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Handout #1      MAPPING CONCEPTS AND REAL VALUED Prof. Moseley
Chap. 3  FUNCTIONS OF A REAL VARIABLE 

Recall that the concept of a set may be taken to be a primative and then the concepts of
ordered pair, Cartesian product, function, graph, and binary operation can be formally defined..  
Informally, an ordered pair from the sets A and B is an element of the form (a,b) where a0A
and b0B.  The ordered pair (a,b) equals the ordered pair (c,d) if (and only if) a = c and b = d. 
The Cartesian product of the sets A and B is the set of ordered pairs A×B = {(x,y): x 0 A and y
0 B}.  To develop an intuitive understanding of the concept of function, we use the informal
definition of a function as a rule of correspondence between two sets.  A function is a rule of
correspondence which assigns to each element in a first set (called the domain of the function)
exactly one element in a second set (called the co-domain of the function).  Often we denote the
function or rule by f.  If  x  is any element in the domain, then y = f(x) indicates the element y in
the co-domain that the rule defined by f associates with the element x in the domain.  Then x is
the independent variable and y is the dependent variable.  We use the notations  f: A 6 B  and 

 to indicate that  A  is the domain and  B  is the co-domain of the function  f.  We may
also denote the domain of  f  by Df  or by  D(f).  Although not standard, we follow this lead and
denote the codomain of f by CoDf or CoD(f).  The graph of f:A6B is the set G = { (x,f(x)) 0
AxB: x 0 A }.  It is a subset of the Cartesian product  AxB = {(x,y): x 0 A and y 0 B} Since
there is a natural one-to-one correspondence between functions and their graphs, we use the
definition of the graph of a function as a formal definition of a function in terms of sets. Make a
distinction between the graph of a function defined as a set and the geometric pictures of the
graphs of real valued functions of a real variable that you have drawn on paper and the chalk
board using Cartesian coordinates.  When a distinction is needed, we refer to these as picture
graphs.  A binary operation on a set A is a mapping from A×A  to A.  Thus, for example,
addition of real numbers associates with two given numbers, say x and y, a new number, say z. 
Instead of using function notation and writing +(x,y) = z, we usually write x+y = z.

We can consider functions from any set to any other set.  You are familiar with real
valued functions of a real variable, that is, functions that map a subset of the real numbers  R  to
the set of real numbers R.  It is important to note that to define a function, we must first define
two sets, the domain and the co-domain, before giving the rule of correspondence.  Thus, these
two sets are part of the definition of a function.  A function is not completely defined unless both
of these two sets have been specified.  (Often in high school algebra texts these are omitted since
the codomain is almost always R and the "natural" domain is the subset of R where the formula
or rule which defines the function is defined.)

Although we can consider functions from any set to any other set, we are particularly
interested in functions from the real numbers  R  to the real numbers  R which we denote by F

(R,R).  To distinguish (the picture graphs of) real functions of a real variable from (the picture
graphs of) curves in R2 (which may also be rigorously defined using the Cartesian Product R×R
= R2), we say that a function is well-defined provided one has clearly specified exactly one
element in the co-domain (y-axis) for each element of the domain (x-axis).  This is often referred
to as the vertical line test since a vertical line will intersect the picture graph of a function in at
most one point.  Thus the equation x2 + y2 = 1 does not define a function since a vertical line
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between x= !1 and x=1 crosses its graph in two places.  This equation (a circle of radius 1), in
fact, defines two functions.  (What are they?)

Many, functions in F (R,R) are defined by algebraic expressions or algebraic formulas. 

Examples are polynomials (e.g. f(x) = mx + b  and  f(x) = ax2 + bx + c)  and  rational functions,
f(x) = p(x)/q(x) where p and q are polynomials.  Familiar examples of functions not defined by
algebraic formulas are the trigonometric functions (e.g. f(x) = sin x  and  f(x) = cos x) and the
exponential function f(x) = exp(x) = ex.  You should have some familiarity with these functions,
particularly when the rule of correspondence is defined by an algebraic formula. In fact,
consideration of familiar examples should help motivate interest in understanding fundamental
concepts for functions.  

