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Handout #1 PROBLEM SOLVING IN MATHEMATICS Professor Moseley
Chap. 2

According to Paul Halmos  the heart of mathematics is its problems. A problem,
according to Webster, is a question raised for inquiry, consideration, discussion, decision, or
solution.  Webster indicates that a problem in mathematics or physics requires something to be
done.  The thing to be done answers the question and is referred to as the solution.  But
formulation and solution of problems in mathematics may mean different things to different
people depending on their interest and on their level of mathematical development. We could
attempt to develop a general framework for the formulation of all types of problems in
mathematics, but we would most certainly fail.  On the other hand, most mathematical problems
seem to fall into three categories:
1.Problems with an established algorithm for solution (e.g. computational problems).  Such
problems will be referred to as evaluation problems.  The solution process for such a problem
answers the question “How to find?” or “How to compute?’  Students can be trained to carry out
these mathematical procedures or computational skills. 
2. Problems defined by equations, inequalities or other properties.  Such problems will be
referred to as find or locate problems.  They ask the question “If any, which ones?”  There may
or may not be a “How to find” algorithm associated with the problem.  If there is, it can be
applied.  If not, the problem becomes developing such an algorithm.  If  the algorithm requires
an infinite number of steps, we need the concept of an approximate solution.
3. Theory problems.  Such problems will be referred to as think problems.  They ask the
question “Why?”  Why does a particular algorithm work for one problem, but not for a similar
problem?  What is the set of “find” problems that a particular algorithm does work for and why? 
How can we develop solution procedures for all problems of interest.  These results are often
given in the development of a mathematical theory using a definition/theorem/proof format.

Learning to solve evaluation problems means being trained (or training oneself) to use
known processes or algorithms on specific examples.  At the other extreme in problem solving is
the development of a mathematical theory which may then lead to the development of
algorithms for solving “find” problems.  Theory development requires an understanding of what
is already known (i.e. what has been proved) and hence an ability with proofs.  We focus on
problems (of the type useful to engineers, scientist, and applied mathematicians) between these
two extremes by examining a framework which generalizes the problem of solving scalar
equations; that is, we consider find or locate problems.  This framework assumes in the
problem formulation that you understand what is meant by solving an evaluation problem but not
that you can write proofs or develop a mathematical theory.  

A FRAMEWORK FOR FORMULATING “FIND” PROBLEMS.  In general in mathematics, a
set with structure is called a space. We say that a (“find”) problem, call it Prob, is well-
formulated in a set theoretic sense if:
1. There is a clearly defined space, call it E, where, if there are any, we wish to find all

solutions to the problem.  
2. There is a clearly defined property or condition, call it C, that the solution elements in E

and only the solution elements satisfy.  This property is defined by the structure on E.
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The need for clearly specifying the set E is illustrated by the equation x2 + 1 = 0.  The existence
of a solution depends on whether we choose the real numbers R or the complex numbers C as
the set which must contain the solution.  Both are examples of the abstract algebraic structure
known as a field where addition (subtraction) and multiplication (division except by zero) give
the algebraic structure.

Webster's definition causes some confusion as to what is meant by the solution of a
problem.  For an evaluation problem, the solution process or algorithm used is sometimes
referred to as the solution.  The answer obtained is sometimes referred to as the solution.  In
our framework for “find” problems (FFP’s), a solution is an element in G that satisfies the
property C(x) and the solution set is the set containing all solutions, S = {x 0 E: C(x) }.   Since
G and C define the problem Prob, we let Prob(G,C) =  {x 0 E: C(x) } and think of Prob(G,C) as
an implicit description of the solution set.  The solution process is whatever algorithm is used
to obtain an explicit description of S.  We use Soln(G,C) to mean the explicit description of the
solution set obtained by the solution process.  Since as sets we have Prob(G,C) = Soln(G,C), for
brevity in working examples, we let S = {x 0 E: C(x) }fE be the solution set during the solution
process.

