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ABSTRACT

The goal of this paper is a theoretical and experimental comparison of two popular image segmentation al-
gorithms: fuzzy connectedness (FC) and graph cut (GC). On the theoretical side, our emphasis will be on
describing a common framework in which both of these methods can be expressed. We will give a full analysis
of the framework and describe precisely a place which each of the two methods occupies in it. Within the same
framework, other region based segmentation methods, like watershed, can also be expressed. We will also discuss
in detail the relationship between FC segmentations obtained via image forest transform (IFT) algorithms, as
opposed to FC segmentations obtained by other standard versions of FC algorithms.

We also present an experimental comparison of the performance of FC and GC algorithms. This concentrates
on comparing the actual (as opposed to provable worst scenario) algorithms’ running time, as well as influence
of the choice of the seeds on the output.

1. INTRODUCTION

In this paper, we put a special emphasis on the delineation algorithms, that is, the segmentation procedures
returning only one object region of interest at a time rather than multiple objects simultaneously. This makes
the presentation clearer, even when a method can be easily extended to a multi-object version. In addition,
the comparisons of different segmentation methods, both theoretical and experimental, is easier in this single-
object setting. The general, multi-object segmentation algorithms will be also discussed here, but in a format of
generalizations of the appropriate delineation methods and only at a theoretical level.

We will concentrate on the two families of algorithms, FC and GC. The leading theme will be the framework
of fuzzy connectedness, FC, methods published since 1996 [1, 2, 3, 4, 5]. (For other extensions of FC, compare
[19, 20].) We will also discuss in detail the family of graph cut, GC, methods [6, 7, 8, 9, 10, 11] (see also
[12, 13]) and their relations to the FC family of algorithms. The GC methodology will be of special importance
to our presentation, since we will formalize the FC framework in the language of graphs and graph cuts. Other
segmentation methods can also be expressed in the presented framework [22, 14]. This, in particular, includes
watershed, WS, [15, 16] and region growing level set methods from [17].

2. FRAMEWORK

In this section, we will point out the similarities between FC and GC algorithms and provide a common frame-
work in which both of them (as well as WS) can be expressed. It should be stressed that the framework is
very general and it will require some adjustments for the specific descriptions of the individual methods. Nev-
ertheless, the adjustments will be small and the framework stresses the core similarities among the algorithms.
At the same time, the subtle differences that do exist among them set them apart and cause their individual
weaknesses/strengths. Due to the space limitation, the proofs of presented theoretical results will be deferred to
a full, journal version of this paper.

The common feature of all presented algorithms is that the object to be segmented by them is indicated (by
user, or automatically) by one or more spels (spel stands for a space element) referred to as seeds. In addition,
if P is an object returned by such an algorithm, then any spel belonging to P is connected to at least one of
the seeds indicating this object. The word “connected” indicates that the topological properties of the image
scene play an important role in this class of segmentation processes. So, we will proceed with explaining what
we mean by the image scene, its topology, as well as the notion of connectedness in this context.

For the rest of this article, n ≥ 2 will stand for the dimension of the image we consider. In most medically
relevant cases, n is either 2 or 3, but a time sequence of 3D images is often considered as a 4D image.
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2.1. Digital image scene

A digital image scene C can be identified with any finite subset of the n-dimensional Euclidean space R
n.

However, we will concentrate here only on the case, most relevant for medical imaging, in which C is of the
rectangular form C1 × · · · × Cn and each Ci is identified with the set of integers {1, . . . ,mi}.

A topology on a scene C = 〈C,α〉 will be given in terms of an adjacency relation α, which intuitively determines
which spels c, d ∈ C in a pair are “close enough to be considered connected.” Formally, an adjacency relation α
is a binary relation on C, which will be identified with a subset of C × C, that is, spels c, d ∈ C are α-adjacent,
if and only if, 〈c, d〉 ∈ α. From the theoretical point of view, we need only to assume that the adjacency relation
is symmetric (i.e., if c is adjacent to d, then also d is adjacent to c). However, in most medical applications,
it is enough to assume that c is adjacent to d when the distance∗ ||c − d|| between c and d does not exceed
some fixed number. In most applications, we use adjacencies like 4-adjacency (for n = 2) or 6-adjacency (in the
three-dimensional case), defined as ||c− d|| ≤ 1. Similarly, the 8-adjacency (for n = 2) and 26-adjacency (in 3D)
relations can be defined as ||c− d|| ≤ √

3.

The adjacency relation on C translates to the notion of connectivity as follows. A (connected) path p in a
subset A of C is any finite sequence 〈c1, . . . , ck〉 of spels in A such that any consecutive spels ci, ci+1 in p are
adjacent. The family of all paths in A is denoted by P

A. Spels c and s are connected in A provided there exists
a path p = 〈c1, . . . , ck〉 in A from c to s such that c1 = c and ck = s. The family of all paths in A from c to d is
denoted by P

A
cd.

2.2. Scene: duality of topological and graph-theoretical representations

The topological interpretation of the scene given above is routinely used in the description of many image
segmentation algorithms. In particular, this is the case for FC, WS, and most of the level set methods. On the
other hand, the algorithms for GC use the interpretation of the scene as a directed graph G = 〈V,E〉, where
V = C is the set of vertices† and E is the set of edges, which are identified with the set of pairs 〈c, d〉 of spels from
V = C for which c and d are joined by an edge. Notice that if we define E as the set of all adjacent pairs 〈c, d〉
from C (i.e., when E = α), then the graph G = 〈V,E〉 and the scene C = 〈C,α〉 are identical structures (i.e.,
G = C), despite their different interpretations. This forms the basis of the duality between the topological and
graph-theoretical views of this structure: any topological scene C = 〈C,α〉 can be treated as a graph G = 〈C,α〉,
and, conversely any graph G = 〈V,E〉 can be treated as topological scene C = 〈V,E〉.

