Computational Complexity Aspects of Graph Pebbling

Kevin G. Milans (milans@math.illinois.edu)
Joint with Bryan Clark

University of Illinois at Urbana-Champaign

CanaDAM 2009
Montréal, Québec
26 May 2009
Graph Pebbling

A pebbling move removes two pebbles from a vertex and places one on a neighbor.
Graph Pebbling

A pebbling move removes two pebbles from a vertex and places one on a neighbor.

reachability: Given a graph G with pebbles and a target r, can we put a pebble on r?

In this example: yes

Are there fast algorithms for this problem?

Probably not: many problems are special cases of reachability
Graph Pebbling

- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor.
- **REACHABILITY**: Given a graph G with pebbles and a target r, can we put a pebble on r?
A *pebbling move* removes two pebbles from a vertex and places one on a neighbor.

REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?
A pebbling move removes two pebbles from a vertex and places one on a neighbor.

REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?
Graph Pebbling

- A pebbling move removes two pebbles from a vertex and places one on a neighbor.

- **REACHABILITY**: Given a graph G with pebbles and a target r, can we put a pebble on r?
Graph Pebbling

A pebbling move removes two pebbles from a vertex and places one on a neighbor.

REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?

In this example: yes
Graph Pebbling

A *pebbling move* removes two pebbles from a vertex and places one on a neighbor.

REACHABILITY: Given a graph G with pebbles and a target r, can we put a pebble on r?

In this example: yes

Are there fast algorithms for this problem?
Graph Pebbling

- A *pebbling move* removes two pebbles from a vertex and places one on a neighbor.
- **REACHABILITY**: Given a graph G with pebbles and a target r, can we put a pebble on r?
 - In this example: yes
- Are there fast algorithms for this problem?
 - Probably not: many problems are special cases of **REACHABILITY**.
Early 1970's: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem "3sat": For each problem \(L \) in NP, it is possible to quickly convert instances of \(L \) to instances of 3sat. The procedure that translates instances of \(L \) to instances of 3sat is called a reduction. Theorem (Cook; Levin) 3sat is NP-complete.
Early 1970’s: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem “3SAT”:
Early 1970’s: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem “3SAT”:

- For each problem L in NP, it is possible to quickly convert instances of L to instances of 3SAT.
Early 1970’s: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem “3SAT”:

For each problem L in NP, it is possible to quickly convert instances of L to instances of 3SAT.
Early 1970’s: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem “3SAT”:

- For each problem L in NP, it is possible to quickly convert instances of L to instances of 3SAT.

- The procedure that translates instances of L to instances of 3SAT is called a reduction.
Early 1970’s: Stephen Cook and Leonid Levin independently made a remarkable discovery about a problem “3SAT”:
- For each problem L in NP, it is possible to quickly convert instances of L to instances of $3SAT$.
- The procedure that translates instances of L to instances of $3SAT$ is called a reduction.

Theorem (Cook; Levin)

$3SAT$ is NP-complete.
Complexity of REACHABILITY

Fact
reachability is in NP.

Theorem
There is a polynomial time reduction from 3sat to reachability.

Corollary (Hurlbert-Kierstead; Watson; Clark-Milans)
reachability is NP-complete. If there is a polynomial time algorithm for reachability, then P=NP.
Complexity of REACHABILITY

Fact
REACHABILITY is in NP.
Complexity of REACHABILITY

Fact
REACHABILITY is in NP.

Theorem
There is a polynomial time reduction from 3SAT to REACHABILITY.
Fact
REACHABILITY is in NP.

Theorem
There is a polynomial time reduction from 3SAT to REACHABILITY.
Fact
REACHABILITY is in NP.

Theorem
There is a polynomial time reduction from 3SAT to REACHABILITY.

Corollary (Hurlbert-Kierstead; Watson; Clark-Milans)
REACHABILITY is NP-complete. If there is a polynomial time algorithm for REACHABILITY, then P=NP.
3SAT

- \(\land \) means “and”, \(\lor \) means “or”, \(\overline{x} \) means “not \(x \)”
3SAT

- \land means “and”, \lor means “or”, \overline{x} means “not x”
- A boolean formula in 3CNF:

$$
\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
$$

3SAT

- \land means “and”, \lor means “or”, \overline{x} means “not x”
- A boolean formula in 3CNF:

$$
\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
$$
3SAT

- \(\land \) means “and”, \(\lor \) means “or”, \(\overline{x} \) means “not \(x \)”
- A boolean formula in 3CNF:
 \[
 \phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
 \]
- 3SAT: Given a 3CNF formula \(\phi \), is \(\phi \) satisfiable?
3sat

- \(\wedge\) means “and”, \(\lor\) means “or”, \(\overline{x}\) means “not \(x\)”
- A boolean formula in 3CNF:

\[
\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
\]

- 3SAT: Given a 3CNF formula \(\phi\), is \(\phi\) satisfiable?