If the validity of C(x) is easily checked for any element in E, we say that solutions to the
problem are testable.  Solutions of equations are usually testable.  Optimization problems define
a property that is usually not easily testable.  Normally G is large or infinite (e.g. R and C) so
that it is not possible to solve the problem by testing each element in E individually.  Problems
where G is small enough so that a check of its elements by hand is possible are usually
considered to be trivial.  On the other hand, some problems where E is large but not to large (e.g.
Which students at a university have brown eyes?) yield to the technique of testing each element
in G by using computers and data bases.

SCALAR EQUATIONS.  A major class of problems included in this framework are those
defined by scalar equations (e.g. x2 + 2x = 3) for a number system. If the number system is a
field so that additive inverses always exist, by moving all terms to the same side of the equation
(i.e., adding appropriate additive inverses to both sides of the equation), we may reformulate
these as f(x) = 0 where f is a function (e.g. x2 + 2x - 3 = 0 so that  f(x) = x2 + 2x - 3 ).  The set G
is the domain of f and is a subset of the number system.  The condition f(x) = 0 is satisfied if the
equation is satisfied and is tested by the evaluation of the function f.  Hence the solution set,
S = {x 0 E: f(x) = 0}, is the set of zeros of the function  f.  G is the domain of the function f and
the solution set becomes the nullset of f; that is, the set of numbers that are mapped into zero by
f.  Often, the set G where we are to look for solutions (e.g. the domain of the function f) is not
specified explicitly when the problem is stated.  It may be implicitly understood or it may be left
up to the problem solver to decide on an appropriate choice (e.g. R or C).   In any case,
determining the set E (starting with a knowledge of the elements we allow to be solutions) is
essential to a good mathematical formulation of a “find” problem.

INEQUALITIES. Besides equalities, our framework includes inequalities (e.g. *x - 3* < 4)
which (in an ordered field) may be reformulated as f(x) < 0 (e.g. *x - 3* - 4 < 0 so that f(x) = 
*x - 3* - 4), and the "less than" symbol < may instead be any of #, >, or $.  The set G is the
domain of f (e.g., it may be a subset of Q or R as, unlike the rational and the real numbers, the
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complex numbers do not have a natural ordering).  Testing of possible solutions is effected by
evaluation of the function f.  The solution set is S = {x 0 E: f(x) < (alternately, #, >, or $)  0} 
and is the set of numbers x in E such that f(x) is less than (alternately, less than or equal to,
greater than, or greater than or equal to) zero.  Although there might be no solution (e.g. x2 < -1 )
or one solution (e.g. x2 # 0 ), the solution set when GfR is usually a portion of the real number
line and hence is usually an infinite set.

SUMMARY.  Although it does not encompass all problem types, the framework for find
problems (FFP’s) discussed above does provide a standard problem solving context for high
school students and college undergraduates at the freshman and sophomore level.  In addition to
scalar equations and inequalities, it can be used for systems of equations, systems of inequalities,
difference equations, and differential equations.  A clear understanding of this framework should
help you toward a better understanding of why problems may have no solution (e.g. 3x-
1=(6x+2)/2 ), one solution (e.g. 3x-1 = 4x+2), more than one solution (e.g. x2-4 = 0 and x5(x-
2)(x-4) = 0), or even an infinite number of solutions (e.g. 3x+1 = (6x+2)/2 and  the inequality*x-
3*-4 < 0).  This should help you to understand that when we use our technical definition of a
solution to a find problem, not every math problem has exactly one solution.  It should also
help you to  begin to move from just focusing on being trained (or training yourself) to use
algorithms for the solution of evaluation problems to the more advanced view of, given a
problem that is well formulated, how does one find answers to the questions: Does a solution
exist?  Is it unique?  How do we know?  Can we develop algorithms to find all of the solutions? 
What other problems will our algorithms solve and why?  Hopefully, this will encourage you to
spend time trying to understand the "why"s of solving problems in mathematics as well as time
training yourself (i.e., doing homework) in the "how to"s illustrated in class.
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Handout #2 FUNDAMENTAL PROPERTIES OF THE Professor Moseley
Chap. 2 REAL NUMBER SYSTEM

