1. Prove that exponentiation to a positive odd power defines a strictly increasing function. For \(n \in \mathbb{N} \), find all solutions to \(x^n = y^n \). (Hint: One possibility is to consider the cases \(x < 0 < y \), \(0 < x < y \) and \(x < y < 0 \).)

Solution.

We use induction on \(n \) to prove this for the power \(2n + 1 \) (an odd number).

Basis step \((n = 1)\): Here exponentiation is the identity function, so \(x < y \) does in fact give that \(x^1 < y^1 \).

Induction step: Suppose that exponentiation to the power \(2n - 1 \) is strictly increasing. Thus if \(x < y \), then \(x^{2n-1} < y^{2n-1} \). \((\ast)\)

If \(0 \leq x < y \), then \(0 < x^2 < y^2 \) and multiplying equation \((\ast)\) gives us that \(x^{2n+1} < y^{2n+1} \).

If \(x < 0 \leq y \), then \(x^{2n+1} \) is negative and \(y^{2n+1} \) is nonnegative, so \(x^{2n+1} < y^{2n+1} \).

If \(x < y \leq 0 \), then \(0 \leq -y < -x \), and we proved that \((-y)^{2n+1} < (-x)^{2n+1} \). Since an odd power of \(-1\) is \(-1\), this gives us that \(-y^{2n+1} < -x^{2n+1} \), and thus we have \(x^{2n+1} < y^{2n+1} \).

Solutions to \(x^n = y^n \). All pairs with \(x = y \) are solutions. When \(n \) is odd, the exponentiation is strictly increasing, and hence in this case there are no other solutions. When \(n \) is even, the solutions are \(x = \pm y \). To show that there are no other solutions, it suffices to show that exponentiation to the \(n \)th power is injective from the set of positive real numbers to itself. This follows by induction almost exactly like that above.

2. (a) Let \(f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) be defined by \(f(m, n) = 2m + n \). Is the function \(f \) an injection? Is the function \(f \) a surjection? Prove it.

Solution.

Let \(f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) be defined by \(f(m, n) = 2m + n \). The function is not an injection since \((0, 2)\) and \((1, 0)\) both map to 2. The function is surjective. Let \(a \in \mathbb{Z} \). Then the element \((0, a)\) maps to \(a \) satisfying the definition of surjectivity.

(b) Let \(g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) be defined by \(g(m, n) = 6m + 3n \). Is the function \(g \) an injection? Is the function \(g \) a surjection? Prove it.

Solution.

Let \(g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) be defined by \(g(m, n) = 6m + 3n \). The function is not an injection since \((0, 2)\) and \((1, 0)\) both map to 6. The function is also not surjective. Note that \(6m + 3n = 3(2m + n) \) and so all of the outputs will be multiples of 3. Thus 2 is not a possible output of \(g \).
3. Let A be the set of subsets of $[n]$ that have even size, and let B be the subsets of $[n]$ that have odd size. Establish a bijection from A to B. Such a bijection is suggested below for $n = 3$.

$A = \emptyset \; \{2, 3\} \; \{1, 3\} \; \{1, 2\}$

$B = \{3\} \; \{2\} \; \{1\} \; \{1, 2, 3\}$

Solution.

Let A be the collection of even subsets of $[n]$, and let B be the collection of odd subsets. For each $X \in A$, define $f(X)$ as follows:

$$f(X) = \begin{cases} X \setminus \{n\} & \text{if } n \in X \\ X \cup n & \text{if } n \notin X. \end{cases}$$

By this definition, $|X|$ and $|f(X)|$ differ by one, so $f(X)$ is a set of odd size and f maps A to B.

We claim that this is a bijection. Consider distinct $X, Y \in A$. If both contain or both omit n, then $f(X)$ and $f(Y)$ agree on whether they contain n, but (since they were distinct) differ outside of $\{n\}$. If exactly one of either X or Y contains n, then exactly on of $f(X)$ or $f(Y)$ contains n. Thus $X \neq Y$ implies $f(X) \neq f(Y)$ and so f is injective.

If $Z \in B$, then reversing whether n is present in Z yields a subset X such that $f(X) = Z$. This means f is also surjective. Therefore, f is a bijection and so $|A| = |B|$.

Alternatively, we could define $g : B \to A$ by the same rule used to define f (switching the domain and target), and observe that $g \circ f$ is the identity function on A and $f \circ g$ is the identity function on B. This implies that g is the inverse of f and thus that f is a bijection and therefore $|A| = |B|$. Without knowing $|A| = |B|$ beforehand, it does not suffice to show that one of the compositions is the identity (we must show both).