DEFINITION.  Let  f: X 6 Y.  Then the range of  f  is the set Rf = {y 0 Y: � x 0 X  s.t. f(x) = y}. 

Informally, the domain of a function can be described as the set of things that get mapped and
the range as the set of things that get mapped into.  That is, the range is the set of things in the
co-domain (target set) for which there exist an element in the domain (quiver set)  that gets
mapped (or shot) into those things (ie., the things that actually get hit).  If A f X where f:X 6 Y,
then by definition, the image of A is the set f(A) = { y 0 Y : � x 0 A s.t. f(x) = y }. Hence the
range Rf is the image of the domain. On the other hand (OTOH), if BfY, then the inverse image
of B is the set f-1(B) = {x0X: f(x) 0 B}.  That is, the inverse image of B is the subset of X that
gets mapped into B.  Note that all elements in B need not have an element in X that maps into
that element in B.  Hence the range need not be the entire codomain.

If f0F (D,R), where DfR, then an algebraic formula or algebraic expression always

defines a clear rule of correspondence between the domain D and the co-domain R of a real
valued function of a real variable using the binary operations of addition and multiplication
(and subtraction and division, but we define these as the inverse operations of addition and
multiplication rather than as distinct operations).  The algorithm for evaluation of the formula (or
expression) is clearly specified using parentheses (), brackets [], and braces {} as well as
standard conventions to establish the order in which the operations are to be carried out.

After specifying D, (explicitly or implicitly) we may consider subsets of F (D,R) by

requiring a property that all functions in the subset must have.  If p:R 6 R is defined by p(x) = a0

+ a1 x + a2 x
2 + a3 x

3 +...+ an x
n  where a0,...,an0R and an�0, then p is a polynomial of degree n. 

The domain is D(p) = R, but the range, R(p), depends on the constants a0,...,an.  We denote the
set of all such polynomials of degree less than or equal to n by Pn(R,R).  The set of all

polynomials of any degree is P(R,R).  The constant functions are P0(R,R).

The domain of a real valued function of a real variable is not always the entire set of real

numbers  R (e.g. f(x) =  or  f(x) = 1/x).  Rational functions, which we denote by Q(D,R),

are quotients of polynomials, f(x) = p(x) / q(x) where p and q are polynomials.  The domain as
well as the range of a rational function depends on the constants in the polynomials,  D(f) =

{x0R: q(x)�0}.  We may write  to indicate that the domain of  f  is a subset of  R. 

However, in an informal discussion, we may say that f is a real valued function of a real variable
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even when the domain of  f  is not the entire set of real numbers (e.g. f(x) = 1/x), but we avoid
writing  f:R 6 R unless the domain of  f  is the entire set of real numbers.  Often the domain of a
function is well known or the context makes it clear and it is not given explicitly.  However,
when writing proofs, it is essential that the domain (and co-domain) be given explicitly and
correctly.  The algebraic operations are addition, multiplication, raising to a power, and their
inverse operations (subtraction, division, and extraction of roots).  Functions that can be defined
by a finite number of algebraic operations belong to the set of algebraic functions.

DEFINITION.  Let  f: D 6 R.  Then f is an algebraic function if y = f(x) satisfies an equation of
the form  

an(x) yn  + an-1 (x) yn-1  + @@@ + a1(x) y  + a0(x) = 0, x0D

where the coefficient functions an(x), an-1 (x) , @@@ , a1(x),  a0(x) are polynomials in x.  If f is not
algebraic, it is said to be transcendental.

The function y = f(x) = x1/3 is an algebraic function on D = R since it satisfies y3 !x = 0 on R  To
determine the domain of the function y = f(x) defined implicitly by the equation  y3 + y = x, we
compute the derivative implicitly as 3y2 [dy/dx] +dy/dx = 1, so that dy/dx = 1/[1+3y2] $1 > 0. 
Hence y is always increasing and hence is defined y implicitly on R by this equation.  Even
though we have not given an explicit algebraic formula for this function, it is an algebraic
function.  (Can you find an explicit formula for this function?) Hence we see that even though all
algebraic formulas define algebraic functions, not all algebraic functions need be defined
explicitly by algebraic formulas.  