We can view the real numbers as part of the sequential process of constructing the
number systems, starting with N, then Z, then Q, then R, and finally C.  The real numbers R can
also be viewed geometrically as being in one-to-one correspondence with a line in space.  We
call this the real number line and view R as a model for one dimensional space.  We also view
R as being a fundamental model for time.  However, we wish to now view R as a space or
axiomatic system; that is, as a set with algebraic and analytic properties defined by axioms. 
This removes the need to view R geometrically or temporally or to provide a lot of details for the
construction of  N, Z, and Q.  We organize the fundamental properties of the real number system
into groups.  The first three are the standard axiomatic properties of R:
1) The algebraic (field) properties.  (An algebraic field is an abstract algebraic structure. 
Informally, it is a number system where you can add, subtract, multiply, and divide (except by
zero).  Examples of an algebraic field are Q, R, and C.  However, N and Z are not fields.)
2) The order properties.  (These give R its one dimensional nature.)
3) The least upper bound property.  (This leads to the completeness property that insures that
R has no  “holes” and may be the hardest property of R to understand.  R  and C are complete,
but Q is not complete)

All other properties of the real numbers follow logically from these axiomatic properties. 
Being able to “see” the geometry of the real number line may help you to intuit other properties
of R.  Although helpful at times, this ability is not necessary for the axiomatic development of
the properties of R, and can obscure the need for a proof of an “obvious” property.  We consider
other properties that can be derived from the axiomatic ones.  To solve equations we consider  
4)Additional algebraic (field) properties of R including cancellation laws and factoring of
polynomials.  
To solve inequalities, we consider: 
5) Additional order properties including the definition and properties of the order  relations <,
>, #, and $.  

ALGEBRAIC (FIELD) PROPERTIES.  Since the set R of real numbers along with the binary
operations of addition and multiplication satisfy the following properties, the system (R, +, @) is
an example of a field which is an abstract algebraic structure.

A1. x+y = y+x  �x,y 0 R Addition is Commutative
A2. (x+y)+z = x+(y+z)  �x,y z 0 R Addition is Associative
A3. � 0 0 R  s.t. x+0 = x  �x 0 R Existence of a Right Additive Identity
A4. �x 0 R  � w s.t. x+w = 0 Existence of a Right Additive Inverse
A5. xy = yx    �x,y 0 R Multiplication is Commutative
A6. (xy)z = x(yz)     �x,y z 0 R Multiplication is Association
A7. � 1 0 R s.t. x @1 = x  �x 0 R Existence of a Right Multiplicative Identity
A8. �x 0 R s.t. x�0  � w 0 R s.t. xw=1 Existence of a Right Multiplicative Inverse

 A9. x(y+z) = xy + xz Multiplication Distributes over Addition
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There are other algebraic (field) properties which follow from these nine fundamental
properties.  Some of these additional properties (e.g., cancellation laws)  are listed in high school
algebra books and calculus texts. 

ORDER PROPERTIES.  There exists the subset  P = R+  of positive real numbers that satisfies 
the following:

O1. x,y 0 P implies x+y 0 P
O2. x,y 0 P implies xy 0 P
O3. x 0 P implies -x ó P
O4. x 0 R implies exactly one of x = 0  or  x 0 P  or  -x 0 P holds (trichotomy).

Note that the order properties involve the binary operations of addition and multiplication and
are therefore linked to the field properties.  There are other order properties which follow from
the four fundamental properties.  Some of these are listed in high school algebra books and
calculus texts.  The symbols  <, >, <, and > can be defined using the set P of positive numbers. 
The properties of these relations can then be established. 

