Dr. Yan Hao 3/8/2012

A tale of two stochastic models

Date: 3/8/2012
Time: 3:30-4:30 PM
Place: 315 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

Modeling and analysis of biological phenomena require techniques and tools from various disciplines. Though deterministic models have been broadly used and proved to be a powerful tool in the study of mathematical biology, stochastic models often compliment them on capturing individual behavior and effects of noise, molecular fluctuations and random environmental changes for example. In this talk, I will present two examples to show when and how stochastic models can be applied to study biological problems. In the first example, an agent based model is used to study resource sharing rules among human populations under realistic ecological conditions and revealed that simple sharing is an effective risk reducing strategy that plays an important role in maintaining human populations. In the second example, Markov chains and stochastic differential equations are applied to model the cardiac calcium dynamics which is crucial for cardiac rhythm regulation and is known to be the key to understanding many cardiac diseases.

Date, Location: 

Dr. Leobardo Rosales 2/24/2012

The single and two-valued minimal surface equation.

Date: 2/24/2012
Time: 3:30-4:30 PM
Place: 315 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

The two-valued minimal surface equation is a degenerate PDE
used to produce examples of stable minimal immersions with branch
points. In this talk, drawing analogies from the minimal surface
equation, we investigate questions of existence, regularity, and
rigidity of solutions.

Date, Location: 

Dr. Kevin Milans 2/22/2012

Sparse Ramsey Hosts

Date: 2/22/2012
Time: 3:30-4:30 PM
Place: 422 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

In Ramsey Theory, we study conditions under which every partition of a large structure yields a part with additional structure. For example, Van der Waerden's theorem states that every s-coloring of the integers contains arbitrarily long monochromatic arithmetic progressions, and the Hales--Jewett Theorem guarantees that every game of tic-tac-toe in high dimensions has a winner. Ramsey's Theorem implies that for any target graph G, every s-coloring of the edges of some sufficiently large host graph contains a monochromatic copy of G. In Ramsey's Theorem, the host graph is dense (in fact complete). We explore conditions under which the host graph can be sparse and still force a monochromatic copy of G.
We write H→sG if every s-edge-coloring of H contains a monochromatic copy of G. The s-color Ramsey number of G is the minimum k such that some k-vertex graph H satisfies H→sG. The degree Ramsey number of G is the minimum k such that some graph H with maximum degree k satisfies H→sG. Chvátal, Rödl, Szemerédi, and Trotter proved that the Ramsey number of bounded-degree graphs grows only linearly, sharply contrasting the exponential growth that generally occurs when the bounded-degree assumption is dropped. We are interested in the analogous degree Ramsey question: is the s-color degree Ramsey number of G bounded by some function of s and the maximum degree of G? We resolve this question in the affirmative when G is restricted to a family of graphs that have a global tree structure; this family includes all outerplanar graphs. We also investigate the behavior of the s-color degree Ramsey number as s grows. This talk includes results from three separate projects that are joint with P. Horn, T. Jiang, B. Kinnersley, V. Rödl, and D. West.

Date, Location: 

Dr. Flor Espinoza Hidalgo 2/21/2012

Analysis of the Organization and Dynamics of Proteins in Cell Membranes

Date: 2/21/2012
Time: 3:30-4:30 PM
Place: 315 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

Cells communicate with the outside world through membrane receptors that recognize one of many possible stimuli (hormones, antibodies, peptides) in the extracellular environment and translate this information to intracellular responses. Changes in the organization and composition of the plasma membrane are critical to transmembrane signal transduction, so there is great interest in understanding the organization of membrane proteins in resting cells and in tracking their dynamic reorganization during signaling. Problems in signaling networks are important in understanding many diseases including cancer and asthma.

Our protein of interest is the IgE high affinity receptor FceRI, found in mast cells and basophils. The activation of this receptor starts when IgE bound to FceRI is crosslinked by multivalent antigens, initiating a tyrosine kinase signaling cascade that triggers histamine release and other preformed inflammatory mediators that are stored in cytoplasmic granules.