Definition

A 3CNF formula \(\phi\) is *simple* if
3SAT

- \land means “and”, \lor means “or”, \overline{x} means “not x”
- A boolean formula in 3CNF:
 \[
 \phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
 \]
- **3SAT**: Given a 3CNF formula ϕ, is ϕ satisfiable?

Definition
A 3CNF formula ϕ is *simple* if

1. each variable appears at most twice in its positive form, and
3SAT

- \land means “and”, \lor means “or”, \overline{x} means “not x”
- A boolean formula in 3CNF:
 \[
 \phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
 \]
- 3SAT: Given a 3CNF formula ϕ, is ϕ satisfiable?

Definition

A 3CNF formula ϕ is *simple* if

1. each variable appears at most twice in its positive form, and
2. each variable appears at most once in its negative form.
3SAT

- ∧ means “and”, ∨ means “or”, ¬x means “not x”
- A boolean formula in 3CNF:
 \[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
- 3SAT: Given a 3CNF formula \(\phi \), is \(\phi \) satisfiable?

Definition
A 3CNF formula \(\phi \) is *simple* if

1. each variable appears at most twice in its positive form, and
2. each variable appears at most once in its negative form.

Proposition
There is a polynomial time algorithm to convert a 3CNF formula to an equivalent simple 3CNF formula.
3SAT to REACHABILITY

Step 1. Straightforward.

Step 2. \text{npr}: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?

Step 3. Replace each edge with a "one-use" path.
3Sat to Reachability

3Sat \rightarrow S3Sat \rightarrow \text{Reachability}
3SAT to REACHABILITY

Step 1. Straightforward.

Step 2. Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?

Step 3. Replace each edge with a "one-use" path.
3SAT to REACHABILITY

Step 1. Straightforward.

Step 2. npr: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?

Step 3. Replace each edge with a “one-use” path.
3SAT to REACHABILITY

- **Step 1.** Straightforward.
3SAT to REACHABILITY

- **Step 1.** Straightforward.

- **Step 2.** **NPR:** Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
3sat to reachability

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (w \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]

And Gadget

And Gadget
3sat to reachability

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]

And Gadget

Or Gadget
3SAT to REACHABILITY

\[
\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})
\]

And Gadget

Or Gadget

Variable Gadget
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]

\[
\begin{array}{cccccc}
W & X & Y & Z \\
2 & 2 & 2 & 2 \\
0 & 0 & 2 & 0 \\
2 & 2 & 2 & 2 \\
\end{array}
\]
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]

W \rightarrow X \rightarrow Y \rightarrow Z
3sat to reachability

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \bar{x}) \land (\bar{w} \lor y \lor z) \land (x \lor \bar{y} \lor \bar{z}) \]
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor y \lor z) \]

![Diagram showing the transformation from 3SAT to REACHABILITY](image-url)
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \bar{x}) \land (\bar{w} \lor y \lor z) \land (x \lor \bar{y} \lor \bar{z}) \]

Diagram: A graph with nodes labeled W, X, Y, Z, and edges connecting them with labels 0 and 2.
3sat to reachability

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
3SAT to REACHABILITY

\[\phi = (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
3SAT to REACHABILITY

- **Step 1.** Straightforward.
- **Step 2.** **NPR:** Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
3SAT to REACHABILITY

- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
- Step 3. Replace each edge with a “one-use” path.
3SAT to REACHABILITY

- Step 1. Straightforward.
- Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
- Step 3. Replace each edge with a “one-use” path.
3SAT to REACHABILITY

- Step 1. Straightforward.
- Step 2. **NPR**: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
- Step 3. Replace each edge with a “one-use” path.
3SAT to REACHABILITY

Step 1. Straightforward.
Step 2. NPR: Given a graph G with pebbles and a target r, can we put a pebble on r using each edge at most once?
Step 3. Replace each edge with a “one-use” path.

