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Remedial Class Notes INFORMAL LOGIC AND Handout #1 
Chapter 1          MATH VOCABULARY Professor Moseley

The primary tools of mathematics are thought and expression.  Ideas and language are
often considered to be inseparable.  A formal mathematical discourse begins with undefined
terms (primitive “objects” or concepts) and axioms that are assumed to be true without proof. 
Definitions are given and theorems are proved using deductive reasoning to build the
mathematical theory.  In formal logic, a formal proof is a finite sequence of statements
where every step is either (1) an axiom, (2) a definition, (3) a previously proven statement, or (4)
the result of applying a rule of inference.  The last statement in the sequence is the theorem
which has been formally proved.  However, mathematicians almost never write this type of
formal proof as they are often long, tedious, and boring.  They may write in a formal manner, but
their logic and proofs, from a logician's point of view, are usually informal.

Most mathematicians believe that all classical mathematics can be built on the foundation
laid by logic and set theory.  Mathematical logic requires all propositions (statements) to be
either true or false.  Compound propositions are constructed using the logical connectives of
“and”, “or”, “not”,  “implies”, and “if and only if”.  The truth value (i.e. either true or false)
of an open statement (e.g. an equation) depends on the value chosen for the variable(s) in the
statement.  Finding the values in the domain of definition for the variable(s) (i.e., the set of
allowed values) which make the statement true solves a mathematical problem.

Formal logic and axiomatic set theory are often needed for research in pure
mathematics.  However, at an elementary level, we can proceed more quickly if we rely on
informal logic (i.e., common sense or rational thought) to determine the truth value of
statements and to develop an intuitive understanding of the elementary concepts in naive set
theory.  After elementary set theory has been established, formal definitions in terms of sets of
the concepts of ordered pair, Cartesian product, and relation can be given. Then the concepts
of function, linear ordering, partial ordering, equivalence relation, binary operation, one-
to-one correspondence, finite sequence, cardinality, mathematical induction, and the
number systems can be established.  We will not follow this order exactly since some concepts
can be thought of as fundamental and most, if not all, you already know.  

On the other hand (OTOH), we will give some formal definitions and will use the
language of mathematics.  The symbols in the following tables, if not already known, must be
learned.  They are standard and provide a short hand notation that helps avoid writer’s cramp. 
However, care must be taken since, for example, the symbols for the quantifiers (i.e. � and � )
have a precise meaning in formal logic and are uncommon in other formal mathematical
literature.  We also use other acronyms such as LHS and RHS for the left and right hand sides of
an equation.



Ch. 1 Pg. 3

LOGIC
    Math Symbol English Translation

1. Y implies;  if  ____, then ___.: ___ is necessary for ____.; 

2. Z is implied by; __only if __.; We have __, if __.; __ is sufficient for __. 
3. iff if and only if,  ], is equivalent to,  is necessary and sufficient for
4. � there exists, there is, for at least one, for some (existential quantifier)
5. � for all,  for each,  for any     (universal quantifier)
6. s.t., h such that
7.         Q.E.D. ,   � Quod Erat Demonstrandum (Latin Phrase meaning “which was to be 

demonstated”). We are done with the proof.

               SET THEORY  NUMBER SYSTEMS
 Math Symbol       English Translation        Math Symbol          English

Translation
1.     0       is an element of 1.       N (or ù)          Natural numbers = {1, 2, 3, ...}
2.     f       is a subset of 2.       W         Whole numbers = {0,1, 2, 3, ...}
3.      c       unioned with 3. Z, J         Integers = { ... -2, -1, 0, 1, 2, ...}
4.      1       intersected with 4. Q             Rational Numbers
5.    i,N       the empty set 5.  R (or ú) Real Numbers

6. C (or ÷ ) Complex Numbers

MISCELLANEOUS
 Math Symbol     English Translation
1. LHS Left Hand Side (of an equation)
2.         RHS Right Hand Side (of an equation)
3.        OTOH On the other hand
4.        WOLOG Without loss of genarality
5.        R One dimensional space or time
6.        R2 The plane (two dimensional space)
7.        R3 Three dimensional space
8.       C(I) Continuous functions on the interval I
9.     I = (a,b) The open interval I f R containing x such that a < x < b.