There are non-algebraic functions where the rule of correspondence is not simple.  Recall
the trigonometric functions (e.g., sine, cosine and tangent).  Functions that are not algebraic are
called transcendental functions.  Although we can use our knowledge of trigonometry to
evaluate these function exactly for some values of x (e.g. B/6, B/4,...) , more often we find
approximate values of these functions using a table or a calculator.  Other examples of
transcendental functions are exponentiation and logarithms.  We refer to trigonometric,
exponential, and logarithmic functions as the elementary transcendental functions.  Functions
that can be defined by a finite number of algebraic operations involving algebraic and
elementary transcendental functions will be referred to as elementary functions.  These are the
functions that you are most familiar with.  We denote the elementary functions on  D by E(D,R),
where D is the domain where we wish to consider them (not necessarily the natural domain of
the functions).  

There are subsets of F(D,R) where D may be I = (a,b), = [a,b], or some other set that are

of interest.  C(I,R) is the set of all functions that are continuous on I.  A(I,R) is the set of all

functions that are analytic on I.  PC( ,R) is the set of all functions that are piecewise continuous
on .   
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Handout #2 NOTATION FOR SETS OF SEQUENCES, Professor Moseley
Chap. 3    MATRICES, AND FUNCTIONS

From high school algebra, trigonometry, and geometry, you should be familiar with the
concepts of “set” “number”, “order”, and “mapping”.  These concepts were reviewed briefly
in Chapter 1.  In this chapter, we consider further the concept of a “mapping”.  The terms
“mapping”, “function”, “operator”, and “transformation” all have essentially the same
denotation (meaning).  Different words are used in different contexts because they have different
connotations that indicate the nature of the structure of the domain and codomain of the
mapping under consideration.  We use the word mapping for any domain and codomain (e.g.,
when the structure of domain and codomain is not known, when they are just sets that have no
structure or when no other term is appropriate).  The word function is always used for mappings
between R and R and this is the focus of this chapter.  The word function is sometimes used as a
synonym for mapping to relieve boredom.

To understand the theory required to solve linear and nonlinear vector equations we
need to consider sets of sequences (n-tuples), sets of matrices (arrays of numbers), and sets of
mappings (e.g., functions from R to R).  We note here, but explain how later, that sequences and
matrices can be considered to be  mappings.  Later we take the concept of mappings one step
further and consider “vector valued” functions.  Although the notation for sets of functions
(function spaces) is not as standard as that for logic, set theory, and number systems, the need
for a notation warrants its early introduction.  We choose the notation F(X,Y) for the set of all

functions from X to Y, rather than the set theoretic XY, since we think of a function as a rule of
correspondence rather than as a set of ordered pairs.

     SETS OF SEQUENCES OF FINITE LENGTH (n-TUPLES)

        Math Symbol     English Translation

1. R The set of all sequences of real numbers of length one.  This set is 
isomorphic with the set of real numbers and hence we denote it by 
R.  A geometric interpretation is a line (the real number line).

2. R2 = R × R The set of all sequences of real numbers of length two.  This set is  
isomorphic with the Cartesian product of the real number system 
with itself {(x,y): x,y 0 R} (i.e., the set of all ordered pairs).  A 
geometric interpretation is a plane   (Two dimensional space).

3. R3 = R2 × R The set of all sequences of real numbers of length three. This set is
     = R × R2 isomorphic with the Cartesian product of R2 with R, with the 
     = R × R × R Cartesian product R with R2, and with the set of ordered triples

{(x,y,z): x,y,z 0 R}.  A geometric interpretation is three
dimensional space.
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4. Rn =  The set of all sequences of real numbers of (finite) length n. This

set is isomorphic with the set of n-tuples {(x1,x2,...,xn): xi0 R,  
i=1, 2, 3, ...,n}and with  any Cartesian products of R with itself n
times.  There is no geometrical interpretation of this set if n>3.  