LEAST UPPER BOUND PROPERTY: The least upper bound property leads to the 
completeness property that assures us that the real number line has no holes.  This is perhaps 
the most difficult concept to understand.  It means that we must include the irrational numbers 

(e.g. B  and ) with the rational numbers (fractions) to obtain all of the real numbers.

DEFINITION.  If  S  is a set of real numbers, we say that  b  is an upper bound for  S  if for
each  
x 0 S  we have  x < b.  A number c  is called a least upper bound for  S  if it is an upper bound 
for S  and if  c < b  for each upper bound  b  of  S.

LEAST UPPER BOUND AXIOM.  Every nonempty set  S  of real numbers that has an upper 
bound has a least upper bound.  

ADDITIONAL ALGEBRAIC PROPERTIES AND FACTORING.  Additional algebraic
properties are useful in solving scalar equations in a real variable. These can be formulated as
finding the roots of the equation f(x) = 0 (i.e., the zeros of f) where f is a real valued functions
of a real variable.  Operations on equations can be defined which result in equivalent equations
(i.e., ones with the same solution set).  These are called Equivalent Equation Operations or
EEO’s.  An important property of R (and indeed for any field) states that if the product of two
real numbers is zero, then at least one of them is zero.  Thus if f is a polynomial that can be
factored so that f(x) = g(x) h(x) = 0, then either g(x) = 0 or  h(x) = 0 (or both since in logic we
use the inclusive or).  Since the degrees of g and h will both be less than that of f, this reduces a
hard problem to two easier ones.  Repeating the process to obtain the product of linear factors
yields all of the zeros of f  (i.e., the roots of the equation).  The Fundamental Theorem of
Algebra states that any polynomial over C can be factored into linear factors and that any
polynomial over R can be factored into linear and quadratic factors.  Although this can be done
for many special cases, according to Galois, there is no finite process for doing this for an
arbitrary polynomial of degree five or larger.  
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ADDITIONAL ORDER PROPERTIES.  Often application problems require the solution of
inequalities.  The symbols <, >, #, and $ can be defined in terms of the set of positive numbers 
P = R+ = {x0R: x>0} and the binary operation of addition.  As with equalities, operations on
inequalities can be developed that result in equivalent inequalities (i.e., ones that have the same
solution set).  These are called Equivalent Inequality Operations or EIO’s.

OTHER ADDITIONAL ANALYTIC PROPERTIES.  Interestingly, the algebraic operation of
multiplication in R generalizes to the notion of dot product in R3 and inner product in Rn.  The
inner product in Rn  gives the notions of norm, metric, and topology in Rn.  In R, the norm of a

number is just its absolute value,  from which we get a metric and a

topology (this involves the concepts of open and closed sets in R.  We also get the notions of
convergence of an infinite sequence, a Cauchy sequence, and completeness (no holes).  Recall
that R is complete because of the least upper bound property, but Q is not.  A Cauchy sequence
will converge if the space is complete, but not necessarily if it has holes. For example, the

Cauchy sequence 1.4, 1.41, 1.414,... converges to  in R, but does not converge in Q.
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Handout #3 MORE ON THE FRAMEWORK FOR FIND PROBLEMS Prof. Moseley
Chap. 2

We extend our discussion of the framework for find problems (FFP’s) by giving more
examples illustrating  the types of sets E and properties or conditions C that we can use, the
number of solutions that the problem might have and possible techniques for solution.  We have
seen that E can be a number system such as R or C which are concrete examples of the abstract
algebraic structure known as a field.  Elements in a field are called scalars and equations
involving such elements are called scalar equations.  Since a solution of two equations in two
unknowns, say x and y, is an ordered pair [x,y]T, E can also be the set R2 = {[x,y]T: x,y0R} of all
ordered pairs of real  numbers (or elements in any field).  Since solutions to problems could
have any number of unknown variables, E can also be the set Rn = {[x1,x2,...,xn]

T: xi0R for i = 1,
2, ... , n}.  For differential equations, the solution is a function so that E could be a function
space like C1(I) = {f:I 6 R: f(x) and fN(x) are continuous on the interval I}.  All of the above are
examples of vector spaces.  Very often in science and engineering problems, E has the algebraic
structure of (i.e., is an example of ) a vector space. 