10.   The closed interval  f R containing x such that a # x #< b
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Remedial Class Notes SETS, NUMBER SYSTEMS Handout #2
Chapter 1     AND THEOREMS Professor Moseley

In axiomatic set theory, the notion of a set is considered to be a primitive concept.  This
means that it is not formally defined but provides a starting point on which other concepts can be
built.  The axioms of a particular mathematical theory assert the existence of the fundamental
sets used for the theory and provide properties for the objects in these sets .  Informally, we
define a set as a collection of objects.  The objects are called the elements of the set.  Elements
are the building blocks for sets and could be considered to be a fundamental concept. (In one
axiomatic system, all elements are sets or classes of sets.)  We could consider sets containing
cars, sets containing houses, or sets containing people.  However, we are mostly interested in
sets containing mathematical objects such as numbers.  To define a particular set of numbers (or
cars, or houses, or people) the important thing is to be able to determine whether a given element
(e.g., number) is or is not a member of the set.  This may involve the names of identifiable
elements in the set (e.g., the set containing 1, 5, and 7) or it may involve properties of the
elements in the set (e.g., the set containing the even positive integers).  A set with structure is
often called a space although number systems are usually not referred to as spaces.

ELEMENTARY SET DESCRIPTIONS AND NUMBER SYSTEMS.  To define a set which
contains only a small number of elements, say, less than ten, we can list (the names of) the
elements.  Using standard notation, the set  S  consisting of the numbers 1, 7, and 10 can be
defined by writing S = {1,7,10}.  (This assumes previous knowledge of the numbers 1, 7, and 10. 
The finite sequence 1, 7, 10 is called a "single" listing of the elements in S.)  Larger sets of
numbers can often be clearly specified using the @@@ (ellipsis) notation.  For example, T =
{1,2,3,@@@,100} clearly defines the set of integers between 1 and 100 (including 1 and 100).  As
was just done we can often describe sets of numbers using English.  However, we prefer the "set
builder" notation since, as we have just seen, English definitions can sometimes be ambiguous. 
To avoid the ambiguity more words had to be used.  The "set builder" notation is clearer and
shorter.  The sequence 1, 2, 3, ..., 100 is a "single" listing of the elements in T. Although not
usually done, we do allow "multiple" listings of elements so that {1,2,2,3} = {1,2,3}.

The @@@ notation can also be used for infinite sets.  For example,

     N = {1,2,3,@@@}

is a standard way of describing  the set of positive integers (also called the natural numbers or
counting numbers). Since we have not rigorously constructed N, but rely on your previous
knowledge of the counting numbers to interpret the meaning of the @@@ notation , we use the word
“describe” rather than the word “define”.  In some texts, N denotes the non-negative integers,
but to avoid confusion we let  W = {0,1,2,3,@@@}(whole numbers, as denoted in some elementary
texts) be the set of non-negative integers.  Also using set notation

Z = {@@@,-2,-1,0,1,2,@@@}

describes the set of all integers.  (Some texts use J for the set of integers.)  After several sets of
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numbers have been established, set theory notation can be used to define (or describe) other sets. 
First we need a notation to indicate that an element (e.g., number) is a member of a set.  We
write  3 0 N  to mean that the number 3 is an element of the set of positive integers.  This
translation may be shorten to read "3 is a positive integer".  Having defined the use of the  0 
notation we can use it to define or describe more complicated sets of numbers.  For example,

Q = {p/q:p,q 0 Z and q�0}

describes the set of rational numbers.  An English translation of this notation is "Q is the set of
all possible quotients,  p  divided  q, where  p  and  q  are integers and q�0".  The colon is often
translated as "such that" (a vertical line is sometimes used instead of a colon).  Hence another
translation might be "Q is the set of all numbers  p  divided by  q  such that  p  and  q  are
integers and q�0".  A shorter translation is "Q is the set of quotients of integers where the
denominator is nonzero".  This assumes knowledge of the algebraic structure of Q (i.e., the terms
quotient and denominator).  Thus, this is not a rigorous translation until we define this algebraic
structure.  Your previous knowledge of fractions fills the gap.  The important thing is to clearly
describe the set.  Can the reader of the set description tell whether a given number is or is not in
the set?  Note that this description of Q really has multiple listings. For example, both 3/4 and
6/8 are in the set but are really two different names for the same element.  Set descriptions often
involve properties of the elements; that is, conditions that the elements must satisfy to be in the
set (e.g. p 0 Z, q � 0).  If these statements are true (i.e., if the element has these properties), then
the element is in the set.  If (one of these is) false (i.e., if the element fails to have one of the
properties), then the element is not in the set.