Notice that, under this duality, the standard topological and graph theoretical notions fully agree. Specifically,
a path p in C is connected in C = G in a topological sense, if and only if, it is connected in the graph G = C.
A subset P of C is connected, in a topological sense, in C = G, if and only if, it is connected in the graph
G = C. Notice also that although the graph G = 〈C,α〉 is defined as a directed graph, it can be also treated as
an undirected graph, since any edge 〈c, d〉 in G can be reversed (i.e., if 〈c, d〉 is in E = α, then so is 〈d, c〉).
2.3. Digital image

All of the above notions depend only on the geometry of the image scene and are independent of the image
intensity function. Here, the image intensity function will be a function f from C into R

k, f : C → R
k. The

value f(c) of f at any spel c is a k-dimensional vector of image intensities. A digital image will be treated as a
pair 〈C, f〉, where C is its scene (treated either as a topological scene or as a related graph) and f is the image
intensity. We will often identify the image with its intensity function, that is, without explicitly specifying the
associated scene adjacency. In case when k = 1, we will say that the image is scalar; for k > 1 we talk about
vectorial images. Mostly, when giving examples, we will confine ourselves to scalar images.

2.4. Delineated objects and cost function

Fix an image I = 〈C, f〉 and consider the task of delineating an object indicated by a non-empty set of seeds
S ⊂ C. Suppose also that we have a set T ⊂ C \ S of seeds (possibly empty) that indicate the background.
This sets up the basic constrains on the object we seek—it will belong to the family P(S, T ) of all sets P ⊂ C
containing S and disjoint with T . We will also write P(S) in place of P(S, ∅), which pertains to the case when
there are no seeds indicating the background.

∗In the examples, we use the Euclidean distance || · ||. But any other distance notion can be also used here.
†Actually, in the GC algorithms, usually V contains two additional vertices, but this will be discussed in detail later.
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Now, assume that we have also an energy function ε associated with I, which, to every set P ⊂ C, assigns
its energy value ε(P ) ∈ R. Assume also that we have a fixed energy threshold value θ ∈ R. Let Pθ(S, T ) be
the family of all objects P ∈ P(S, T ) such that ε(P ) ≤ θ. Threshold θ will be always chosen so that the family
Pθ(S, T ) is non-empty. We will write Pθ(S) in place of Pθ(S, ∅).

Any of the region-based algorithms we consider here will return, as a delineated object, a set Pθ(S, T ) ∈
Pθ(S, T ). Usually (but not always) Pθ(S, T ) is the smallest (in set inclusion sense) element of Pθ(S, T ). In
addition, in all essential cases, θ will be chosen, via an optimization process, as the minimum of all numbers
ε(P ) over P ∈ P(S, T ).

In the case of any of the methods FC, GC, WS, and LS, the value ε(P ) of the energy function is defined in
terms of the boundary bd(P ) of P , which is the set K = bd(P ) of all edges 〈c, d〉 of a graph C = 〈C,E〉 with
c ∈ P and d not in P . We often refer to this boundary set K as a graph cut, since removing these edges from
C disconnects P from its complement C \ P . The actual definition of ε depends on the particular segmentation
method, as indicated below.

Let κ : E → R be a local cost function. For 〈c, d〉 ∈ E the value κ(c, d) depends on the value of the image
intensity function f at c, d, and (sometimes) at nearby spels. Usually, the bigger is the difference between
the values of f(c) and f(d), the smaller is the cost value κ(c, d). This agrees with the intuition that, often,
the bigger the magnitude of the difference f(c) − f(d) is, the greater is the chance that the “real” boundary
of the object we seek is between these spels. More generally, the smallest κ(c, d) may be corresponding to a
difference f(c) − f(d) that is expected for the object boundary. In the FC algorithms, κ is called the affinity
function. In the GC algorithms, κ is treated as a weight function of the edges and is referred to as a local cost
function. For the classical GC algorithms, the energy function ε(P ) is defined as the sum of the weights of all
edges in K = bd(P ), that is, as εsum(P ) =

∑
〈c,d〉∈K κ(c, d). The delineations for the FC family of algorithms

are obtained with the energy function ε(P ) defined as the maximum of the weights of all edges in K = bd(P ),
that is, as εmax(P ) = max〈c,d〉∈K κ(c, d). (See Section 3.2.) In other words, the delineations output by GC are
the smallest sets whose total sum boundary cost is minimum, while FC outputs are the smallest sets such that
the maximum boundary element cost (affinity) is the smallest. The same maximum function works also for the
WS family with an appropriately chosen κ. The energy function for LS is a bit more complicated, as it depends
also on the geometry of the boundary, specifically its curvature.

3. FUNDAMENTALS OF FUZZY CONNECTEDNESS

Let I = 〈C, f〉 be a digital image, with the scene C = 〈C,E〉 being identified with a graph. As indicated above,
the FC segmentations require a local measure of connectivity κ associated with I, known as affinity function,
where for a graph edge 〈c, d〉 ∈ E (i.e., for adjacent c and d) the number κ(c, d) (edge weight) represents a
measure of how strongly spels c and d are connected to each other in a local sense. The affinity functions are
discussed in detail in the papers [19, 20]. Here we like to indicate only the examples of the most prominent
affinities used in the applications so far [18], where σ > 0 is a fixed constant: (1) The homogeneity based affinity

ψσ(c, d) = e−||f(c)−f(d)||2/σ2

, where 〈c, d〉 ∈ E, (1)

with its value being close to 1 (meaning that c and d are well connected) when the spels have very similar
intensity values; ψσ is related to the notion of directional derivative. (2) The object feature based affinity (single

object case, with an expected intensity vector m ∈ R
k for the object) φσ(c, d) = e−max{||f(c)−m||,||f(d)−m||}2/σ2

,
where 〈c, d〉 ∈ E, with its value being close to 1 when both adjacent spels have intensity values close to m. The
weighted averages of these two forms of affinities — either additive or multiplicative — have also been used.