Bonus 1. Determine which cubic polynomials from \mathbb{R} to \mathbb{R} are injective.

(Hint: This is easy if calculus is allowed (but it’s not!). To avoid calculus, first use geometric arguments to reduce the problem to the case $x^3 + rx$.)

(Hint 2: I wrote an article in *Mathematics Teacher*, v101 n 6 p408-11 (Feb 2008) that may help, but it is more general than what is needed here. It is available in the Evansdale Library as well as online.)

Solution.

The paper referenced provides the key ideas in the following geometric arguments to reduce the problem to the case $x^3 + rx$.

The formula for the value of a general cubic polynomial at x is $f(x) = ax^3 + bx^2 + cx + d$ where the coefficients a, b, c and d are given with $a \neq 0$. Since multiplying the function by -1 doesn’t affect injectivity (one-to-one), we may assume that $a > 0$.

We assert that every cubic polynomial has rotational symmetry about a point. This is similar to the idea of an odd polynomial, except the rotational symmetry is about a point (m, n) instead of $(0, 0)$. The function $f(x) = ax^3 + bx^2 + cx + d$ has rotational symmetry
about a point \((m, n)\) if and only if a function \(g\) given by \(g(x) = f(x + m) - n\) is an odd function. Notice that this transformation moves the point \((m, n)\) on the graph of \(f\) to the origin.

Note that a cubic function is odd if and only if
\[
ax^3 + bx^2 + cx + d = -a(-x)^3 + b(-x)^2 + c(-x) + d
= ax^3 - bx^2 + cx - d.
\]
which is true if and only if \(b = d = 0\). Further, note that \(n = f(m) = am^3 + bm^2 + cm + d\).

Thus, we can rewrite \(g\) as follows:
\[
g(x) = f(x + m) - n
= a(x + m)^3 + b(x + m)^2 + c(x + m) + d - (am^3 + bm^2 + cm + d)
= ax^3 + 3ax^2m + 3axm^2 + bx^2 + 2bxm + cx
= ax^3 + (3am + b)x^2 + (3am^2 + 2bm + c)x.
\]
Recall, that the coefficient of \(x^2\) must be 0, which means
\[
m = -\frac{b}{3a}.
\]
Thus we know that \(f\) has rotational symmetry about the point
\[
\left(-\frac{b}{3a}, f\left(-\frac{b}{3a}\right)\right).
\]
Thus, we can rewrite \(g\) as follows:
\[
g(x) = ax^3 + (3am^2 + 2bm + c)x
= ax^3 + \left(3a \left(-\frac{b}{3a}\right) + 2b \left(-\frac{b}{3a}\right) + c\right)x
= ax^3 + \left(3a \left(\frac{b^2}{(3a)(3a)}\right) - \frac{2b^2}{3a} + \frac{3ac}{3a}\right)
= ax^3 + \left(\frac{3ac - b^2}{3a}\right).
\]
Now, dividing by \(a\) does not affect the injectivity of a function and so we can consider the function \(h\) defined by \(g(x)/a\). In other words, \(h(x) = x^3 + rx\) where \(r = \frac{3am^2 + 2bm + c}{a}\).

We can now proceed three different ways.

Method #1: We could realize that Problem 1 gives us that this function is the sum of two injective functions which we can prove is injective.

Method #2: First, we realize that for the function to be injective, the maximum and minimum value must be the same. The paper then provides a method of determining the
coordinates of the maximum and minimum value which we then would set equal to each other for the condition.

Method #3: Notice that if \(x^3 + rx = (x')^3 + r x' \) for some distinct \(x \) and \(x' \), then dividing by \(x - x' \) yields \(x^2 + xx' + (x')^2 = -r \).

If \(r \) is negative, then \((x, x') = (0, \sqrt{-r})\) is a solution, and so the function is not injective. If \(r \) is 0, then there is no solution with \(x \neq x' \) (since cubing is injective). If \(r \) is positive, then again, there is no solution, because \(x^2 + yx' + (x')^2 \) is never negative (since \(a^2 + b^2 \geq 2 |a||b| \)).

Thus, \(h \) is injective if and only if \(r \geq 0 \) and this determines whether \(f \) is injective. This means that \(3ac - b^2 \geq 0 \).

Therefore, the requirement for injectivity of a general cubic function \(b^2 - 3ac \leq 0 \). ■