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Handout # 4 COMPLEX FUNCTIONS OF A COMPLEX VARIABLE Prof. Moseley
Chap. 3

To solve  z2 + 1 = 0  we "invent" the number  i  with the defining property i2 =  ) 1.  We
then “define” the set of complex numbers as C = {x+iy:x,y0R}.  The notation z = x+iy is known
as the Euler form of z, C is more rigorously defined using the concept of ordered pair as  C =
{(x,y):x,y0R}.  z = (x,y) is the Hamilton form of z so that C can be identified with R2.  If  
z1 = x1+iy, and  z2 = x2+iy2, then  z1+z2 =df  (x1+x2) + i(y1+y2) and z1z2 =df  (x1x2-y1y2) +
i(x1y2+x2y2).  Using these definitions, the nine properties of addition and multiplication in the
definition of an abstract algebraic field can be proved  so that the system (C, +, @,0,1) is an
example of an abstract algebraic field.  Computation of the product of two complex numbers is
made easy using the algebera of R, FOIL and the defining property i2 =  !1: (x1+iy1)(x2+iy2) =
x1x2+x1iy2 + iy1y2 + i2y1y2 = x1x2 + i (x1y2 + y1y2) !y1y2  = (x1x2!y1y2) + i(x1y2+x2y1).  This makes
evaluation of polynomial functions easy.

EXAMPLE #1.  If f(z) = (3 + 2i) + (2 + i)z + z2, then
f(1+i) = (3 + 2i) + (2 + i)(1 + i) + (1 + i)2 = (3 + 2i) + (2 + 3i + i2) + (1 + 2i + i2) 

= (3 + 2i) + (2 + 3i !1) + (1 + 2i !1) = (3 + 2i) + (1 + 3i) + ( 2i ) =  4 + 7i. 

Division and evaluation of rational functions is made easier by using the complex conjugate. 
The magnitude or absolute value of a complex number is defined as the distance to the origin in
the complex plane.

DEFINITION #1.  If z=x+iy, then the complex conjugate of z is given by = x ! iy.  Also the

magnitude or absolute value of z is *z* = .

THEOREM #1. If z,z1,z20C, then a) =  + , b) = , c) *z*2= , d) =z. 

In addition to the rectangular representation given above, complex numberscan be represented
using polar coordinates:  z = x + iy = r cos 2 + i sin 2 = r (cos 2 + i sin 2)  =  r ' 2   (polar). 

Note that r = *z*.  For example,  2 'B/4 =  + i  and 1 +  i  =  2  'B/3 .   If z1 = 3 + i

and z2 = 1 + 2i, then = = = = = =

EXAMPLE # 2   If f(z) = , then

f(4+i)  = = =   = =  

=  ! i  =   ! i
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THEOREM #2.  If z1 = r1 '21 and z2 = r2 '22.  Then a) z1 z2 = r1 r2 '21 + 22,  b) If z2�0, then 

 =   '21 ! 22, c)  z1
2 = r1

2'221,  d) z1
n =  r1

n 'n21.

EULER’S FORMULA.  By definition   ei 2 =df  cos 2 + i sin 2.  This gives another way to write 
complex numbers in polar form:

 z =  1 + i      =   2 ' B/3   =  2e i  B / 3  and    z =  + i    =   2 ' B/4   =  e i  B / 4

More importantly, it can be shown that this definition allows the extension of  exponential, 
logarithmic, and trigonometric functions to complex numbers and that the standard properties for
these functions still hold. This is nothing short of amazing!!  It allows you to determine what
these extensions should be and to evaluate these functions for all complex numbers.  Hence it
allows you to determine appropriate extensions to C for all elementary function.

EXAMPLE #3.  If f(z) = (2 + i) e (1 + i) z , find f(1 + i).
Solution.  First (1 + i) (1 + i) = 1 + 2i + i2 = 1 + 2i  -1 = 2i.  Hence
f(1 + i) = (2 + i) e2i = (2 + i)( cos 2 + i sin 2) = 2 cos 2  + i ( cos 2   + 2 sin 2 ) + i2 sin 2 

= 2 cos 2  - sin 2 + i ( cos 2   + 2 sin 2 )              (exact answer)
.  -1.7415911 + i(1.4024480)                   (approximate answer)

How do you know that -1.7415911 + i(1.4024480) is a good approximation to 
2 cos 2  - sin 2 + i ( cos 2   + 2 sin 2 ) ?  Can you give an expression for the distance between
these two complex numbers?