Theorem
REACHABILITY is NP-complete even for bipartite graphs with $\Delta(G) \leq 3$ and at most 2 pebbles on each vertex.
Pebbling Number

A distribution of pebbles is solvable if every vertex is reachable.
A distribution of pebbles is solvable if every vertex is reachable.

\[\pi(G) \]: min \(k \) such that each dist. of \(k \) pebbles is solvable.
Pebbling Number

- A distribution of pebbles is **solvable** if every vertex is reachable.
- $\pi(G)$: $\min k$ such that each dist. of k pebbles is solvable.
- **PEBBLING-NUMBER**: given G and k, is $\pi(G) \leq k$?
Beyond NP

- We usually think of NP as containing “hard problems”.

![Diagram showing relationships between P, NP, and NPC classes]
We usually think of NP as containing “hard problems”. It’s all relative: some problems make NP look easy.
Beyond NP

- We usually think of NP as containing “hard problems”.
- It’s all relative: some problems make NP look easy.
- Π_2^P: class of problems containing NP.
Beyond NP

- We usually think of NP as containing “hard problems”.
- It’s all relative: some problems make NP look easy.
- Π_2^P: class of problems containing NP.
- Roughly: P is to NP as NP is to Π_2^P.
Beyond NP

- We usually think of NP as containing “hard problems”.
- It’s all relative: some problems make NP look easy.
- Π_2^P: class of problems containing NP.
- Roughly: P is to NP as NP is to Π_2^P.
- How difficult can Π_2^P problems be?
Beyond NP

- We usually think of NP as containing “hard problems”.
- It’s all relative: some problems make NP look easy.
- \(\Pi^P_2 \): class of problems containing NP.
- Roughly: \(P \) is to NP as NP is to \(\Pi^P_2 \).
- How difficult can \(\Pi^P_2 \) problems be?
- (Probably) can’t solve them quickly, even if you have a magical device that solves problems in NP instantly.
We usually think of NP as containing “hard problems”.

It’s all relative: some problems make NP look easy.

Π^P_2: class of problems containing NP.

Roughly: P is to NP as NP is to Π^P_2.

How difficult can Π^P_2 problems be?

(Probably) can’t solve them quickly, even if you have a magical device that solves problems in NP instantly.

Just like P vs. NP, most believe that NP $\subsetneq \Pi^P_2$.
Beyond NP

- We usually think of NP as containing “hard problems”.
- It’s all relative: some problems make NP look easy.
- Π^P_2: class of problems containing NP.
- Roughly: P is to NP as NP is to Π^P_2.
- How difficult can Π^P_2 problems be?
- (Probably) can’t solve them quickly, even if you have a magical device that solves problems in NP instantly.
- Just like P vs. NP, most believe that NP $\subsetneq \Pi^P_2$.
- Analogous to 3SAT in NP: $\forall\exists3\text{SAT}$ in Π^P_2.
We usually think of NP as containing “hard problems”.

It’s all relative: some problems make NP look easy.

Π₂^P: class of problems containing NP.

Roughly: P is to NP as NP is to Π₂^P.

How difficult can Π₂^P problems be?

(Probably) can’t solve them quickly, even if you have a magical device that solves problems in NP instantly.

Just like P vs. NP, most believe that NP ⊈ Π₂^P.

Analogous to 3SAT in NP: ∀∃3SAT in Π₂^P.
Beyond NP

- We usually think of NP as containing “hard problems”.
- It’s all relative: some problems make NP look easy.
- Π^P_2: class of problems containing NP.
- Roughly: P is to NP as NP is to Π^P_2.
- How difficult can Π^P_2 problems be?
- (Probably) can’t solve them quickly, even if you have a magical device that solves problems in NP instantly.
- Just like P vs. NP, most believe that $NP \subsetneq \Pi^P_2$.
- Analogous to $3SAT$ in NP: $\forall \exists 3SAT$ in Π^P_2.
Beyond NP

3SAT example:

\[(w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})\]
Beyond NP

3SAT example:

\[\exists w \exists y \exists x \exists z \ (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \]
Beyond NP

▶ 3SAT example:

$$\exists w \exists y \exists x \exists z \ (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

▶ \forall \exists 3SAT example:

$$\forall w \forall y \exists x \exists z \ (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$
Beyond NP

3SAT example:

$$\exists w \exists y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

∀∃3SAT example:

$$\forall w \forall y \exists x \exists z \quad (w \lor x) \land (w \lor \overline{x}) \land (\overline{w} \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z})$$

∀∃3SAT example is a “no” instance: if w is false, first two clauses are unsatisfiable.
Beyond NP

Theorem

There is a polynomial time reduction from ∀∃3SAT to PEBBLING-NUMBER.
Beyond NP

Theorem

There is a polynomial time reduction from $\forall \exists 3\text{SAT}$ to PEBBLING-NUMBER.

