Math 155 – Spring 2002 WORKSHEET 11

NAME: ___ Section: _______

1. For the function \(f(x) = 4x^2 + 1 \) on the interval \([0, 2]\), do the following:

 (a) Write the Riemann Sum for the partition of \([0, 2]\) into the 4 subintervals \([0, \frac{1}{2}]),
 \([\frac{1}{2}, 1]), \([1, \frac{3}{2}]), \([\frac{3}{2}, 2])\), when the right hand endpoints are selected for the \(x_i^*\).

 (b) Use the regular partition of \([0, 2]\) into \(n\) equal subintervals and select the right
 hand endpoints for the \(x_i^*\) to write a Riemann Sum for \(f(x)\).

 (c) Compute the value of the Riemann Sum in part (b) for \(n = 10\).
2. Consider the sum

\[\sum_{i=1}^{n} \left(\frac{i}{n} + 1 \right)^2 \frac{1}{n}. \]

(a) Explain why the sum can be interpreted as a Riemann sum for a function \(f(x) \) on the interval \([0, 1]\). That is, guess the function \(f(x) \), the partition, and the \(x_i^* \) selection.

(b) Do part (a) if the interval were \([1, 2]\).