1. The graph of \(y = f(x) \) on the interval \([0, 8]\) is shown below.

Let \(g(x) = \int_0^x f(t) \, dt \). From Part I of the Fundamental Theorem of Calculus, determine:

(a) The interval on which \(g(x) \) is increasing (give reason).

(b) The interval on which \(g(x) \) is decreasing (give reason).

(c) The value of \(x \) where \(g(x) \) has a critical point (give reason).

(d) The values of \(g(x) \) at the points \(x = 2 \) and \(x = 3 \) (by inspection of the figure).

2. Practice your integration skills by finding the following integrals:

(a) \(\int \frac{1}{\sqrt{3x-5}} \, dx \)
(b) \[\int \frac{x + 2x^3}{(x^4 + x^2)^3} \, dx \]

(c) \[\int 3 \cos^4(5x) \sin(5x) \, dx \]

3. Find the area bounded between \(y = x^4 \) and \(y = 2 - x^2 \).

4. Consider the function \(f(x) = \begin{cases}
 x, & \text{if } 0 \leq x \leq 1, \\
 -x^2 + 2x, & \text{if } 1 < x \leq 2.
\end{cases} \)

Compute \(\int_0^2 f(x) \, dx \).