Unfortunately, the set of real numbers (the standard notation is R) is not easily
described in terms of the rational numbers.  Vaguely, the real numbers R consist of the rational
numbers

and the irrational numbers (such as  and B).  If we assume that we can decide if a number
is a real number or not we can describe the complex numbers using Euler’s notation as

C = {a+bi : a,b 0 R}

where i = .  A more rigorous definition of C is as a set of ordered pairs of real numbers, C

= {(a,b) : a,b 0 R} since an ordered pair can be defined rigorously in terms of sets.  For now, we
will be content with the notation (a,b) and the "informal definition" that (a,b) = (c,d) if (and only
if) a =b and 
c = d.

If all of the elements of set A are also elements of set B, we say A is a subset of B and
write A f B.  The notation A d B is used to mean subset in some texts, but we avoid this since it
is used in other texts to mean proper subset (A is a proper subset of B if  A f B, but A � B.) 
Since a set is defined by the elements it contains, we see that A = B if and only if A f B and B f
A.  

For our number systems, it is important to note that
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N f W f Z f Q f R f C

and that these are all proper subsets.  All of these sets of numbers have structure, particularly
algebraic structure (e.g., addition and multiplication) and hence are spaces. Rigorous
construction of the number systems requires much explanation and consumes volumes. Briefly, 
using formal logic, axiomatic set theory, definitions, and theorems, the Peano Postulates can be
established.  From these, N can be constructed.  Then, in succession W, Z, Q, R and C.  

COMBINATIONS OF SETS.  Once we have a collection of sets defined (we can define any set
we wish, not just the standard sets), we can combine these using the operations of union and
intersection.  The union of two sets is just the set containing all of the elements in either set.  For
example, if we define  S = {1,2,3}  and  T = {1,3,8}, then the union of  S  and  T, denoted by S c
T, is the set of all elements that are in S or T (or both) and hence is the set {1,2,3,8}.  Thus,
given  S  and  T  defined as above (note that we have redefined  S  and  T  from what they were
previously) we "compute" S c T = {1,2,3,8}.  Note that in describing a set by listing it, we do
not normally list an element twice.  If the element is in the set, it is listed; if not, it is usually not
listed.  However, we do allow multiple listings so that {1, 2, 2, 3} = {1, 2, 3}.  Also, the order in
which the (names of the) elements are listed is not part of the definition of the set.  Thus
{1,2,3,8} = {8,3,2,1} = { 1,8,3,2}.  The intersection of two sets is the set consisting of the
elements that are in both sets.  The intersection of  S  and  T, written S 1 T  is thus the set that
contains all elements in S and T and is "computed" as S 1 T = {1,3}.  Note that the words and
and or have become technical words and indeed have technical definitions in formal logic when
forming compound propositions.  Formal logic uses the inclusive or so that opening Door A or
B does not preclude opening both doors.  If we wish the exclusive or, we use additional words
such as “Open Door A or B, but not both”.

THEOREMS AND PROOFS.  A theorem is simply an important fact worth remembering.  A
proof is simply a clear explanation of why a fact is true.  Facts about small sets can be proved (or
checked) by examining the elements in the set.  To review (or introduce you to) the language of
proofs, we state and prove one such elementary fact in the Theorem/Proof format.

THEOREM.  {1,4}f{1,2,3,4}.
Proof.  By the definition of subset, to show that AfB, we must show (or check) that all elements 
in A are also in B.  Since the only elements in {1,4} are 1 and 4 and these are both in {1,2,3,4},
we see that {1,4}f{1,2,3,4} as was to be proved. Q.E.D.

To show that two sets are equal, we simply have to show that they have the same elements.  This
is easily done in two parts.  Thus to show A = B, we show AfB and BfA.
 