A problem Prob(E,C) is well-posed in a set theoretic sense if it has exactly one solution. 
We give examples to show that all problems are not well-posed.  Any number of solutions are
possible.  Recall that we use Prob(E,C) for the solution set defined implicitly by C, Soln(E,C)
for the solution set defined explicitly, and S = {x0E:C(x)} for the solution set during the solution
process.

EXAMPLES.

Prob(R,x + 3  =  2 ) ={x0R: x + 3  =  2}= S =  {!1}= Soln(R,x + 3  =  2)  well-posed
Prob(R,x2 ! 4 = 0 ) = {x0R: x2 ! 4 = 0} = S = {2, !2}= Soln(R,x2 ! 4 = 0 )  two solutions, 

not well-posed 
Prob(Q, x2  ! 2 = 0 ) = {x0Q: x2  ! 2 = 0} = S =  i = Soln(Q,x2  ! 2 = 0 ) no solution,

not well-posed 

Prob(R, x2 = 2 ) = {x0R: x2 = 2} = S = { , ! } = Soln(R, x2 = 2 ) two solutions, 
not well-posed

Prob(R, x2 + 1 = 0 ) = {x0R: x2 + 1 = 0} = S = i = Soln(R, x2 + 1 = 0 ) no solution,
 not well-posed

Prob(C, x2 + 1 = 0 ) = {x0C: x2 + 1 = 0} = S = {i, !i} = Soln(C, x2 + 1 = 0 )  two solutions,
 not well-posed

Prob(R,x + 3 <  2 ) = {x0R: x + 3 <  2} = S = {x0R: x < !1} = Soln(R, x + 3 <  2 ) 
an infinite number of solutions, definitely not well-posed.

The solution process gets us from the implicit definition of S (which we call Prob(E,C))
on the left to the explicit description on the right (which we call Soln(E,C) ).  For equations this
process often (but not always) consists of steps where we rewrite the given equation as an
equivalent equation with the same solution set.  However, other processes such as factoring
and theorems such as “if the product of two numbers is zero, then one of the numbers must be
zero” can be of use.  Deciding exactly what we mean by an explicit solution to a problem is
really part of the problem.  If the problem is well posed, and the unique solution has a name, we



Ch. 2 Pg. 9

want to know it.  If we can show that there exists exactly one solution and it does not have a
name, we can give it one.  If E = R and the problem is well-posed, we may want a decimal
approximation to the solution (i.e, the one element in the solution set).  For approximate
solutions, we need a notion of when two elements in a set are close together and when a
sequence of approximate solutions converge to the exact solution.  For scalars, the absolute
value of the difference provides such a measure.  This can be extended to finite dimensional
vector equations as the norm of the difference of two vectors.

If we do not have a finite solution procedure, we wish to first establish that a problem is
well-posed; that is, existence and uniqueness.  To see the importance of showing existence,
suppose 

Prob(x0R, x2 = 2 and x>0) = {x0R: x2 = 2 and x>0}= S = { } = Soln(x0R, x2 = 2 and x>0).

We have given a name of the element that we claim is the only element in the solution set.  But
how do we know there is such a real number and how can we find a decimal approximation to it. 
If it is a rational number, we want one of its “fraction” names.  We see that showing that a
problem is well-posed and finding its name or the name of a close by neighbor can be two
different processes and either task (or both) could be called the solution process.  We indicate
how to show that Prob(R, x2 = 2 and x>0} is well-posed so that there exists exactly one positive

number whose square is two and we may then call it .  Obviously there is a process to obtain

an approximation to solution of that your calculator has been programed to do when you
punch the correct buttons.  Your calculator “knows” which real numbers have square roots and
how to compute a rational approximation for a positive square root.  To show that Prob(R, x2 = 2
and x>0} is well-posed, we need the axiomatic properties of R previously given.  If you are
interested in a proof of existence and uniqueness of the solution to this problem, you might wish
to reread these axiomatic properties before reading the proof outlined in the next two paragraphs.