If Euler's formula holds for all complex numbers z = 20C, then 

ei z = cos z + i sin z.  (1)

If sin z and cos z have the properties cos(!z) = cos(z) and sin(!z) = !sin(z), then 

e!i z = cos(!z) + i sin(!z) = cos(z)  ! i sin(z) . (2)

Adding (1) and (2) we obtain 2 cos(z) = ei z  + e!i z.  Hence if z = x + i y, then we should have

cos(z) = (1/2) (ei z  + e!i z) = (1/2) (ei ( x + i y )  + e!i ( x + i y ))= (1/2) (e! y + i x  + ey ! i x ) 
= (1/2) [e! y (cos x + i sin x)  + ey (cos x ! i sin x)] 
= [cos(x)][(1/2) (ey  + e! y)]  + i [sin(x)][(1/2) (ey ! e! y)] (3)

which gives the appropriate definition of cos(z) = cos(x+iy).

EXAMPLE #4.  If f(z) = z cos[(1 + i ) z ], find f(1 + i).
Solution.  First (1 + i) (1 + i) = 1 + 2i + i2 = 1 + 2i  -1 = 2i.  Hence
f(1 + i) = (1 + i) cos( 2i) = (1 + i){ [cos(0)][(1/2) (e2  + e! 2)]  + i [sin(0)][(1/2) (e2 ! e! 2)]} 

= (1 + i)[(1/2) (e2  + e! 2)] = cosh(2) + i cosh(2) = [(e2  + e! 2)/2]  + i [(e2  + e! 2)/2] 
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= [(e4  + 1)/(2e2)]  + i [(e4  + 1)/(2e2)]               (exact answer)
. 3.694528049 + i 3.694528049                    (approximate answer)

How do you know that 3.694528049 + i 3.694528049 is a good approximation to 
[(e4  + 1)/(2e2)]  + i [(e4  + 1)/(2e2)] ?  Can you give an expression for the distance between these
two complex numbers?  Try sketching them in the complex plane.
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Handout #5 PROBLEMS, EQUATIONS, SCALAR EQUATIONS AS Prof. Moseley
Chap. 3       MAPPING PROBLEMS AND CHANGE OF VARIABLES

The truth value (i.e. either true or false) of an open statement (e.g. an equation such as 
x2 + 1 = 0) depends on the value of the “variable(s)” in the statement.  To be useful, this
assumes that there is some method of deciding whether a given statement is true.  The process
may be difficult and even unknown but it is assumed to exist.  Finding the values which make
the statement true solves a “problem”.  Even if there is an easy process to determine if a given
element is a solution, there may be no process to find all such elements.  We call the set of all
possible values of the variable, the domain for the open statement.  Although this is technically a
different use of the word than in connections with functions, it is certainly in agreement with the
general use of the word.  And, with the correct interpretation, it is in agreement with its use in
connection with functions.

An equation is satisfied if substituting a value from its domain D yields a true statement. 
That is, if the left hand side (LHS) of the equation is the same as the right hand side (RHS). 
Unless these are trivially identical, then some operations must be performed to compute both
sides.  We may think of these as functions from D to some other set, say CoD and our equation
becomes a mapping problem: f(x) = g(x).  That is, we wish to find those  x0D for which f and g
have the same values i.e., map to the same value in CoD.  If D is a set of numbers, these
functions might be defined by combinations of binary operations using the algebra of the
number system.   If CoD also has an algebra (e.g., if CoD = D or if they are both part of the same
number system) we may then develop an algebra of functions.  If we can add in CoD, CoD has
an additive identity element (called 0), and  each element y0CoD has an additive inverse (called
!y, we may define h(x) = f(x) ! g(x) so that our equation becomes h(x) = 0.  Our problem now is
a mapping problem in the sense that for the function h we wish to determine all of the elements
in D that map into the element 0.  The set {x0D: h(x) = 0} is called the null set of h.  Even
without any structure, if g(x) is a constant function, say g(x) = b, then our problem f(x) = b is the
mapping problem: Find all those elements in D that map into b (i.e., find f -1({b}) ).  