In this talk, we present some results of our analysis of biological data on the distribution and mobility of this receptor during signaling. The data analyzed are from Janet Oliver’s Lab (STMC). First, we will present the results of our clustering analysis of high resolution electron microscopy images (static data). We focus on the analysis of the organization of the IgE-FceRI after crosslinking with the multivalent antigen, DNP-BSA. The data were generated using gold particles of size 5nm as labels to identify the location of the receptors in RBL-2H3 mast cell membranes at fixed times after stimulation. In the clustering analysis we used the dendrogram command from Matlab in our hierarchical clustering and dendrogram algorithm (HCDA). This algorithm gives an intrinsic distance number, that provides the distance for the maximum number of clusters in the biological data. Then, we compare this number to the number provided by randomly generated data for the same number of receptors in each experiment. This ratio is called the clustering ratio. It is this ratio that quantifies clustering. The HCDA algorithm also provides, number of clusters and sizes, giving more detailed information about the data. Next, we will present the analysis of real time fluorescence microscopy data (dynamic data), that track the temporal behavior of IgE-FceRI after being stimulated by different doses of the multivalent antigen, DNP-BSA. These

data were generated using quantum dots (QD) of sizes 5-10nm as labels to track the positions of the receptors in time in RBL-2H3 mast cell membranes. One of the restrictions of QDs is that they blink. As a result, the data sets have missing positions. Our analysis of dynamic data algorithm (ADDA) takes cares of this limitation. For these data, we analyzed changes in the standard deviation of the jump lengths and quantified changes in jump lengths with different stimulus.

Date, Location: 

Dr. Hehui Wu 2/20/2012

Longest Cycles in Graphs with Given Independence Number and Connectivity.

Date: 2/20/2012
Time: 3:30-4:30 PM
Place: 422 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

A vertex cut of a connected graph is a set of vertices whose removal renders the graph disconnected. The connectivity of a
graph is the size of the smallest vertex cut. An independent set of a graph is a set of vertices such that between any two vertices in the set,
there is no edge connecting them. The independence number is the size of the largest independent set. A cycle is spanning or Hamiltonian
if it visits all the vertices.

The Chv\'atal--Erd\H{o}s Theorem states that every graph whose connectivity
is at least its independence number has a spanning cycle. In 1976, Fouquet and
Jolivet conjectured an extension: If $G$ is an $n$-vertex $k$-connected graph
with independence number $a$, and $a \ge k$, then $G$ has a cycle of length
at least $\frac{k(n+a-k)}{a}$. We prove this conjecture. This is joint work with Suil O and Douglas B. West.

Date, Location: 

Dr. Tuoc Phan 2/15/12

Navier-Stokes Equations in Critical Spaces: Existence and Stability of Steady State Solutions

Date: 2/15/2012
Time: 3:30-4:30 PM
Place: 315 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

Abstract. In this talk, I will briefly derive the Navier-Stokes equations which is the most fundamental equations in fluid mechanics. I then discuss my recent results on the uniqueness existence of solutions to the stationary Navier-Stokes equations with small singular external forces belonging to a critical space. To the best of my knowledge, this is the largest critical space that is currently available for this kind of existence result. The stability of the steady state solutions in such spaces is also obtained by a series of sharp estimates for resolvents of a singularly perturbed operator and the corresponding semigroup. Some related results concerning the Cauchy problem for the non-stationary Navier Stokes equations will be also addressed.
The talk is based on the joint work with N. C. Phuc (LSU).

Date, Location: 

Dr. Rong Luo 2/14/2012

Dr. Luo will present Map-coloring, Edge-coloring and Vizings Conjectures.

Date: 2/14/2012
Time: 1:30-2:30 PM
Place: 422 Armstrong Hall
*Refreshments will be served at 3:00PM in 310 Armstrong Hall.