The reader can keep these examples of the affinity functions in mind when reading the rest of the results
on the FC methods. Nevertheless, we like to stress that these are just examples and a considerable variety of
affinity functions can be used [19, 20]. In the algorithms presented below, we will assume that the values of
affinity functions are in the interval [0, 1], as is the case of the examples given above. For the rest of this section,
we will assume that a digital image I = 〈C, f〉, a related affinity function κ, and the associated energy function
ε = εmax are fixed.
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3.1. Absolute fuzzy connectedness, AFC, objects

In this section, we will define an AFC object, denoted PSθ (notice that this notation is different from Pθ(S)),
containing a non-empty set S ⊂ C of seeds and indicated by a threshold θ. Our main goal then is to fulfill
a promise from Section 2 by showing, in Theorem 3.1, that PSθ is indeed the smallest element of the family
Pθ(S) = Pθ(S, ∅) = {P ∈ P(S) : ε(P ) ≤ θ}.

We cannot define PSθ as the smallest element of the family Pθ(S), since such a definition is not well justified,
unless it is proved that the family Pθ(S) actually contains the smallest element. (In general, an element P ′ =
argminP∈Pθ(S) ε

max(P ) need not be the smallest element of Pθ(S).) Therefore, we will use an alternative
definition, indicated below, which is motivated by the actual implementation of the FC algorithm. Theorem 3.1
then proves the equivalence of both approaches.

The strength of a path p = 〈c1, . . . , ck〉, k > 1, is defined as μ(p) = min{κ(ci−1, ci) : 1 < i ≤ k}, that is, the
strength of the κ-weakest link of p. For k = 1 (i.e., when p has length 1) we associate with p the strongest possible
value: μ(p) = 1. (For k = 1, when set {κ(ci−1, ci) : 1 < i ≤ k} is empty, we put μ(p) = 1.) For c, d ∈ A ⊆ C,
the (global) κ-connectedness strength in A between c and d is defined as the strength of a strongest path in A
between c and d; that is, μA(c, d) = max{μ(p) : p ∈ P

A
cd}. Notice that μA(c, c) = μ(〈c〉) = 1. We will refer to

the function μA as a connectivity measure (on A) induced by κ. For c ∈ A ⊆ C and a non-empty D ⊂ A, we
also define μA(c,D) = maxd∈D μA(c, d). Then, we define the absolute fuzzy connectedness, AFC, object PSθ as
{c ∈ C : θ < μC(c, S)}.
Theorem 3.1. If ∅ �= S ⊂ C and θ < 1, then PSθ is the smallest element of the family Pθ(S).

If a set of seeds S contains only one seed s, then we will write Psθ for the object PSθ = P{s}θ . It is easy to
see that PSθ is a union of all objects Psθ for s ∈ S, that is, PSθ =

⋃
s∈S Psθ.

Notice, that Psθ is connected, since for every c ∈ Psθ there is a path p = 〈c1, . . . , ck〉 from s to c with
μ(p) = μC(c, s) > θ, and such a path is contained in Psθ. Moreover, if Gθ = 〈C,Eθ〉 is a graph with Eθ

consisting of the scene graph edges 〈c, d〉 with weight κ(c, d) greater than θ, then Psθ is a connected component
of Gθ containing s, and PSθ is a union of all components of Gθ intersecting S.

One of the most important properties of the AFC objects is known as robustness. Intuitively, this property
states that the FC delineation results do not change if the seeds S indicating an object are replaced by another
nearby set U of seeds. Formally, it reads as follows.

Theorem 3.2. (Robustness) For every digital image I on a scene C = 〈C,E〉, every s ∈ C and θ < 1, if Psθ

is an associated FC object, then PUθ = Psθ for every U ⊂ Psθ. More generally, if S ⊂ C and U ⊂ PSθ intersects
every connected component of Gθ intersecting PSθ (i.e., U ∩ Psθ �= ∅ for every s ∈ S), then PUθ = PSθ.

The proof of this result follows easily from our graph interpretation of the object, as indicated above. The
proof based only on the topological description of the scene can be found in [2, 4]. The robustness property
constitutes one of the strongest arguments for defining the objects in the FC fashion. We note that none of the
other algorithms discussed here (GC as well as briefly mentioned WS and LS) have this property.

The standard algorithm κθFOEMS that, given an image I = 〈C, f〉, a set S ⊂ C of seeds indicating the
object, and a threshold θ < 1, returns the AFC object PSθ is described in [1]. It is easy to see that κθFOEMS
runs in linear time with respect to the size n of the scene C. More precisely, it runs in time of order O(Δn),
where Δ is the degree of the graph C (i.e., the largest number of spels that can be adjacent to a single spel; e.g.,
Δ = 26 for the 26-adjacency).

3.2. Optimization: Relative fuzzy connectedness RFC

The AFC delineation, beside a set S of seeds indicating the object, requires also a mysterious parameter —
a threshold θ — which has no visible association with the object. In the relative fuzzy connectedness, RFC,
delineation this requirement for the explicit input of the threshold θ is removed; it is replaced by a requirement
of an input of a non-empty set T of seeds, disjoint with S, indicating the background of the object we seek. The
actual RFC object PS,T is defined via competition of seed sets S and T for attracting a given spel c to their
realms (see [2]): PS,T = {c ∈ C : μC(c, S) > μC(c, T )}. Clearly, we would like for PS,T to belong to P(S, T ). It
is easy to see that for this to be true, it is necessary that the number μC(S, T ) = maxs∈S μC(s, T ) is less than
1. Therefore, we will always assume that the seed sets are chosen properly, that is, such that μC(S, T ) < 1.
Notice also that PS,T =

⋃
s∈S P{s},T , since PS,T = {c ∈ C : (∃s ∈ S)μC(c, s) > μC(c, T )} =

⋃
s∈S P{s},T , as
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μC(c, S) = maxs∈S μC(c, s).