7. C The set of all sequences of complex numbers of length one.  This 
set is isomorphic with the set of complex numbers and hence we 
denote it by C.  A geometric interpretation is a plane (i.e., the
 complex plane).

8. C2 = C × C The set of all sequences of complex numbers of length two.  This 
set is isomorphic with the Cartesian product of the complex
number system with itself {(z1,z2): z1,z2 0 C} (i.e., the set of all 
ordered pairs of complex numbers).  There is no geometric 
interpretation since four real dimensions would be required.

9. C3 = C2 × C The set of all sequences of complex numbers of length three. This 
     = C × C2 set is isomorphic with the Cartesian product of C2 with C, with the 
     = C × C × C Cartesian product C with C2, and with the set of ordered triples of 

complex numbers, {(z1, z2, z3):z1 z2, z3 0 C}.  There is no 
geometric interpretation of this set.

10. Cn = The set of all sequences of complex numbers of (finite) length n. 

This set is isomorphic with the set of n-tuples of complex numbers,
 {(z1, z2, ...zn): z1, z2,...,zn 0 C} and with the Cartesian product of 
C with itself n times.  There is no geometrical interpretation of this 
set if n>1.  

     SETS OF MATRICES

1. Rm×n The set of all m by n matrices with entries from R.  The set of all
real matrices of a given size.  All arrays of real numbers.

2. Cm×n The set of all m by n matrices with entries from C.  The set of all
complex matrices of a given size.  All arrays of complex numbers.

Recall that we chose the notation F(X,Y) for the set of all functions from X to Y.  If the

codomain has been clearly established, we may shorten this notation to F(X).  If both the domain

and codomain have both been clearly established, we may shorten further to F. Typically, the

sets X and Y have structure.  This gives the set F(X,Y) structure.  Hence we may specify subsets

of F(X,Y) based on this structure.  Instead of just giving names for specific subsets, we develop a

method for naming such subsets.  We denote subsets by a letter (or letters) followed by (X,Y) (or
(X) or nothing) where the letter (or letters) denotes a property that the functions must satisfy. 
For example, if we let I = (a,b), then C(I,R) denotes the set of all functions that are continuous
on the open interval I = (a,b).  If in a given setting our functions all have domain I and codomain
R, we might shorten this to C(I) or just C.  The letter may have subscripts or superscripts.  For
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example, C1(I,R) = {f:I6R*fN(x) exists and is continuous on I}.  The letter A  denotes analytic

and H  denotes holomorphic.  The letter P  denotes a set of polynomials.  The letter Q  denotes a

set of rational functions.  A denote algebraic functions.  E denote elementary functions.  PC

denotes piecewise continuous functions.  M denotes measurable functions.  E denotes the set f

elementary functions.  denotes the set of equivalence classes of piecewise continuous

functions.   denotes set of equivalence classes of measurable functions.  E denotes even

functions and O denotes odd functions (see later handout).  We give some examples.

SETS OF FUNCTIONS  (FUNCTION  SPACES)

1. F(D,CoD) {f:D 6 CoD) = the set of all functions where the common domain is 

specified as D (e.g., D=R) and the common codomain CoD (e.g., 
CoD = R) is also specified (e.g., we are discussing real valued functions of 
a real variable).

2. F(I,R) {f:I 6 R) where  the common domain is D=I=(a,b) where I is the open 

interval between a and b and the common codomain is R.  We are 
discussing the real valued functions on the interval I.

3. F(I) {f:I 6 CoD) when the common codomain, (e.g., CoD = R,  has been

previously specified and is understood i.e., we are discussing real valued 
functions), but the common domain is given as I where I is an open 
interval I=(a,b).  This abbreviated notation is used in a discussion when      

                               the domain might change, but the common codomain does not.
4. Pn(D,R) {f:D 6 R: f(x) = a0 + a1 x + a2 x

2 + @@@+ anx
n where ai 0R and x0D} = 

the set of all polynomials of degree less than or equal to n on the common 
domain D.

