ρ(x)dx, (4.1)

over M. Then,

lim sup
λ↑∞

I [µ; τ ;λ](ρ(λ))

log λ
≤ N/2. (4.2)

Proof: According to the remark immediately following Proposition 6 from the next section (simply take
λ instead of 1/(2τ)), the minimizer of

∫

RN

ρ(x) log ρ(x)dx + λ

∫

RN

|x|2ρ(x)dx

is the Gaussian

Gλ(x) =

(

λ

π

)N/2

exp
(

− λ|x|2
)

, x ∈ R
N . (4.3)

Since Gλ ∈ M, we infer
I [µ; τ ;λ](ρ(λ)) ≤ I [µ; τ ;λ](Gλ).

It is an easy computation to show

I [µ; τ ;λ](Gλ) =
1

2τ
d2(µ,Gλ) +

N

2
log(λ/π)

≤
1

τ

∫

RN

|x|2dµ(x) +
1

τ

∫

RN

|x|2Gλ(x)dx +
N

2
log(λ/π)

=
1

τ

∫

RN

|x|2dµ(x) +
NπN/2

2τλ1+N/2
+
N

2
log(λ/π).

Combined with the inequality in the previous display, this leads to (4.2). QED.

Next, we show that

Lemma 3. Let µ ∈ M and τ > 0 be given. Then, there exists some λ1 > 0 such that
∫

RN

|x|2ρ(λ1)(x)dx ≤

∫

RN

|x|2dµ(x). (4.4)

Proof: We use the unconstrained minimizer ρ1 of I [µ; τ ] to write

I [µ; τ ]
(

ρ(λ)
)

≥ I [µ; τ ](ρ1) =: m for all λ > 0.

This inequality leads to,
∫

RN

|x|2ρ(λ)(x)dx =
1

λ

{

I [µ; τ ;λ] − I [µ; τ ]
(

ρ(λ)
)

}

≤
logλ

λ

I [µ; τ ;λ] −m

λ
.

According to Lemma 2, we deduce

lim sup
λ↑∞

∫

RN

|x|2ρ(λ)(x)dx = 0, (4.5)

which implies the existence of λ1 satisfying (4.4). QED.

We are now in the position to prove
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Lemma 4. Let µ ∈ M and τ > 0 be given. Then, there exists some λ0 > 0 such that
∫

RN

|x|2ρ(λ0)(x)dx =

∫

RN

|x|2dµ(x). (4.6)

Proof: Let ϕ : [0,∞) → R given by

ϕ(λ) :=

∫

RN

|x|2ρ(λ)(x)dx −

∫

RN

|x|2dµ(x).

Obviously, (1.4) implies ϕ(0) > 0 (in fact, due to (1.6), one has ϕ(0) ≥ Nτ). Due to Lemma 3, there
exists λ1 > 0 such that ϕ(λ1) ≤ 0. Therefore, it suffices to know that ϕ is continuous to deduce (4.6) for
some λ0 ∈ (0, λ1]. The minimizing property of ρ(λ) is equivalent to

I [µ; τ ;λ](ρ(λ)) ≤ I [µ; τ ;λ](ρ) (4.7)

for all ρ ∈ M ∩ (L logL)(RN ). If we let λ → λ∗ > 0, we deduce, again from the super-linearity of
φ(z) = z log z, that there exists ρ∗ ∈ M such that

ρ(λ) ⇀ ρ∗ weakly in L1(RN ) as λ → λ∗

up to a subsequence (not relabelled). We refer to [9] once again to write (lower semicontinuity argument)

d2(µ, ρ∗) ≤ lim inf
λ→λ∗

d2(µ, ρ(λ)) and

∫

RN

ρ∗ log ρ∗dx ≤ lim inf
λ→λ∗

∫

RN

ρ(λ) log ρ(λ)dx.