The fact that PS,T minimizes the energy ε in P(S, T ) follows, in particular, from the following theorem.
Notice also that its part (iii) indicates that PS,T =

⋃
s∈S P{s},T not only minimizes ε globally, but that each

of its components P{s},T minimizes ε on P({s}, T ) with its own version of the minimum, θs = μC(s, T ), which
may be (and often is) smaller than the global minimizer θS = μC(S, T ). In other words, the object PS,T can be
viewed as a result of minimization procedure used separately for each s ∈ S, which gives a sharper result than a
simple minimization of global energy for the entire object PS,T .

Theorem 3.3. Assume that μC(S, T ) < 1. Then PS,T minimizes the energy ε = εmax on P(S, T ). Moreover,

(i) The number θS = μC(S, T ) is the minimum of ε on P(S, T ), that is, θS = min{ε(P ) : P ∈ P(S, T )}.
(ii) If S is a singleton, then PS,T is the smallest set in PθS(S, T ).

(iii) For general S, let P∗
θS
(S, T ) be the family of all sets of the form

⋃
s∈S P s, where each P s belongs to

Pθ{s}({s}, T ). Then P∗
θS
(S, T ) ⊂ PθS (S, T ) and PS,T is the smallest set in P∗

θS
(S, T ).

The above described delineation RFC procedure easily and naturally generalizes to the segmentation al-
gorithm of m > 1 separate objects. More precisely, assume that for an image I = 〈C, f〉 we have a family
S = {S1, . . . , Sm} of pairwise disjoint non-empty sets of seeds, each Si indicating an associated object Pi. If for
each i we put Ti = (

⋃m
j=1 Sj) \Si, then the RFC segmentation is defined as a family P = {PSi,Ti

: i = 1, . . . ,m}.
It is easy to see that the different objects in P are disjoint. Moreover, each object PSi,Ti

contains Si provided
the seeds are chosen properly, that is, when μC(Si, Sj) < 1 for every j �= i.

It is worth to mention that while each PSi,Ti
minimizes the energy ε = εmax in P(Si, Ti) with the energy

value θi = μC(Si, Ti), the numbers θi’s need not be equal when the number m of objects is greater than 2.

The robustness Theorem 3.2 can be modified to this setting as follows. (See [2, 4].)

Theorem 3.4. (Robustness for RFC) Let S = {S1, . . . , Sm} be a family of seeds in a digital image I and let
P = {PSi,Ti

: i = 1, . . . ,m} be the associated RFC segmentation. For every i and s ∈ Si let g(s) be in P{s},Ti

and let S′
i = {g(s) : s ∈ Si}. Then, for every i, if T ′

i = (
⋃m

j=1 S
′
j) \ S′

i, then PSi,Ti
= PS′

i
,T ′

i
.

In other words, if each seed s present in S is only “slightly” shifted to a new position g(s), then the RFC
segmentation {PS′

i
,T ′

i
: i = 1, . . . ,m} associated with the modified set of seeds is identical to the original one P.

To find the RFC segmentation P = {PSi,Ti
: i = 1, . . . ,m} for a given family S = {S1, . . . , Sm} of seeds, it

is enough to use m-times an algorithm that for disjoint non-empty sets S, T ⊂ C with μC(S, T ) < 1 returns
the object PS,T . In the experimental section we examine two versions of such an algorithm: RFC-standard and
RFC-IFT. Each version follows the same simple procedure, as displayed. They differ only in a routine that, given
a non-empty set S ⊂ C, returns μC(·, S). So, their outputs are identical.

Algorithm RFC (-standard or -IFT)
Input: Affinity function defined on a scene C = 〈C,E〉 and non-empty disjoint sets S, T ⊂ C.
Output: The RFC object PS,T = {c ∈ C : μC(c, S) > μC(c, T )}.
begin

1. calculate μC(·, S) and μC(·, T ) (running appropriate subroutine twice, once for S and once for T );
2. return PS,T = {c ∈ C : μC(c, S) > μC(c, T )};

end

The RFC-standard algorithm calculates function μC(·, S) using the routine κFOEMS [1] (not presented in
this paper) that runs in time of order O(n2), (or, more precisely, O(Δ2n2)), where n is the size of the scene C.
Thus, since line 2 of RFC runs in time O(n), the RFC-standard algorithm stops in time of order O(n2).

The RFC-IFT algorithm calculates function μC(·,W ) using the IRFC-IFT routine described in the next
section, which takes as an input a non-empty set W ⊂ C and returns, in O(n) time, the function μC(·,W ).
Clearly, RFC-IFT runs in O(n) time, since so does IRFC-IFT.

3.3. Iterative relative fuzzy connectedness IRFC

The RFC segmentation P = {PSi,Ti
: i = 1, . . . ,m} of a scene, associated with a family S = {Si : i = 1, . . . ,m}

of seeds, can still leave quite a sizable “leftover” background set B = BP of all spels c outside any of the objects
wherein the strengths of connectedness are equal with respect to the seeds. The goal of the iterative relative fuzzy
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connectedness segmentation, IRFC, is to find a way to naturally redistribute some of the spels from BP among
the object regions in a new generation (iteration) of segmentation. There are two FC delineation approaches that
lead to the IRFC objects: the standard, bottom-up approach, in which the RFC object PSi,Ti

is expanded to
the “maximal” IRFC object P∞

Si,Ti
; and the IFT top-down approach, in which the IRFC object P IFT

Si,Ti
is chosen

as the minimal among all Si-indicated objects that result from different IFT S-indicated segmentations of the
scene. In this section we describe briefly both of these approaches and prove that indeed the objects P∞

Si,Ti
and

P IFT
Si,Ti

are identical. In addition, we show that this common object can be viewed as a result of the energy ε
minimization, that is, it satisfies an analog of Theorem 3.3.