5. Pn(I) {f:I 6 CoD: f(x) = a0 + a1 x + a2 x
2 + @@@+ anx

n where ai 0R and x0I} = 

the set of all polynomials of degree less than or equal to n on the common 
domain I=(a,b) where the common codomain has been specified (say R) 

  and is understood. 
6. A(D,R) {f:D 6 R: f is analytic on D} = the set of all functions on the common 

domain D which are analytic at all points in D.
7. A(I) {f:I 6 R: f is analytic on the interval I} = the set of all functions on the 

interval I (say I=(a,b) ) which are analytic on I when the common 
codomain has been specified (say R) and is understood. 

8. C(D,R) {f:D 6R: f is continuous on D} =  the set of all continuous functions 
on the common domain D which is specified and common codomain, the 
set R of real numbers.

9. C(I) {f:I 6 R: f is continuous on the interval I} = the set of all continuous 
functions on the  interval I when the interval I (say I=(a,b) ) as well 
as the common codomain has been previously specified and are
understood.  This abbreviated notation is used in a discussion when the 
domain might change, but the common codomain R does not.
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10. C1(D,R) {f:D 6 CoD: f N(x) exists and is continuous on D} =  the set of all 
functions on the common domain D which have a continuous derivative at 
all points in D.

11. C2(D,R) {f:D 6 R: f O(x) exists and is continuous on D} = the set of all 
functions on the common domain D which have a continuous second 
derivative at all points in D.

12. C2(I) {f:I 6 R: f O(x) exists and is continuous on the interval I} = the set of all 
functions on the interval I (say I=(a,b) ) which have a continuous second
derivative on I when the common codomain R is understood.  This 
abbreviated notation is used in a discussion when the domain might 
change, but the common codomain R does not.

13. Cn(D,R) {f:D 6 R: f (n)(x) exists and is continuous on D} = the set of all 
functions on the common domain D which have a continuous nth 
derivative at all points in D.

14. C4(I) {f:D 6 CoD: f (n)(x) exists and is continuous on the interval I for n =
0,1,2,...} = the set of all functions on the common domain D which have a
continuous nth derivative for all n0N at all points in I when the common
codomain R is understood. 

15. A(D,R) {f:D 6 R: f is analytic on D} = the set of all algebraic functions on the 

common domain D.
16. A(I) {f:I 6 R: f is analytic on the interval I} = the set of all algebraic functions 

on the interval I (say I=(a,b) ) which are analytic on I when the common 
codomain R  is understood. 

17. E(D,R) {f:D 6 R: f is an elementary function on D} = the set of all elementary 
functions on the common domain D.

18. E(I) {f:I 6 R: f is an elementary function the interval I} = the set of all 
elementary functions on the interval I (say I=(a,b) ) which are analytic on I 
when the common codomain R  is understood. 

19. ö(S,C) {f:S 6 C) where  the common domain is D=S where S is a region (open 
connected subset of C) and the common codomain is C.  We are 
discussing the complex valued functions on  S.

20. H(S, C) {f:S 6 C: f is analytic on S} = the set of all functions on the common 

domain S which are analytic (holomorphic) at all points in S.
21. E( R, R) {f:R 6 R: �x0R, f (!x) =f(x)} = the set of all even functions.

22. O( R, R) {f:R 6 R: �x0R, f (!x) = !f(x)} = the set of all odd functions.
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Handout #3              ODD, EVEN, ONE-TO-ONE, AND ONTO REAL Professor Moseley
VALUED FUNCTIONS OF A REAL VARIABLE

Once a function has been defined (including the domain and co-domain as well as
specifying the rule of correspondence), we can consider properties of functions.  For f:R6R you
are familiar with the concepts of continuity and differentiability at a point.  A function is said
to have these properties if they hold for all x in the domain D.  We have given names to these
subsets of F(D,R) that have these properties.  Here we discuss the easy properties of odd and

even and then consider the more complicated properties of one-to-one and onto where the
domain and co-domain need not be the real numbers.  