According to (4.7), we infer that ρ∗ minimizes I [µ; τ ;λ∗] over M. But the minimizer is ρ(λ∗) and is
unique, so ρ∗ ≡ ρ(λ∗) and the convergence ρ(λ) ⇀ ρ(λ∗) is true for the whole range of parameters λ→ λ∗.
Let fs :=

[

(1 − s)idRN + s∇Φ(λ)
]

#
ρ(λ) be the McCann’s interpolants with f0 = ρ(λ) and f1 = µ, where

∇Φ(λ) is the optimal map pushing ρ(λ) forward to µ. It is now a well-known fact [10] that, in particular
(obvious in this case),

[0, 1] 3 s→ M4(fs) :=

∫

RN

|x|4fs(x)dx =

∫

RN

|(1 − s)x+ s∇Φ(λ)(x)|4ρ(λ)(x)dx

is convex. Thus,

M4(µ) −M4(ρ
(λ)) ≥

d

ds

∫

RN

|x|4fs(x)dx

∣

∣

∣

∣

s=0

=

∫

RN

d

ds
|(1 − s)x+ s∇Φ(λ)(x)|4

∣

∣

∣

∣

s=0

ρ(λ)(x)dx

= 4

∫

RN

(

|x|2x
)

·
{[

∇Φ(λ)(x) − x
]

ρ(λ)(x)
}

dx.

We employ (2.4) for ψ(x) = λ|x|2 to obtain

M4(ρ
(λ)) −M4(µ) ≤ −4τ

∫

RN

(

|x|2x
)

·

{

∇ρ(λ)(x) + 2λxρ(λ)(x)

}

dx

= −8λτM4(ρ
(λ)) + 4(N + 2)τ

∫

RN

|x|2ρ(λ)(x)dx.

The second-order moments of ρ(λ) are, obviously, bounded from above uniformly as λ → λ∗. This, in
view of the inequality above, implies that the fourth-order moments M4(ρ

(λ)) are uniformly bounded.
Consequently,

∫

|x|≥R

|x|2ρ(λ)(x)dx ≤
C

R2
for some C > 0 independent of λ. (4.8)

11



For any R > 0, one has

∣

∣

∣

∣

∫

RN

|x|2ρ(λ)(x)dx −

∫

RN

|x|2ρ∗(x)dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

|x|≤R

|x|2ρ(λ)(x)dx −

∫

|x|≤R

|x|2ρ∗(x)dx

∣

∣

∣

∣

+

∫

|x|≥R

|x|2ρ(λ)(x)dx +

∫

|x|≥R

|x|2ρ∗(x)dx.

The last integral in the right hand side tends to zero as R ↑ ∞ and this fact, in view of (4.8) and the weak
L1 convergence of ρ(λ) to ρ∗, yields the convergence of the second-order moments, i.e. the continuity of
ϕ. QED.

The next theorem is the motivation of this section and, as explained in the introduction, of the whole
paper.

Theorem 2. For every τ > 0 and every µ ∈ Eθ,0 there exists a unique minimizer of I [µ; τ ] over Eθ,0∩M.

Note that we deliberately chose the mean u = 0 ∈ R
N . For a general u ∈ R

N , one has to repeat the
arguments above with the potential ψu(x) = λ|x − u|2 instead of ψ(x) = λ|x|2.
Proof of Theorem 2: The uniqueness part follows easily from the convexity of the sets Eθ,0 and M along
with the strict convexity of the functional I [µ; τ ].
We write down the minimizing property of ρ(λ0) from (4.6). Thus,