Historically, the first IRFC approach was bottom-up [3, 4], so we start with it. The idea is to treat the
RFC delineated objects PSi,Ti

as the first iteration P 1
Si,Ti

approximation of the final segmentation, while the

next step iteration is designed to redistribute some of the background spels c ∈ BP , for which μC(c, Si) =
μC(c, Ti) for some i. Such a tie can be resolved if the strongest paths justifying μC(c, Si) and μC(c, Ti) cannot
pass through the spels already assigned to another object. In other words, we like to add spels from the set
P ∗ = {c ∈ B : μB∪PSi,Ti (c, Si) > μB∪PSj,Ti (c, Sj) for every j �= i}, to a new generation P 2

Si,Ti
of P 1

Si,Ti
, that is,

define P 2
Si,Ti

as P 1
Si,Ti

∪ P ∗. This formula can be taken as a definition. However, from the algorithmic point of

view, it is more convenient to define P 2
Si,Ti

as P 2
Si,Ti

= P 1
Si,Ti

∪ {c ∈ C \ P 1
Si,Ti

: μC(c, Si) > μC\P 1

Si,Ti (c, Ti)},
while the equation P 2

Si,Ti
= P 1

Si,Ti
∪P ∗ always holds, as proved in [4, thm. 3.7]. Thus, the IRFC object is defined

as P∞
Si,Ti

=
⋃∞

k=1 P
k
Si,Ti

, where sets P k
Si,Ti

are defined recursively by the formulas P 1
Si,Ti

= PSi,Ti
and

P k+1
Si,Ti

= P k
Si,Ti

∪ {c ∈ C \ P k
Si,Ti

: μC(c, Si) > μC\Pk
Si,Ti (c, Ti)}. (2)

Notice, that formula (2) holds also for k = 0, where we define P 0
Si,Ti

as the empty set ∅. The IRFC segmentation

associated with the family S of seeds is defined as the collection PI
S = {P∞

Si,Ti
: i = 1, . . . ,m}. Its members are

still disjoint, as proved in [4]. More importantly, each IRFC object P∞
Si,Ti

has the same energy value as its RFC
counterpart PSi,Ti

:

Theorem 3.5. Assume that θ = μC(S, T ) < 1. Then P∞
S,T minimizes the energy ε = εmax on P(S, T ), i.e.,

P∞
S,T ∈ P̂θ(S, T ) = {P ∈ P(S, T ) : ε(P ) = θ}.
The IRFC segmentation is robust in the sense of Theorem 3.4, where in its statement the objects PSi,Ti

are
replaced by the first iteration P 1

Si,Ti
of P∞

Si,Ti
. This follows easily from Theorem 3.4, see [4, thm. 2.5]. The

robustness result does not hold for the entire sets P∞
Si,Ti

, as discussed in [4]. (Specifically, see [4, example 3.15].)

The original IRFC algorithm (see e.g. [4]) was not very efficient — it run in time of order O(n3). Therefore, we
will not discuss it here.

Next, we will describe the IFT, top-down approach, which was originally developed in [13]. A spanning forest
for a scene C = 〈C,α〉 is any family F of directed paths such that: (1) for every spel c ∈ C there is exactly
one path pc in F which terminates at c; (2) for every path p = 〈c1, . . . , ck〉 in F, every initial segment of p
(i.e., a path 〈c1, . . . , cj〉 with j = 1, . . . , k) also belongs to F. This terminology agrees with the standard graph
theory terminology, when C is treated as a graph. A spanning forest F is often (e.g. [21, 13]) identified with its
predecessor map PrF : C → C ∪ {nil} defined as follows: if pc = 〈c1, . . . , ck〉 ∈ F is the unique path with ck = c,
then PrF(c) = nil for k = 1 and PrF(c) = ck−1 for k > 1. The spanning forest F can be easily recovered from
the predecessor function PrF, so the objects F and PrF are often identified.

Any spanning forest F on C induces also its root function RF from C onto SF = {c ∈ C : PrF(c) = nil}
defined for any c ∈ C as RF(c) = c1, where pc = 〈c1, . . . , ck〉 is the unique path in F which terminates at c (i.e.,
with ck = c). For an S ⊂ C we also define P (S,F) as the set of all c ∈ C with RF(c) ∈ S. In particular, if
S = {Si : i = 1, . . . ,m} is a family of pairwise disjoint non-empty sets of seeds in C and F is a spanning forest on
C for which SF =

⋃m
i=1 Si, then the family PF,S = {P (Si,F) : i = 1, . . . ,m} is a partition of C to which we refer

as the segmentation indicated by F and S. Notice that Si ⊂ P (Si,F) for every P (Si,F) ∈ PF,S .

For a fixed non-empty S ⊂ C, we say that a path p = 〈c1, . . . , ck〉 is optimal (with respect to S and a path
cost function μ) provided that c1 ∈ S and μ(p) = μC(ck, S). A spanning forest F is optimal (with respect to a
path cost function μ) provided every path in F is optimal with respect to SF. Following [21] (compare also [13]),
we say that any partition PF,S of C for which F is optimal is an IFT segmentation by Seed Competition, IFT-SC.
Such partitions PF,S are closely related to the IRFC partition PI

S = {P∞
Si,Ti

: i = 1, . . . ,m}, as recognized in [21].
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However, the segmentations PF,S are, in general, not unique and, usually, not equal to PI
S , since PI

S is usually
not a partition of C (i.e, there are spels in C belonging to no P∞

Si,Ti
). In addition, not all segmentations PF,S

must minimize the energy function ε. Therefore, we need to modify slightly the IFT-SC approach to make the
objects P IFT

Si,Ti
it generates equal to the IRFC objects P∞

Si,Ti
.