It can be shown that  S = {x0R: x2 = 2 and x>0} = S1 1 S2  =  S3 1 S4 1 S2 where
S1 = {x0R: x2 = 2 }, S2 = {x0R: x>0}, S3 = {x0R: x2 $ 2 }, and S4 = {x0R: x2 # 2 }.  That 
S1 = S3 1 S4 can be shown using the trichotomy property of R (an order property) which asserts
that for any a0R we have exactly one of the following 1) a = 0, a < 0, or a > 0.  

Since for all x0S4, x#5 we have that S4 has an upper bound.  Since 02 = 0 # 2, 00S4 so
that S4 is not empty.  Hence by the least upper bound axiom, S4 has a least upper bound.  Thus

it exists whether we can calculate it or not and we call it .  If we can show 0  S3 and 

0 S2, we have existence of a solution.  If we assume that there is another solution, say s 0 S

and can show that s = , we have uniqueness.  This helps explain why the solution process
usually implies uniqueness (if indeed the solution is unique).  This is totally independent of

having a process for computing a rational approximation for .  But we should show (or
believe someone has shown) that there exists a unique solution to our problem before trying to
compute an approximation to it.
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Handout # 4 COMPUTING WITH COMPLEX NUMBERS Prof. Moseley
Chap. 2

To solve  z2 + 1 = 0  we "invent" the number  i  with the defining property:  i2 =  ! 1.  We
then “define” the set of complex numbers as C = {x+iy:x,y0R}.  The notation z = x+iy is known
as the Euler form of z.  Since we cannot really add  x and  i y, the set of complex numbers C is
more rigorously defined using the concept of ordered pair as  C = {(x,y):x,y0R}.  z = (x,y) is
the Hamilton form of z.  Thus the complex numbers can be identified with the points in the
Cartesian Product  R×R = R2  (i.e., geometrically with points in the "complex" plane).

ARITHMETIC OF COMPLEX NUMBERS.  Addition of complex numbers is similar to
addition of vectors in a plane (i.e., in R2).  If  z1 = x1+iy, and  z2 = x2+iy2, then  z1+z2 =df  (x1+x2)
+ i(y1+y2).  (e.g. (3+2i) + (4-7i) = 7-5i ).  However, there is nothing comparable to
multiplication of complex numbers for vectors in the plane.  If  z1 = x1+iy, and  z2 = x2+iy2, then 
z1z2 =df  (x1x2-y1y2) + i(x1y2+x2y2).  Using these definitions, the nine properties of addition and
multiplication in the definition of an abstract algebraic field can be proved so that the system
(C, +, @,0,1) is an abstract algebraic field.  Computation of the product of two complex numbers
is made easy using your knowledge of the algebera of R, the FOIL (first, outer, inner, last)
method, and the defining property i2 =  !1:  
(x1+iy1)(x2+iy2) = x1x2+x1iy2 + iy1x2 + i2y1y2 = x1x2 + i (x1y2 + y1x2) !y1y2 = (x1x2!y1y2) +
i(x1y2+x2y1).
This makes evaluation of polynomial functions easy.

EXAMPLE.  If f(z) = (3 + 2i) + (2 + i)z + z2, then f(1+i) = (3 + 2i) + (2 + i)(1 + i) + (1 + i)2 
= (3 + 2i) + (2 + 3i + i2) + (1 + 2i + i2) = (3 + 2i) + (2 + 3i !1) + (1 + 2i !1) =  4 + 7i 

If z = x+iy, then the complex conjugate of z is given by = x ! iy.  Also the magnitude or

absolute value of z is *z* = (i.e., the distance to the origin in the complex plane).