1

2τ
d2(µ, ρ(λ0)) +

∫

RN

ρ(λ0) log ρ(λ0)dx+ λ0

∫

RN

|x|2ρ(λ0)dx

≤
1

2τ
d2(µ, ρ) +

∫

RN

ρ log ρdx+ λ0

∫

RN

|x|2ρdx

for all ρ ∈ M. In particular,

1

2τ
d2(µ, ρ(λ0)) +

∫

RN

ρ(λ0) log ρ(λ0)dx ≤
1

2τ
d2(µ, ρ) +

∫

RN

ρ log ρdx

for all ρ ∈ M such that
∫

RN |x|2ρdx = θ =
∫

RN |x|2dµ(x). The only thing left is to show that
∫

RN xiρ
(λ0)(x)dx = 0 for i = 1, ..., N . To unburden notation, let ρ1 := ρ(λ0). According to Proposi-

tion 3 with the potential ψ(x) = λ0|x|
2, ρ1 ∈W 1,1(RN ). As a consequence,

∫

RN

∂ρ1

∂xi
(x)dx = 0, i = 1, ..., N.

We now integrate (2.4) componentwise to get

(2λ0τ + 1)

∫

RN

xiρ1(x)dx −

∫

RN

∂Φ

∂xi
(x)ρ1(x)dx = 0.

The proof is concluded by observing that ∇Φ#ρ1 = µ gives

∫

RN

∂Φ

∂xi
(x)ρ1(x)dx =

∫

RN

xidµ(x) = 0.

QED.
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One obvious consequence of (1.6) is that the strict inequality (1.4) is always true. Still, is it possible to
have equality in (1.6) (along with 1.8)) and, if that is the case, when does that happen? Retracing the
proof of Theorem 1, we discover that we obtain equality in (1.6) if and only if

∫

RN

∇Φ(x) · ∇ρ1(x)dx = 0. (4.9)

According to (3.2), (4.9) implies

lim
R↑∞

∫

∂BR

ρ1(y)[ν(y) · ∇TR(Φ)(y)]dHN−1(y) =

∫

RN

ρ1(x)d[∆Φ](x) = L ≥ 0.

But L = 0, because else

lim inf
R↑∞

∫

∂BR

ρ1(y)|TR(∇Φ)(y)|dHN−1(y) > 0

which, by the co-area formula, contradicts |∇Φ|ρ1 ∈ L1(RN ). Since ρ1 > 0 everywhere in R
N (Proposition

3, (2.5)) and [∆Φ] is a nonnegative Radon measure, it follows that [∆Φ] ≡ 0. Thus, Φ is harmonic in the
sense of distributions and the classical regularity theory asserts that Φ is, in fact, smooth and ∆Φ ≡ 0 in
the usual sense. As the only harmonic convex functions are the affine functions, we infer that there exist
a, b ∈ R

N such that
Φ(x) = a · x+ b, for all x ∈ R

N . (4.10)

Note that ∇Φ ≡ a forces µ (independently of what ρ1 is) to be the Dirac mass accumulated at a, i.e.
µ = δa. We can, in fact, state the following:

Proposition 6. Equality in (1.6) is obtained if and only if

µ = δa for some a ∈ R
N . (4.11)

Proof: Necessity was proved when we obtained (4.10). At this point we only need to show that for every
a ∈ R

N , the probability µ = δa (which lies in P2) produces a minimizer ρ1 over M such that
∫

RN

|x|2ρ1(x)dx = Nτ +

∫

RN

|x|2dµ(x) = Nτ + |a|2. (4.12)

According to Proposition 3 and (2.5), we have

ρ1(x) = (2πτ)−N/2e−|a|2/(2τ)exp

{

1

τ

[

−
|x|2

2
+ a · x

]}

for a.e. x ∈ R
N (4.13)

which leads to (4.12) after some computation. QED.

Remark: Thus, as a byproduct, we have obtained a proof of the well-known fact that the Gaussian
centered at a minimizes the energy

E(ρ) :=
1

2

∫

RN

|x− a|2ρ(x)dx +

∫

RN

ρ(x) log ρ(x)dx

over M (see, e.g., [13]). In particular, if a = 0, we infer that the steady state of the Fokker-Planck
equation

∂ρ

∂t
= ∇ · (xρ) + ∆ρ

is the minimizer of its corresponding total energy, i.e. the potential energy minus the Gibbs-Boltzmann
entropy.
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5 The fourth-order moments