For a family S = {Si : i = 1, . . . ,m} of seeds in C, i ∈ {1, . . . ,m}, and Ti =
⋃

j 	=i Sj , we define P IFT
Si,Ti

as

the smallest set in the family PIRFC(Si, Ti) = {P (Si,F) : F is optimal and SF = Si ∪ Ti}. Of course, for this
definition to be correct, it needs to be argued that the family PIRFC(Si, Ti) indeed has the smallest element.
This, and the fact that P IFT

Si,Ti
= P∞

Si,Ti
, is proved in Theorem 3.6.

The proof of Theorem 3.6 and the effective construction of objects P IFT
Si,Ti

are based on the following IRFC-IFT
algorithm, which is a version of Dijkstra’s procedure for computing minimum-cost path from a single source in a
graph. IRFC-IFT also constitutes a modification of the algorithm from [13] to the format that best suits our goals
here. In the algorithm we will use a dictionary linear order relation defined on a set R2 as: 〈r1, r2〉 � 〈s1, s2〉 if,
and only if, either r1 < s1 or both r1 = s1 and r2 ≤ s2. We will write 〈r1, r2〉 ≺ 〈s1, s2〉 when 〈r1, r2〉 � 〈s1, s2〉
but 〈r1, r2〉 �= 〈s1, s2〉.
Algorithm IRFC-IFT
Input: Affinity function κ on a connected scene C = 〈C,E〉 of size n with values in a set Z ⊂ [0, 1].

A non-empty set W ⊂ C of seeds. A priority labeling map λ : C → {0, 1} such that
∅ �= Sλ ⊆ W , where Sλ = {c ∈ C : λ(s) = 0}.

Output: Function μC(·,W ); an optimal spanning forest F with SF = W , indicated by its predecessor
map Pr; and the object P IFT

S,T = P (S,F), where S = Sλ and T = W \ S.
Auxiliary
Data
Structure:

Functions: h : C → {−1} ∪ Z approximating μC(·,W ), Pr : C → C ∪ {nil} eventually
becoming the predecessor map PrF, and R : C → C eventually becoming the root function
RF. A priority queue Q of size n ordered such that: c1 can precede c2 in Q (denoted c1 � c2)
if, and only if, 〈h(c1), λ(R(c1))〉 � 〈 h(c2), λ(R(c2))〉.

We will also use a data structure Q, ordered by � as indicated in the description of IRFC-IFT. Q will
hold at most n elements, pointers to spels, and it can be defined as a priority queue like binary heap that
allows insertion and deletion of any element in O(lnn) time. However, in medical practice, the set of possible
values of an affinity function κ is usually restricted to a fixed set Z of a modest size, most frequently of a form
Z = {i/D : i = 0, 1, . . . , D} for D of order 212 = 4096. In this case, Q can be defined as an array of buckets
indexed by the set V = ({−1} ∪ Z) × {0, 1} and ordered according to �. Each bucket with an index 〈z, 
〉 ∈ V
consists of pointers to the spels with a current label 〈z, 
〉. An advantage of Q to be represented in such an array
format is that this allows O(1)-time insertion into Q and deletion from Q of any element c with a fixed label
〈z, 
〉. Emptying Q in the priority order from the largest to the smallest indexed spel, as done when executing line
4 of the algorithm, may require O(D) time during the complete execution of IRFC-IFT. Since we consider O(D)
as not exceeding O(n), we use Q in an array format in our implementation of IRFC-IFT, and, in theoretical
investigation, estimate the running time of IRFC-IFT as O(n). However, if facing running IRFC-IFT in the
situation when O(D) is lager than O(n lnn), it makes sense to use as Q a simple priority queue (like binary
heap), which will then lead to IRFC-IFT running time of order O(n lnn).

Theorem 3.6. The algorithm IRFC-IFT runs in O(n) time and its output is as indicated in the algorithm.
Moreover, if T �= ∅ and μC(S, T ) < 1, then (i) P IFT

S,T = P∞
S,T ; (ii) P IFT

S,T is the smallest element of the family

PIRFC(S, T ) ⊂ P(S, T ); (iii)P IFT
S,T minimizes the energy ε on P(S, T ).

4. GC DELINEATION

For the GC algorithms, a graph GI = 〈V,E〉 associated with the image I = 〈C, f〉, where C = 〈C,α〉, is a slight
modification of the graph 〈C,α〉 discussed above. Specifically, the set of vertices V is defined as C ∪ {s, t},
that is, the standard set C of image spels considered as vertices is expanded by two new additional vertices
s and t called terminals. Individually, s is referred to as source and t as sink. The set of edges is defined as
E = α∪ {〈b, d〉 : one of b, d is in C, the other in {s, t}}. So, the set of edges between vertices in C remains as in
C, while we connect each terminal vertex to each c ∈ C.

The simplest way to think about the terminals is that they serve as the seed indicators: s for seeds S ⊂ C
indicating the object; t for seeds T ⊂ C indicating the background. The indication works as follows. For each
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edge connecting a terminal r ∈ {s, t} with a c ∈ C, associate the weight: ∞ if either r = s and c ∈ S, or r = t
and c ∈ T ; and 0 otherwise. This means, that the source s has infinitely strong connection to any seed c in
S, and the weakest possible to any other spel c ∈ C. (We assume that all weights are nonnegative, that is, in
[0,∞].) Similarly, for the sink t and seeds c from T .

