# Colloquia

## Hung P. Tong-Viet 3/15/2016

Derangements in primitive permutation groups and applications

**Date:** 3/15/2016**Time:** 3:30PM-5:00PM**Place:** 315 Armstrong Hall

Hung P. Tong-Viet

**Abstract:** A derangement (or fixed-point-free permutation) is a permutation with no

fixed points. One of the oldest theorems in probability, the Montmort

limit theorem, says that the proportion of derangements in finite

symmetric groups Sn tends to e−1 when n tends to infinity. A classical

theorem of Jordan implies that every finite transitive permutation group

of degree greater than 1 contains derangements. This result has many

applications in number theory, topology, game theory, combinatorics, and

repre- sentation theory. There are several interesting questions on the

order and the number of derangements that have attracted much attention

in recent years. In this talk, I will discuss some of these questions

and I will report on recent results on finite primitive permutation

groups with some restriction on derangements (joint with T.C. Burness)

and some application to modular representation theory (joint with M.L.

Lewis).

## RUME Colloquium

Opportunity to learn from lectures in advanced mathematics

**Date:** 3/11/2016**Time:** 3:30PM-4:30PM**Place:** 315 Armstrong Hall

Tim Fukawa-Connelly

**Abstract:** In this report, we synthesize studies that we have conducted on how students interpret mathematics lectures. We present a case study of a lecture in which students in an advanced mathematics lecture did not comprehend the points that their professor intended to convey. We present three accounts for this: students’ note-taking strategies, their beliefs about proof, and their understanding of the professor’s colloquial mathematics. Finally, we explore via a larger-scale study, lecturing practices and student-note-taking behaviors. We refute claims that mathematicians do not present intuitive or conceptual explanations, and demonstrate that students are unlikely to take meaning away from these more informal aspects of lecture.

## Professor Michael Schroeder 3/10/2016

One Row, One Column,

One Symbol

**Date:** 3/10/2016**Time:** 3:45PM-4:45PM**Place:** 315 Armstrong Hall

**Abstract:** Let n be a positive integer and and r,c,s each be integers in {1,2,...,n}. A partial latin square P satisfies the RCS property if for every ordered triple (x,y,z) belonging to P, either x=r, y=c, or z=s. Partial latin squares of this type were introduced by Casselgren and Haggkvist in a 2013 paper, in which they show that some infinite families of partial latin squares with the RCS property are completable. In this talk, we classify when any partial latin square with the RCS property is completable. This is joint work with Jaromy Kuhl of the University of West Florida.

## Professor Maria Emilianenko 3/4/2016

Kinetic Modeling of

Coarsening in Polycrystals

**Date:** 3/4/2016**Time:** 1:30PM-2:30PM**Place:** 315 Armstrong Hall

**Abstract:** When microstructure of polycrystalline materials undergoes coarsening driven by the elimination of energetically unfavorable crystals, a sequence of network transformations, including continuous expansion and instantaneous topological transitions, takes place. This talk will be focused on recent advances related to the mathematical modeling of this process. Two types of approaches will be discussed, one aimed at simulating the evolution of individual crystals in a 2-dimensional system via a vertex model focused on triple junction dynamics, and one providing a kinetic Boltzmann-type description for the evolution of probability density functions. Predictions based on the new kinetic mesoscale model will be discussed and contrasted with those obtained by large-scale simulations for several classes of interfacial energies.

## Professor Lianying Miao 2/22/2016

On the extremal values of the

eccentric distance sum of trees

**Date:** 2/22/2016**Time:** 3:30PM-5:00PM**Place:** 315 Armstrong Hall

Lianying Miao

**Abstract:**Let G = (V,E) be a simple connected graph. The eccentricity ε(v) of a vertex v is the maximum distance from v to any other vertex. The eccentric distance sum of G is deﬁned as ξd(G) = Pv∈V ε(v)D(v), where D(v) = Pu∈V d(u,v) is the sum of all distance from the vertex v.

In this paper, we continue to study the eccentric distance sum of trees. The trees of order n with domination number at most dn

3e are characterized.

## Professor Mokshay Madiman 1/27/2016

Entropy and the additive combinatorics of probability densities

on locally compact abelian groups

**Date:** 1/27/2016**Time:** 3:30PM-4:50PM**Place:** 315 Armstrong Hall

Mokshay Madiman

**Abstract:** Additive number theory contains a number of so-called

"sumset inequalities" that relate the cardinalities of various finite

subsets of an abelian group G, for instance, the sumset A+A and the

difference set A-A of a finite subset A of G. It also contains

“inverse" results such as Freiman’s theorem, which asserts that sets A

such that A+A is relatively small must have some "additive structure".