It is useful to view problems as mapping problems when properties of the functions f, g,
and h are known.  Suppose f provides a one-to-one correspondence between D and CoD.  Then f
has an inverse function f!1 and the unique solution of the problem f(x) = b, is x = f!1(b).  Ones
knowledge of f , perhaps provided by the algebraic structures on D and CoD, will determine ones
ability to actually obtain x for any given b.

EXAMPLE: Suppose f:R6R, that f(2) = 3, f!1({3}) = {2}, and that f is odd.   Solve f(x) = !3.  
Solution:  Since f(2) = 3 and f is odd we have that f(!2) = !f(2) = !3 so that !2 is a solution. 
This proves existence of at least one solution.  To obtain uniqueness (i.e., that this is the only
solution) note that since  f!1({3}) = {2}, we have that 2 is the only element that gets mapped into
3.  Hence !2 is the only element that gets mapped into !3.  To see this, suppose not.  Let x�!2
be some other real number such that f(x) = !3.  Then, since f is odd,  f(!x) = !f(x) = !(!3) = 3. 
But 2 is the only element that is mapped into 3.  Hence !x = 2.  Hence x = ! 2.  This contradicts
our assumption that  x�!2.  Hence that assumption must be false so that !2 is indeed the only
element that gets mapped into !3 and is the only solution to the problem.  Our solution set is
therefore S = {2}.  In order to solve the problem, we did not need to be able to find f(x)  for all
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real numbers x.  Our limited knowledge of f was sufficient to solve the problem.  
We can prove both uniqueness (the forward process) and existence (the reverse process)

together as follows since each step in the solution process results in an equivalent problem.

STATEMENT REASON
f(x) = !3 Statement of Problem.
!f (x) = 3  Algebraic property for obtaining equivalent 

equations in R (i.e, equations with the same
solution

set).  In this case it is “multiplying both sides of the 
equation by !1".

f(!x) = 3 Assumption that f is odd.( f(!x) = ! f(x). )
!x 0f!1({3}) Definition of f!1 of a set.  

( f!1 (B) = {x0Df:f(x) 0 B}; that is, f!1 (B) is the set
Of all elements in the domain of f that get mapped
 into the set B.

!x 0{2} f!1({3}) = {2} is given.
!x =2 Definition of an element of a set. (If !x 0{2} and 

2 is the only element in the set, then !x =2.)
x = !2 Algebraic property for obtaining equivalent 

equations in R.   (Multiplying both sides of the 
equation by !1).

Let us be more specific.  Let f:D6K, K be a field, DfK, and consider the scalar equation
f(x) = b as a mapping problem.  That is, rather than view the equation as being solvable by using
the equivalent equation operations (EEO's) that follow from the field operations of adding
(subtraction) and multiplication (division), we wish to determine what properties of the function
f will assure us that there is a (i.e., at least one) solution (the existence problem) and what
properties assure us that there is at most one solution (the uniqueness problem).  

DEFINITION #1.  Let  f: D 6 K.  Then the range of  f  is the set 
Rf (or R(f) ) = {y 0 K: � x 0 D  s.t. f(x) = y}.  

THEOREM #1. If b0Rf = the range of f, then f(x) = b has at least one solution. 

Proof.  Suppose b0Rf.  This just means that at least one x0D maps to b.  Hence this x is a
solution of f(x) = b. Q.E.D.

Note that we have not really solved f(x) = b since we do not know what x maps to b, but have
simply assumed that b0R(f) so that we know that (at least) one such x exists.  

DEFINITION #2.  Let  f: D 6 K.  The function  f  is said to be onto (surjective) if  Rf = K. 
(That is, f is onto if the range is the entire co-domain.) 
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THEOREM #2. If Rf = K, then f(x) = b has at least one solution for all b0K. 

Proof.  Suppose K =Rf.  Then no matter what b0K is chosen, we have b0Rf.   Hence at least one
x0D maps to b.  Hence this x is a solution of f(x) = b.  Hence f(x) = b has at least one solution
for all b0K Q.E.D.