The other question raised in [4] was whether an inequality of the form
∫

RN

|x|4ρ1(x)dx ≤ (1 + Cτ)

∫

RN

|x|4dµ(x) (5.1)

could be proved for the constrained minimization problem (where C may depend on some higher moments
of µ). We thank Carlen and Gangbo for clarifying this, since there seems to be an ambiguity at end of
the paper [4]. Indeed, the text conveys the impression that the desired estimate should be proved for
the unconstrained minimization problem, i.e. the JKO variational problem. Note that such estimate is
obtained in [5] as an application of McCann’s displacement convexity. A similar estimate for the con-
strained case would be necessary if one considered replacing the discrete scheme in [5] by the constrained
one, as explained in the introduction.
For now, let us turn our attention to (5.1). The result we prove is stronger than (5.1) and is given next.

Proposition 7. For every µ ∈ ENθ,0 and every τ > 0, the minimizer

ρ1 := arg min
ρ∈ENθ,0∩M

I [µ; τθ](ρ)

satisfies

(1 + 2τ)

∫

RN

|x|4ρ1(x)dx <

∫

RN

|x|4dµ(x) + 4N(N + 2)θ2τ. (5.2)

Note that I [µ; τθ] replaces I [µ; τ ] in the statement above. We do this to be consistent with [4].
A helpful tool is provided by the following lemma.

Lemma 5. For every µ ∈ ENθ,0 and every τ > 0, the minimizer

ρ1 := arg min
ρ∈ENθ,0∩M

I [µ; τθ](ρ)

satisfies
d2(µ, ρ1) < Nθτ. (5.3)

Thus, the equivalent of (1.8) for the constrained problem is also true (with, as noted above, τθ instead
of τ).
Proof of Lemma 5: Let Φ be the convex function such that ∇Φ#ρ1 = µ. According to Theorem 4.1
(with the only exception that, here, µ is only a probability in P2; however, nothing needs to be changed
in the proof in [4] to infer that everything still works in this general case), the Euler equation for the
constrained problem leads to, after adapting notation and some manipulation, the following expression
for the distributional gradient of ρ1

∇ρ1(x) =
1

τθ

{

∇Φ(x) +

[

d2(µ, ρ1)

2Nθ
− τ − 1

]

x

}

ρ1(x), for a.e. x ∈ R
N . (5.4)

Thus, by easily adjusting the proof of Proposition 3, we deduce that ρ1 ∈W 1,1(RN ) ∩W 1,∞(RN ). Next
we rewrite (5.4) as

[∇Φ(x) − x]ρ1(x) = τθ∇ρ1(x) +

[

τ −
d2(µ, ρ1)

2Nθ

]

xρ1(x) (5.5)

and we use this to compute
∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2dµ(x) = −

∫

RN

[x+ ∇Φ(x)] · {[∇Φ(x) − x]ρ1(x)}dx

= −

∫

RN

[x+ ∇Φ(x)] ·

{

τθ∇ρ1(x) +

[

τ −
d2(µ, ρ1)

2Nθ

]

xρ1(x)

}

dx.
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Taking into account that the second order moments of µ and ρ1 are both equal to Nθ, the display above
implies

0 = Nθτ +
d2(µ, ρ1)

2
−Nθτ −

[

τ −
d2(µ, ρ1)

2Nθ

]
∫

RN

x · ∇Φ(x)dx − τθ

∫

RN

∇Φ(x) · ∇ρ1(x)dx.

For the same reason
∫

RN

x · ∇Φ(x)dx = Nθ −
1

2
d2(µ, ρ1).