DEFINITION #1.  A function f:R6R is even if � x 0 R, f(!x) = f(x).  f is odd if  � x 0 R, 
f(!x) = !f(x).

E( R, R) = {f:R 6 R: �x0R, f (!x) = f(x)} is the set of all even functions.  O( R, R) = f:R 6 R:

�x0R, 
f (!x) = !f(x)} = the set of all odd functions.  First note that most functions are neither odd nor
even (e.g., f(x) = ex and f(x) = x+x2).  One way to determine if a function is odd or even (or
neither) directly using the definition (DUD) is by computing f(!x).  If it happens to be f(x), then
the function is even.  If it happens to be !f(x), then the function is odd.  Since there is no
particular reason why either of these should happen, most functions are neither odd nor even.  
Another way to determine if a function is odd or even (or neither) is to look at the picture graph
of the function y = f(x).  If � x 0 R, we have that the point (x, y) being on the picture graph
implies that the point (!x,y) is on the picture graph, then f is even.  Similarly, if � x 0 R, we
have that the point (x, y) being on the picture graph implies that the point 
(!x,!y) is on the picture graph, then f is odd.  

THEOREM.  If f0ö(R,R) is both odd and even, then f(x) = 0 �x0R (i.e., f is the zero function).
Proof.  Let  f0ö(R,R) be both odd and even.  Then by the definitions of odd and even, we have
for all x0R that f(!x) = f(x) = !f(x).  Hence 2f(x) = 0 so that f(x) = 0; that is, f is the zero
function.

A function is one-to-one (1-1) if every element in the domain gets mapped to a different
element in the co-domain.  A function is onto if every element in the co-domain has an element
in the domain which maps into it.  The formal definition of one-to-one is the contrapositive of
the above informal definition.  (The contrapositive of a statement is equivalent to the statement,
but is stated with negations.  Since our informal definition involves negation, the contrapositive
has positives.  This is why we use it instead of the informal definition.)  The formal definition of
onto is stated in terms of the range.

DEFINITION #2.  Let  f: X 6 Y.  The function  f is said to be one-to-one  (injective) if 
f(x1) = f(x2) implies x1 = x2.  (This is the contra positive of the statement, if x1 � x2, then  
f(x1) � f(x2).  That is, distinct values of  x  in X get mapped to distinct values of  y  in  Y.  Recall
that the negation of a negative is the positive.)  The function  f  is said to be onto (surjective) if 
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R(f) = Y.  (That is, f is onto if the range is the entire co-domain.)  If f is both 1-1 and onto, then it
is said to be bijective or to form a one-to-one correspondence between the domain and the co-
domain.  (If f is 1-1, then it always forms a 1-1 correspondence between its domain and its
range.)  The identity function (denoted by I or iX ) from a set  X  to  itself is the function  
iX:X 6 X  defined by  iX(x) = x  � x 0 X.

THEOREM.  If f0ö(D, CoD) is one-to-one and onto  (i.e, it is a bijection), then its inverse
function f!1 from CoD to D, defined by �y0CoD, f!1(y) = x if (and only if) f(x) = y exists.  (For
example, iX(x)is its own inverse function.)

Proof.  Let  f0ö(R,R) be one-to-one and onto and y0CoD.  Then since f is onto, there exists
x0D such that f(x) = y.  Since f is one-to-one, there is at most one such x.  (Suppose there were a
second x0 such that f(x0) = y. Then since f is one-to-one, f(x0) = y = f(x) implies x0 = x.  Hence
no different x0 exists.)  Hence f!1 defined by f!1(y) = x is a well defined function..

Q.E.D.

Thus if f0ö(D, CoD) is a bijection, then its inverse exists.  We say f is invertible.
Let Einv(D,R) = {f:D 6 R: f is analytic on D and is invertible.} be the set of all elementary

functions on the common domain D that are invertible.  For some algebraic functions, the inverse
function can be obtained by algebraic operations.

As exercises consider these concepts using elementary functions.  First use your intuition
to determine whether a given functions is one-to-one and onto.  Then try to develop precise
arguments (i.e. proofs) to validate your intuition.  
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