If Rf = K, we say that f satisfies the existence property for f(x) = b (as f(x) = b has a solution no
matter how b0K is chosen.

DEFINITION #3.  Let  f: D 6 K.  The function  f is said to be one-to-one  (injective) if 
f(x1) = f(x2) implies x1 = x2.  (This is the contra positive of the statement, if x1 � x2, then  
f(x1) � f(x2).  That is, distinct values of  x  in X get mapped to distinct values of  y  in  Y.  Recall
that the negation of a negative is the positive.) .  

THEOREM #3. If f is one-to-one, then f(x) = b has at most one solution. 

Proof.  Suppose  f is one-to-one and that x1 and x2 are solutions to f(x) = b.  Then f(x1) = b and
f(x2) = b so that f(x1) = f(x2).  Since f is one-to-one, we have by the definition that x1 = x2.  Since
x1 and x2 must be the same, there is at most one solution to f(x) = b.  

Q.E.D.

DEFINITION #4.  Let  f: D 6 K.  If f is both 1-1 and onto, then it is said to be bijective or to
form a one-to-one correspondence between the domain and the co-domain.  (If f is 1-1, then it
always forms a 1-1 correspondence between its domain and its range.)  The identity function
(denoted by I or iX ) from K to itself is the function I:K 6 K  defined by I(x) = x  � x 0 K.

THEOREM #4. Let  f: D 6 K.  If f is bijective, f(x) = b always has exactly one solution.  

DEFINITION #4.  Let  f:D 6 K.  If f is bijective, then its inverse function, f!1:K6K can be
defined by 
y = f!1(x) if and only if x = f(y).  (e.g., y = ln x if and only if x = ey where f(x) = ex, f:R6[0,4)
and  f!1(x) = ln x,  f!1:[0,4)6R.

THEOREM #5. Let  f:D 6 K.  If f is bijective with inverse function, f!1:K6K , then the unique
solution of f(x) = b is x = f!1(b).

If f is bijective with inverse function, f!1:K6 D , when we say that the unique solution of f(x) = b
is x = f!1(b) we have not really solved anything, but have just transferred the problem of finding 
the solution to that of finding the inverse function.  This may be possible, but is often more
difficult then just solving the problem.  Even so, the concept of an inverse function is very useful
in thinking about how many solutions f(x) = b might have.

We now consider the relationship between the problems defined by the equation fBg(x) =
0 and f(y) = 0 where f:D6R and  g: R6 R is a bijection.  Thus we compare the null set of f with
that of fBg.  
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THEOREM #1. Let   f:D6R be a function and g: R6 R be a bijecton.  Then  f(y) = 0 if and only
if fBg(x) = 0 where y = g(x).   

Proof.  Suppose f(y) = 0 and y = g(x).   Then  fBg(x) = f(g(x)) = 0.  On the other hand, suppose 
fBg(x) = 0 and  y = g(x).  Then  f(y) = 0. Q.E.D.

COROLLARY #2. Let  g: R6 R be a bijecton.  Then  y0Nf if and only if x0NfBg. 

Thus we may find the zeros of fBg by first finding the zeros of f and then computing g!1.

EXAMPLE.  Solve sin(3x+1) = 0.
Solution.  Let y = g(x) = 3x+1.  Since the zeros of sin(y) are y = nB with n0Z and g!1(y) = 
(y ! 1)/3, we see that the zeros of sin(3x+1) are (nB ! 1)/3.  We may write the solution as 
sin(3x+1) = 0,  Y   3x+1 =  nB  with n0Z, Y x = (nB ! 1)/3   with n0Z.  

What is the relationship between the zeros of f and fBg if g is not a bijection?  If g is a bijection
on R and we know the function h = fBg, what is the function f in terms of h and g?  

Let   f:D6R be a function and g: R6 R be a bijecton.  Then the problem Prob(D, fBg(x) =
0) and  Prob(R, f(x) = 0) are said to be simultaneously solvable.  That is, we know what elements
are i the null space of fBg exactly when we know what is in the null space of f.  We say that y =
g(x) is a change of variables.  For example, letting y = 3x + 1 is a change of variables that
converts 
sin(3x+1) = 0 into the simultaneously solvable problem sin(y) = 0 since y =3x+1 is a bijection
from R to R.
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