THEOREM #1. If z,z1,z20C, then a) =  + , b) = , c) *z*2= , d) =z. 

Proof. We show =  + , using the standard procedure for proving identities in the

STATEMENT/REASON format starting with one side and ending with the other, justifying
every step.  The proofs of the other identities are left as exercises.  Since z1,z20C, there exists 
x1, y1, x2, y2 0 R such that z1 = x1 + i y1 and z2 = x2 + i y2.  Thus

STATEMENT   REASON

 =  Definition of z1 and z2.

   =  Definition of addition of z1 and z2.

   =   (x1 + x1)   !   i (y1 + y2) Definition of complex conjugate.
   =   (x1 ! i y1)  +  (x2 + i y2) Definition of addition of complex numbers.

   =   + Definition of complex conjugate.
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Hence for any complex numbers, z1 = x1 + i y1 and z2 = x2 + i y2, we have , =  + .

Q.E.D.

REPRESENTATIONS.  Since each complex number can be associated with a point in the
(complex) plane, in addition to the rectangular representation given above, complex numbers
can be represented using polar coordinates.
z = x + iy = r cos 2 + i rsin 2 = r (cos 2 + i sin 2)   =  r ' 2   (polar representation)
Note that r = *z*.  You should be able to convert from Polar to Rectangular form using the
relations 
x = r cos2 and y = r sin 2 and from Rectangular to Polar form using r2 = x2 + y2 and tan 2 = y/x
and knowledge of the quadrant 2 is in.  Often, it is helpful to sketch the number in the complex
plane.

EXAMPLE  Convert  z = 2 'B/4   to rectangular form.

Solution.    x = r cos 2 = 2( /2) = ,  y = r sin 2 = 2( /2) = so that  z =  +  i

EXAMPLE  Convert  z = 1 +  i  to polar form.             *       @  (1,   )
Solution: First sketch the number in the complex plane. *   '   

2 = B/3               z = 2 (cos(B/3)  + i sin(B/3) *'     2 = B/3  (60°)

            r =   =  2      = 2  'B/3 *))))))

         1       r = 2
EXAMPLE   If z1 = 3 + i and z2 = 1 + 2i, then in rectangular form.

= = = = = =

EXAMPLE   If f(z) = , then f(4+i). = =    =   ! i

THEOREM #2.  If z1 = r1 '21 and z2 = r2 '22.  Then a) z1 z2 = r1 r2 '21 + 22,  b) If z2�0, then 

 =   '21 ! 22, c)  z1
2 = r1

2'221,  d) z1
n =  r1

n 'n21.

EULER’S FORMULA.  By definition   ei 2 =df  cos 2 + i sin 2.  This gives another way to write 
complex numbers in polar form.

 z =  1 + i      =   2(cos B/3 + i sin B/3 )  =  2 ' B/3   =  2 e i  B / 3

 z =  + i    =  2 (cos B/4 + i sin B/4 )  =  2 ' B/4   = 2 e i  B / 4

Euler's formula allows the extension of  exponential, logarithmic, and trigonometric functions to
complex numbers and that the standard properties for these functions still hold. It allows you to
determine what these extensions should be and to evaluate these functions for all complex
numbers.



Ch. 2 Pg. 12

EXAMPLE.  If f(z) = (2 + i) e (1 + i) z , find f(1 + i).
Solution.  First (1 + i) (1 + i) = 1 + 2i + i2 = 1 + 2i  -1 = 2i.  Hence
f(1 + i) = (2 + i) e2i = (2 + i)( cos 2 + i sin 2) = 2 cos 2  + i ( cos 2   + 2 sin 2 ) + i2 sin 2 

= 2 cos 2  - sin 2 + i ( cos 2   + 2 sin 2 )              (exact answer)
. -1.7415911 + i(1.4024480)                   (approximate answer)
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Handout #5 THE NEED FOR UNDERSTANDING THE THEORY IN Prof. Moseley
 Chap. 2                         MATHEMATICAL PROBLEM SOLVING