Corollary

PEBBLING-NUMBER is Π_2^P-complete.
Complexity of Pebbling Number Variants

- \(\hat{\pi}(G) \): min. \(k \) such that there is a solvable dist. of size \(k \).
Complexity of Pebbling Number Variants

- $\widehat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \to \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v$ at least $f(v)$ pebbles on v.
Complexity of Pebbling Number Variants

- $\hat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \to \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v$ at least $f(v)$ pebbles on v.
- $\gamma_f(G)$: min. k such that every dist. of k pebbles covers f.
Complexity of Pebbling Number Variants

- $\hat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \rightarrow \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v$ at least $f(v)$ pebbles on v.
- $\gamma_f(G)$: min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$: special case of $\gamma_f(G)$ where f is the unit distribution.
Complexity of Pebbling Number Variants

- $\widehat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \rightarrow \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v$ at least $f(v)$ pebbles on v.
- $\gamma_f(G)$: min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$: special case of $\gamma_f(G)$ where f is the unit distribution.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Question</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Pebbling Number</td>
<td>Is $\gamma(G) \leq k$?</td>
<td>polynomial time(^1)</td>
</tr>
<tr>
<td>Optimal Pebbling Number</td>
<td>Is $\widehat{\pi}(G) \leq k$?</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Pebbling Number</td>
<td>Is $\pi(G) \leq k$?</td>
<td>Σ_2^P-complete</td>
</tr>
</tbody>
</table>

\(^1\)Vuong–Wyckoff, Sjöstrand
Complexity of Pebbling Number Variants

- $\hat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \rightarrow \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v$ at least $f(v)$ pebbles on v.
- $\gamma_f(G)$: min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$: special case of $\gamma_f(G)$ where f is the unit distribution.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Question</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Pebbling Number</td>
<td>Is $\gamma(G) \leq k$?</td>
<td>polynomial time1</td>
</tr>
<tr>
<td>Optimal Pebbling Number</td>
<td>Is $\hat{\pi}(G) \leq k$?</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Pebbling Number</td>
<td>Is $\pi(G) \leq k$?</td>
<td>Π_2^P-complete</td>
</tr>
</tbody>
</table>

Open Problems

- Recall: always $\pi(G) \geq |V(G)|$.

1Vuong–Wyckoff, Sjöstrand
Complexity of Pebbling Number Variants

- $\hat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \rightarrow \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v \at least f(v)$ pebbles on v.
- $\gamma_f(G)$: min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$: special case of $\gamma_f(G)$ where f is the unit distribution.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Question</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Pebbling Number</td>
<td>Is $\gamma(G) \leq k$?</td>
<td>polynomial time1</td>
</tr>
<tr>
<td>Optimal Pebbling Number</td>
<td>Is $\hat{\pi}(G) \leq k$?</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Pebbling Number</td>
<td>Is $\pi(G) \leq k$?</td>
<td>Π^P_2-complete</td>
</tr>
</tbody>
</table>

Open Problems

- Recall: always $\pi(G) \geq |V(G)|$.
- What is the complexity of deciding whether $\pi(G) = |V(G)|$?

1Vuong–Wyckoff, Sjöstrand
Complexity of Pebbling Number Variants

- $\widehat{\pi}(G)$: min. k such that there is a solvable dist. of size k.
- A dist. of pebbles covers a function $f : V(G) \rightarrow \mathbb{N}$ if there is a sequence of pebbling moves after which: $\forall v$ at least $f(v)$ pebbles on v.
- $\gamma_f(G)$: min. k such that every dist. of k pebbles covers f.
- $\gamma(G)$: special case of $\gamma_f(G)$ where f is the unit distribution.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Question</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Pebbling Number</td>
<td>$\gamma(G) \leq k?$</td>
<td>polynomial time1</td>
</tr>
<tr>
<td>Optimal Pebbling Number</td>
<td>$\widehat{\pi}(G) \leq k?$</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Pebbling Number</td>
<td>$\pi(G) \leq k?$</td>
<td>Π_2^P-complete</td>
</tr>
</tbody>
</table>

Open Problems

- Recall: always $\pi(G) \geq |V(G)|$.
- What is the complexity of deciding whether $\pi(G) = |V(G)|$?
- Approximation algorithms for $\pi(G)$.

1Vuong–Wyckoff, Sjöstrand