Now, assume that for every edge 〈c, d〉 ∈ α we give a weight κ(c, d) associated with the image I =
〈C, f〉. Since the algorithm for delineating RFC object uses only the information on the associated graph
(which includes the weights given by the affinity κ), we can delineate RFC object P ∗

{s},{t} ⊂ V associated

with this new graph GI . It is easy to see that the RFC object PS,T ⊂ C associated with I is equal to
P ∗
{s},{t} ∩ C. Similarly, for θ < 1, if P ∗

sθ ⊂ V is an AFC object associated with the graph GI , then the
AFC object PSθ ⊂ C associated with I is equal to P ∗

Sθ ∩ C. All of this proves that, from the FC frame-
work point of view, replacing the graph G = 〈C,α〉 with GI is only technical in nature and results in no
delineation differences. Historically, the rationale for using in GC framework’s graphs GI , with distinctive
terminals, is algorithmic in nature. More precisely, for a weighted graph G = 〈V,E〉 with positive weights
and two distinct vertices s and t indicated in it, there is an algorithm returning the smallest set PG in
Pmin = {P ∈ P(s, t) : εsum(P ) = ε0}, where P(s, t) = {P ⊂ V \ {t} : s ∈ P}, ε0 = min{εsum(P ) : P ∈ P(s, t)},
εsum(P ) =

∑
e∈bd(P ) we, and we is the weight of the edge e in the graph.

Now, let GI = 〈C ∪ {s, t}〉, E〉 be the graph associated with an image I as described above, that is, weights
of edges between spels from C are obtained from the image I (in a manner similar to the affinity numbers) and
weights between the other edges by seed sets S and T indicating foreground and background. In this setting we
can restate the above comments in a format similar to that of Theorems 3.3 and 3.5:

Theorem 4.1. The GC object PΣ
S,T = C ∩ PGI minimizes the energy εsum on P(S, T ) and PΣ

S,T is the smallest
set in P(S, T ) with this energy.

4.1. GC vs FC algorithms

In spite of similarities between the GC and RFC methodologies as indicated above, there are also considerable
differences between them. There are several theoretical advantages of the RFC framework over GC in this setting.

Speed: The FC algorithms run faster than those for GC. The theoretical estimation of the worst case run time
of the two main FC algorithms, RFC-IFT and IRFC-IFT, is O(n) (or O(n lnn)) with respect to the scene
size n (see Section 3), while the best theoretical run time for delineating PΣ

S,T is of order O(n3) (for the best

known algorithms) or O(n2.5) (for the fastest currently known), see [8]. The experimental comparisons of
the running time also confirm that FC algorithms run faster. (See Section 5, Figure 1.)

Robustness: The outcome of FC algorithms is unaffected by reasonable (within the objects) changes of the
position of seeds. (See Theorems 3.2 and 3.4.) On the other hand, the results of GC delineation may
become sensitive for even small perturbations of the seeds. See Section 5, Figure 1.

Multiple objects: The RFC framework handles easily the segmentation of multiple objects, retaining its run-
ning time and robustness property from the single object case. (See Section 3.) In the multiple object
setting, GC leads to an NP-hard problem (see [6]); so all existing algorithms for performing the required
precise delineation run in exponential time, rendering them impractical. (However, there are algorithms
that render approximate solutions for such GC problems in a practical time [6].)

GC shrinking problem: The GC algorithms have a tendency of choosing the objects with very small size of
the boundary, even if the weights of the boundary edges are very high. (See e.g. [9, 12].) This may easily
lead to the segmented object being very close to either the foreground seed set S, or to the background
seed set T . Therefore, unless sets S and T are already good approximations for the desired delineation, the
object returned by GC may be far from desirable. This problem has been addressed by many authors, via
modification of the GC method. The best known among these modifications is the method of normalized
cuts (see [12]), in which the energy εsum is replaced by another “normalized” measure of energy cost.
However, finding the resulting delineation minimizing this new energy measure is NP-hard as well (see
[12]), and so only approximate solutions can be found in practical time. Notice that neither RFC nor the
IRFC method has any shrinking problem.
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Iterative approach: The FC framework allows an iterative refinement of its connectivity measure μA (leading
to the iterative relative FC), which in turn makes it possible to redefine ε as we go along. From the
viewpoint of algorithm, this is a powerful strategy. No such methods exist for GC at present.

All this said, it should be noted that GC has also some nice properties that FC does not possess. First
notice that the shrinking problem is the result of favoring shorter boundaries over the longer; that is, GC has a
smoothing effect on the boundaries. This, in many (but not all) cases of medically important image delineations,
is perhaps a desirable feature. There is no boundary smoothing factor built into the FC basic framework, and,
if desirable, boundary smoothing must be done at the FC post processing stage.

Another nice feature of GC graph representation GI of an image I is that the weights of edges to terminal
vertices naturally represent the object-feature type of affinity, while the weights of the edges with both vertices
in C are naturally connected with the homogeneity type of affinity (1). This is the case, since homogeneity based
affinity (an image intensity derivative concept) is a binary relation in nature, while the object-feature based
affinity is actually a unary relation. Such a clear cut distinction is difficult to achieve in the FC framework, since
it requires only one affinity relation in its setting.

Now, let P IFT
S,T (κ) and PΣ

S,T (κ) be the IRFC and GC objects, respectively, determined by the set of seeds
S and T , while using the same affinity/cost function κ (with κ(c, d) ≥ 0). For m > 0 let κm be the mth
power of κ, that is, κm(c, d) = (κ(c, d))m. In [13] it was proved that, under some assumptions, the objects
P IFT
S,T (κm) and PΣ

S,T (κ
m) converge to the same set, as m goes to ∞. Notice also that, by [19, theorems 3 and 5],

P IFT
S,T (κm) = P IFT

S,T (κ) for every m > 0, since function xm is increasing. We can use this fact in our version of
this convergence theorem from [13]:

Theorem 4.2. Let S, T ⊂ C be such that θ = μC(S, T ) < 1. Then, there exists a number m0 such that
PΣ
S,T (κ

m) belongs to the family P̂θ(S, T ) = {P ∈ P(S, T ) : εmax(P ) = θ} for every m > m0. In particular,

if P̂θ(S, T ) has only one element, then PΣ
S,T (κ

m) = P IFT
S,T (κ). Moreover, m0 can be expressed by a formula

m0 = logδ N, where δ = min{q > 1: q = η/θ̂ for some η, θ̂ ∈ Z}, N is the size of α, and Z is the range of κ in
C, i.e., Z = {κ(c, d) : 〈c, d〉 ∈ α}.