Our objective is not to just simply memorize methods for solving some set of evaluation
problems, but to also understand why we use the methods we choose.  That is, we not only want
to learn methods and be able to apply them to problems where we are told they work (i.e., be
trained or train ourselves to use these methods), but also to know what methods apply to what
problems and to understand why these methods work and when and how they can be extended to
other problems.  That is, we wish to understand the theory behind the methods.  We, as
engineers, scientists, and applied mathematicians are motivated by the fact that equations
(algebraic and differential) are used as mathematical models of scientific and other phenomena,
particularly systems that vary with time and space.  To understand how to solve equations, we
must understand the theory behind the methods used.  

Most, if not all, of the problems you have solved so far in mathematics have been of the
evaluate or locate (find) type (see the first handout in this chapter).  For evaluation problems,
you learned (i.e., were trained in or trained yourself to use) well defined algorithms or
computational skills such as addition,  multiplication, raising a number to a power, extraction of
roots, and evaluation of algebraic functions, finding a derivative or evaluating an integral.  These
were learned not only for solving everyday problems in life (e.g., balancing your check book)
but also as tools for solving locate or find problems.  For locate problems you were asked to
find all objects (e.g., numbers) satisfying a given property or condition (e.g., an algebraic
equation).  A fundamental “plan of attack” or philosophy used for such problems is to
reformulate the problem as an equivalent problem (e.g., an equivalent algebraic equation) that
has the same solution set.  This process is repeated until a form of the problem is found where
the set of solutions is easy to determine (i.e., has a more explicit description).  However, the
exact steps in the solution process are not preordained, but are instead left up to the problem
solver.  (The fun is to see who can find the shortest route to the answer.)

For an algebraic equation such as 3x ! 2 = 7 that has exactly one solution, the idea is to
use Equivalent Equation Operations to isolate, if possible,  the unknown number on one side
of the equation.  The value on the other side is then the (unique) solution.  But how do we know
what operations yield equivalent equations?  Theory is needed.  If the number of solutions is
finite (and small), an explicit description of the solution set consisting of the (names of) the
solutions should be found.  This same idea of isolating the unknown can be used for solving first
order linear ODE’s where calculus is used to isolate the unknown function on one side of the
equation.  However, not just one solution is obtained.  The solution set for the ODE consists of
an infinite number of functions parameterized by an arbitrary integration constant.

The fundamental philosophy of reformulating the problem not only applies to
equations where there is only one solution but extends to problems such as x2 + 3x + 2 = 0 where
there are two solutions and to inequalities such as 3x ! 2 < 7 where there are an infinite number
of solutions.  However, more theory (i.e., more properties of R) and/or a clearer definition of
what is meant by “an explicit description of the solution set” are needed to effect a solution
algorithm.  For the problem 3x ! 2 < 7 , the solution set is S = {x0R: 3x ! 2 < 7} = {x0R: x  <
3} so that x < 3 is a more explicit description of S then 3x ! 2 < 7 since the unknown has been
isolated.
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The fundamental philosophy of reformulating the problem to get a more explicit
description of the solution set applies to any problem where it is not easy to precisely identify
all of the elements in a predetermined set E that satisfy a given property (e.g., an equation or an
inequality).  If the philosophy succeeds,  an explicit (or at least a more explicit) description of
the solution set is obtained.  If all steps are reversible, the solution process gives the solution set
exactly. However, some equation operations  such as “squaring both sides of the equation” can
introduce extraneous roots i.e., result in a new problem whose solution set includes other
elements in addition to solutions of the original problem.  However, if the new problem (and
hence the old problem) has only a finite number of solutions and there is a process for checking
solutions (e.g., an equation that you can substitute the solution into), these can be checked
individually to see which are solutions and which are extraneous.  In fact, since scalar algebraic
equations are testable, solutions should always be checked to determine if errors have been
made.  Solutions to differential equations can likewise be checked.  
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