Lemma 1 applies again to yield the nonnegativity of
∫

RN ∇Φ(x) · ∇ρ1(x)dx. We infer

d4(µ, ρ1) − 2Nθ(2 + τ)d2(µ, ρ1) + 4N2θ2τ ≥ 0. (5.6)

If we combine this and the obvious fact that on Eθ,0 we have

d2(µ, ρ1) ≤ 2

∫

RN

|x|2dµ(x) + 2

∫

RN

|x|2ρ1(x)dx = 4Nθ,

we deduce that d2(µ, ρ1) must be smaller that the smallest root of the quadratic polynomial in d2(µ, ρ1)
from (5.6). Thus

d2(µ, ρ1) ≤ Nθ
(

2 + τ −
√

4 + τ2
)

which concludes the proof. QED.

The proof of Proposition 7 becomes now an easy consequence of the displacement convexity of the
fourth-moment functional regarded as a functional on the unconstrained manifold. In fact, one can show
that this functional is not displacement convex on the constrained manifold. If it were, an improved
estimate would eventually be available.
Proof of Proposition 7: Let fs :=

[

(1 − s)idRN + s∇Φ
]

#
ρ1 be the McCann’s interpolants with f0 = ρ1

and f1 = µ. Using the displacement convexity of M4 again, we obtain

M4(µ) −M4(ρ1) ≥
d

ds

∫

RN

|x|4fs(x)dx

∣

∣

∣

∣

s=0

=

∫

RN

d

ds
|(1 − s)x+ s∇Φ(x)|4

∣

∣

∣

∣

s=0

ρ1(x)dx

= 4

∫

RN

(

|x|2x
)

·
{[

∇Φ(x) − x
]

ρ1(x)
}

dx.

We employ (5.5) once again to obtain

M4(ρ1) −M4(µ) ≤ −4

∫

RN

(

|x|2x
)

·

{

τθ∇ρ1(x) +

[

τ −
d2(µ, ρ1)

2Nθ

]

xρ1(x)

}

dx

= −4

[

τ −
d2(µ, ρ1)

2Nθ

]

M4(ρ1) − 4τθ

∫

RN

(

|x|2x
)

· ∇ρ1(x)dx.

Due to the regularity of ρ1 we can integrate by parts in the last integral, then use Lemma 5 to conclude
the proof. QED.
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[3] Y. Brenier, Polar Factorization and Monotone Rearrangement of Vector-Valued Functions, Comm.
Pure Appl. Math., 44 (1991), 375-417.

[4] E. Carlen, W. Gangbo, Constrained Steepest Descent in the 2-Wasserstein Metric, Annal. Math.,
157, no. 3 (2003), 807-846.

[5] E. Carlen, W. Gangbo, On the solution of a model Boltzmann equation via steepest descent in
the 2-Wasserstein metric, Arch. Rat. Mech. Anal. 172, No. 1 (2004), 21-64.

[6] M. Cullen, W. Gangbo, A Variational Approach for the 2-D Semi-Geostrophic Shallow Water
Equations, Arch. Rat. Mech. Anal. 156, no. 3 (2001), 241-273.

[7] L. C. Evans, Partial differential equations and Monge-Kantorovich Mass Transfer, Current Devel-
opments in Mathematics, 1997, S. T. Yau, ed., Int. Press, Boston, MA (1999), 65-126.

[8] L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca
Raton, FL, (1992).

[9] R. Jordan, D. Kinderlehrer, F. Otto, The Variational Formulation of the Fokker-Plank Equa-
tion, SIAM J. of Math. Anal. 29 (1998), 1-17.

[10] R. McCann, A convexity principle for interacting gases, Adv. Math. 128, 153-179 (1997).

[11] F. Otto, Doubly degenerate diffusion equations as steepest descent, preprint of the University of
Bonn (1996).

[12] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: a mean field theory, Arch.
Rat. Mech. Anal. 141 (1998), 63-103.

[13] G. Toscani, Entropy production and the rate of convergence to equilibrium for the Fokker-Planck
equation, Quarterly Appl. Math. LVII (1999), 521-541.

[14] A. Tudorascu, One-phase Stefan problems; a mass transfer approach, Adv. Math. Sci. Appl. 14,
No. 1 (2004), 151-185.

[15] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, AMS
(2003).

16