5. EXPERIMENTAL COMPARISON OF FC AND GC ALGORITHMS

In this section we describe the experiments that were designed to verify and demonstrate the main differences
between FC and GC delineation algorithms discussed in Section 4.1: speed and robustness of FC versus GC and
the GC shrinking problem.

We compared four algorithms: GC using the min-cut/max-flow algorithm [11]; RFC algorithm, standard “old-
fashioned” implementation [1]; RFC-IFT, implemented by using the IFT approach [13]; IRFC-IFT, iterative RFC
algorithms, which iteratively refine the choice of output among all energy minimizers from P(S, T ), [4, 13]. The
last two algorithms are described in detail in Section 3.

Simulated MR image phantom data from the BrainWeb repository pertaining to 20 different normal patient
anatomies were utilized for our evaluation. We used the T1 data sets, since separation of white matter (WM) and
grey matter (GM) tissue regions is less challenging in these images than in images of other protocols such as T2 or
PD. The parameters for the simulated T1 acquisition were as follows: spoiled FLASH sequence with TR=22ms
and TE=9.2ms, flip angle = 30◦, voxel size = 1 × 1 × 1mm3, noise = 3%, and background non-uniformity =
20%. In these simulated data sets, true segmentations are known, since the simulations were done starting with
known anatomy. In the experiments we used a PC with an AMD Athlon 64 X2 Dual-Core Processor TK-57, 1.9
GHz, 2×256 KB L2 cache, and 2 GB DDR2 of RAM.

The affinity function κ(c, d) was defined as follows. Each given image I = 〈C, f〉 was filtered by a Gaussian
function Gk with mean μk and standard deviation σk, where k ∈ {WM,GM}, separately for WM and GM, to
produce two new images Ik = 〈C, fk〉, where fk(c) = Gk(f(c)) for any c ∈ C. Parameters μk and σk were chosen
appropriately separately for WM and GM. For each image Ik, the appropriate tissue k was segmented by using
each algorithm. For the GC algorithm, the weight function w(c, d) = (κ(c, d))m was used with m = 1, 5, and
30. The rationale for this choice of w was that, according to Theorem 4.2 (compare also [13]), the output of
GC converges to the output of IRFC when m goes to infinity. Changing m does not influence the output of
FC algorithms [19, theorems 3 and 5]. Thus, for large m, the outputs of these two forms of algorithms should
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(f) Accuracy for w(c, d) = (κ(c, d))m with m = 30

Figure 1. Time and accuracy graphs for segmenting WM for GC algorithm and FC methods
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be similar. Different sets of seeds were generated, and fed automatically as input to algorithms, by applying
different degrees of erosion operations to the known true segmentation binary images. We express the degree of
erosion by erosion radius — the larger the radius, the greater is the degree and smaller is the seed set. As the
radius of erosion increases, we may therefore expect lower delineation accuracy.

The graphs in Figure 1 summarize our experimental results. (Only the graphs for WM are shown. The
graphs for GM are similar.) Figures 1(a), (c), and (e) display the run time of each algorithm, as function of the
erosion radius, averaged over the 20 images for m = 1, 5, and 30, respectively. Similarly, Figures 1(b), (d), and
(f) demonstrate the accuracy of the algorithms expressed in Dice coefficient as a function of the erosion radius,
for m = 1, 5, and 30, respectively.

As to the efficiency of delineations, as described earlier, the theoretical worst case run times for GC, standard
RFC, RFC-IFT, and IRFC-IFT are O(n2.5) (or O(n3)), O(n2), O(n) (or O(n lnn)), and O(n) (or O(n lnn)),
respectively. These are borne out and supported by the graphs in Figures 1(a), (c), and (e). The time curve of
GC should be properly interpreted in conjunction with its accuracy curve. It shows an unstable time behavior —
the peak represents the high computational cost of GC and its drop off denotes the shrinkage problem or finding
small cuts when larger erosions (and hence small seed sets) are used that lead to highly inaccurate segmentations.
in many situations in these data sets we need to specify seed sets that are close to the true segmentation.

As to the robustness of delineations, GC is sensitive to the position of the seed sets, not just their size,
as it has a bias toward small boundaries unlike the FC family. This implies that, in an interactive setup, its
precision may suffer owing to intra- and inter-operator variability in seed specification. One way to circumvent
this problem is to increase the value of m, which will bring the accuracy of GC close to that of IRFC. However,
this will add to the computational cost of GC.

As to the accuracy of delineations, it is clear from Figures 1(b), (d), and (f) that, as the seed set becomes
smaller, the delineations by GC become less accurate, mainly due to the shrinkage issue. Even when m = 30,
this effect is noticeable.

6. CONCLUDING REMARKS

Focusing on FC and GC algorithms, we have presented a unified mathematical theory for describing these
approaches as energy optimization methods. We have taken a graph and topological approach to present these
combinatorial optimization analyses. The unifying treatment has helped us in delineating the similarities and
differences among these methods. We have also demonstrated the forecast theoretical behavior via experiments
conducted on the 20 BrainWeb MR image data sets.

The results demonstrate that, while the theoretical underpinning for GC and FC are similar, the subtle
differences that remain between them are vitally responsible for their different behavior. The major differences
are the dependence of GC’s results on the size and position of the seed set compared to a relative independence
of FC’s results of these parameters. Traceable exactly to those characteristics, GC suffers in computational
efficiency (time and storage), precision (repeatability), and accuracy compared to FC algorithms. Also due to
these characteristics, there is a complex interplay among GC’s efficiency, precision, and accuracy.
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