Motivated by considerations coming from multiple directions including

probability theory, combinatorics, information theory, and convex

geometry, we explore probabilistic analogues of such results in the

general setting of locally compact abelian groups.

For instance, we show that for independent, identically distributed random variables X

and X’ whose distribution has a density with respect to Haar measure

on a locally compact abelian group G, the entropies of X+X' and X-X'

strongly constrain each other. We will also discuss stronger

statements that can be made for specific groups of interest, such as

R^n, the integers, and finite cyclic groups.

Based on (multiple) joint works with Ioannis Kontoyiannis (Athens Univ. of Economics),

Jiange Li (Univ. of Delaware), Liyao Wang (Yale Univ.), and Jaeoh Woo

(Univ. of Texas, Austin).

## Professor Hao Shen 10/29/2015

Resolvable group divisible designs and (k,r)-colorings of complete graphs

**Date:** 10/29/2015**Time:** 4:30PM-5:30PM**Place:** 315 Armstrong Hall

Hao Shen

Abstract: Let k and r be given positive integers, a

(k,r)-coloring of a complete graph K is a coloring of the edges of K with r colors such that all monochromatic connected subgraphs have at most k vertices. The Ramsey number f(k,r) is defined to be the smallest u such that the complete graph with u vertices does not admit a (k,r)-coloring.

A group divisible design is called resolvable if all the blocks can be partitioned into parallel classes. In this talk, we will introduce the known results on the existence of resolvable group divisible designs and their applications in the study of (k,r)-colorings of complete graphs.

## Professor Carsten Conradi 10/1/2015

Steady states of polynomial ODEs arising in biology with application

to multisite phosphorylation

**Date:** 10/1/2015**Time:** 3:30PM-4:30PM**Place:** 315 Armstrong Hall

Carsten Conradi

Abstract:Polynomial Ordinary Differential Equations are an important tool in many areas of quantitative biology. Due to high measurement uncertainty, few experimental repetitions and a limited number of measurable components, parameters are subject to high uncertainty and can vary in large intervals. One therefore effectively has to study families of parametrized polynomial ODEs. In this talk a class of ODEs is discussed, where the steady states can be parametrized by solutions of parameter independent linear inequality systems. To this class belong, for example, multisite phosphorylation systems. For a special instance of this subclass, one can formulate parameter conditions that guarantee the existence of three steady states.

## Professor Alan Rendall 9/29/2015

Sustained oscillations in phosphorylation cascades

**Date:** 9/29/2015**Time:** 3:30PM-4:30PM**Place:** 315 Armstrong Hall

Alan Rendall

Abstract:Signalling networks are sets of chemical reactions used to transmit information

in living cells. One pattern frequently encountered in this context is that of a

phosphorylation cascade, where phosphate groups are added to proteins in

successive stages. In this talk I report on work with Juliette Hell on the existence

of periodic solutions in systems of ODE modelling a key example of

a cascade of this type, the MAP kinase cascade. The mathematical tools used

for this are bifurcation theory and geometric singular perturbation theory.

I will also describe the relation of these results to the idea that oscillations

are often related to negative feedback loops, where the feedback may arise

in an implicit way due to sequestration effects.

## Professor Martha Alibali 9/28/2015

Defining and Measuring Conceptual Knowledge of Mathematics

**Date:** 9/28/2015**Time:** 3:30PM-4:30PM**Place:** 121 Armstrong Hall

Martha Alibali

Abstract:Both researchers and educators recognize the importance of conceptual knowledge in mathematics. However, it has proven difficult to identify and measure conceptual knowledge in many mathematical domains. This talk provides an overview of research on conceptual knowledge in the literature on mathematical thinking. I discuss (1) how conceptual knowledge is defined in the mathematical thinking literature, broadly speaking, and (2) how conceptual knowledge is defined, operationalized, and measured in three specific mathematical domains: equivalence, cardinality, and inversion. This review uncovers several shortcomings in this body of literature, most notably a lack of consistency in definitions of conceptual knowledge and a lack of alignment between definitions and measures. To address these issues, I propose a general framework that divides conceptual knowledge into two facets: knowledge of general principles and knowledge of the principles underlying procedures.

## Pages