A graph is a set of vertices and a set of edges that connect pairs of vertices. An edge coloring of a graph is an assignment of colors to the edges of the graph so that any two edges sharing a common endvertex receive different colors. Edge coloring was first studied by Tait in 1880 as an approach to attack the well-known Map 4-Coloring conjecture. Vizing’s theorem classifies the simple graphs into two classes, Class one graphs and Class two graphs. However, it is NP-hard to determine whether a graph is in Class one or two. In late 1960s, Vizing proposed several conjectures to study the “barely” Class two graphs (critical graphs). Those conjectures are fundamental problems in the area of edge coloring. In the last ten years, there are lots of progresses on those conjectures. In this talk, I will first talk about the relation between Map Coloring and Edge Coloring and then survey the progresses on Vizing’s conjectures.

Date, Location: 

Professor Slepcev 2/13/2012

CMU Professor, Dr. Slepcev, will host a colloquium and
all are invited to attend.

Title: Global-in-time weak measure solutions, finite-time aggregation
and confinement for nonlocal interaction equations

Date: 2/13/2012
Time: 3:30-4:30PM
Place: 315 Armstrong Hall

View Slepcev Abstract

I will talk about well-posedness theory for weak measure
solutions of the Cauchy problem for a family of nonlocal interaction
equations. These equations are continuum models for interacting particle
systems with attractive/repulsive pairwise interaction potentials. The main
phenomenon of interest is that, even with smooth initial data, the
solutions can concentrate mass in finite time. I will discuss the
existence, uniqueness and stability of solutions which hold even after
the blow-up time in the classical norms.

In particular, in the case of sufficiently attractive potentials,
the solutions collapse in finite time onto a single point.
Finally, compensation between the attraction at large distances
and local repulsion of the potentials, and conditions to have
global-in-time confined systems will be discussed. The approach is
based on the theory of gradient flows in the space of probability
measures endowed with the Wasserstein metric.

Date, Location: 

Ms. Krista Toth 2/16/12

Student Understanding of the Definite Integral When Applied to Finding Volumes of Solids

Date: 2/16/12
Time: 2:30-3:30PM
Place: 422 Armstrong Hall

Abstract: Past research has shown that students struggle when solving definite integral application problems, but little has been done to examine the sources of their difficulties. This study aims to more thoroughly examine student misconceptions about definite integrals and develop new curricula to address these issues. Participants are second-semester calculus students enrolled at WVU. Past exam problems required students to sketch approximating slices of given solids, and set up a corresponding volume integral. Students’ written solutions were analyzed for common mistakes and misconceptions. Although some students solved the problems correctly, a majority exhibited major deficiencies in their understanding of how to apply the definite integral. Most surprising was students’ widespread failure to make a connection between the sketch and the set up of the integral. Further research is currently under way that aims to expose sources of students’ faulty thought processes when using definite integrals to solve volume problems.

Date, Location: 

Dr. Charis Tsikkou 2/10/12

Dr. Tsikkou will present Conservation Laws with no Classical
Riemann Solutions: Existence of Singular Shocks.

Date: 2/10/2012
Time: 4:30-5:30 PM
Place: 315 Armstrong Hall
*Refreshments will be served at 4:00PM in 310 Armstrong Hall.

Conservation laws are the most fundamental principles of continuum
mechanics. The basic tool in the construction of solutions to the Cauchy problem for
conservation laws with smooth initial data is the Riemann problem. It consists of
piecewise constant initial data having a single discontinuity at the origin.

In this talk I will review the results obtained for the solutions to the Riemann
problem and present a system of two equations derived from isentropic gas dynamics
with no classical solution. I will then use the blowing-up approach to geometric
singular perturbation problems to show that the system exhibits unbounded solutions
(singular shocks) with Dafermos profiles.

Date, Location: 


Subscribe to