THE EMPTY SET, THE POWER SET  AND THE UNIVERSAL SET.  It is convenient to
have a notation for the "set" which has no elements.  We refer to it as the empty set and denote it
by  i.  There is only one empty set.  If we let  S = {1,2,3}, T = {1,3,8}, and U = {5,6,7}, then 
S 1 U = i, T 1 U = i, (S c T) 1 U = i, S 1 i = i, and S c i = S.  In axiomatic set theory, the
existence of i is simply postulated.  Our informal definition will allow your intuition to
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determine the truth value of statements involving i.
The power set of the set A, denoted by P(A), is the set consisting of all of the subsets of

A.  Unfortunately, naive set theory contains paradoxes.  Set theorists work hard to axiomatically
construct a theory which avoids these paradoxes.  (The discovery of these is sometimes referred
to as the third crisis at the fundamentals of mathematics.)  These may involve constructing
bigger and bigger sets (e.g., by computing power sets of known infinite sets using the Axiom of
Choice which states that an element can be selected from each set in a family of sets).   We can
avoid these difficulties by requiring in any given discussion the existence of a universal set or
universe, denoted by U, which contains all of the elements under consideration.  (A universal set
with properties defined by axioms is callled a space, e.g., a number system is a space although
not usually referred to as such).  We consider subsets of U and P(U), but do not allow P(U) to be
an element of U.  The universal set is often not given explicitly.  However, if we are careful
about the elements, sets, and subsets that we do consider, we will not get into logical difficulty. 

The complement of the set A f U, denoted by  or  ) A and read "A complement", is the set
of all elements in the universal set U that are not in the set A.

PROPERTIES OF UNION AND INTERSECTION.  The operations of union and intersection
have a number of properties.  We list only a few.  Let A, B, and C  be sets, then

  1.  A c B = B c A Union is commutative
  2.  (A c B) c C = A c (B c C) Union is associative
  3.  A 1 B = B 1 A Intersection is commutative
  4.  (A 1 B) 1 C = A 1 (B 1 C) Intersection is associative

Many properties of sets can be proved.  Recall that to show that AfB, we must show (or
check) that all elements in A are also in B.  If the sets are not specified, but arbitrary, we must
show that an arbitrary element in A is also in B.

THEOREM .  AfAcB.
Proof.  By the definition of subset, to show that AfB, we must show that an arbitrary element 
in A is also in B.  Let x be an arbitrary element in A.

STATEMENT REASON
x0A Assumption (or Given).
x0A or x0B Definition of the (inclusive) or.
x0AcB Definition of union.

Since we have shown that an arbitrary element in A is also in AcB, by the definition of subset,
we have that AfAcB. Q.E.D.

THEOREM . (1) BfAcB.  (2) if AfB, then A=A1B.  (3) A1BfAcB.
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Remedial Class Notes SETS, ORDERED PAIRS, RELATIONS, Handout #3
Chapter 1 CARTESIAN PRODUCTS, AND FINITE SEQUENCES Professor Moseley

From high school, you should be familiar with the concepts of "set", “number”, "order”,
“function”,   and "addition".  In axiomatic set theory, the notion of a set is considered to be a
primitive concept.  It is not formally defined, but is given the informal definition of a collection
of objects called the elements of the set.  The concepts of ordered pair, Cartesian product,
relation, finite sequence, linear ordering, function and binary operation can then be given formal
definitions in terms of sets.  However, often it is easier to think of a concept as also being a
primitive using an informal definition.  The informal definitions are sufficiently precise for our
purposes and allow faster progress.  We may give or focus on an informal definition that you are
familiar with before or after we give the formal definition.  It is important to know that a formal
definition can be given in terms of sets.  It is more important to have a good understanding of the
concept which may be provided by the informal definition.

Although the notion of order can be defined in terms of sets, it can also be thought of as
being fundamental.  Before and after are natural spacial and temporal ideas so lining up elements
may be thought of as primitive.  Informally, an ordered pair from the sets A and B is an element
of the form (a,b) where a0A and b0B.  The ordered pair (a,b) equals the ordered pair (c,d) if (and
only if) a = c and b = d.  That is, order is important in determining equality whereas as sets, {a,b}
= {b,a} since these sets have exactly the same elements.  (The order we list them is not
important.  The set {a,b} is sometimes called an unordered pair.)  In terms of sets, (a,b) may be
defined formally as (a,b) ={{a},{a,b}}.  After an ordered pair has been defined, we may formally
define the Cartesian product of the sets A and B as the set of ordered pairs A×B = {(x,y): x 0 A
and y 0 B}.  The Cartesian product of a set A with itself is A×A = {(x,y): x,y 0 A} which we
denote by A2.  We define formally a relation R between the sets A and B as a subset of A×B.  A
relation R on A is a subset of A2.  The notation xRy (x is related to y) means (x,y)0R.  Familiar
examples of relations are < (less than) as well as >, #, and $.  Some properties of relations are
given in the following definition.

DEFINITION.  Let R be a relation on A.  R passes the vertical line test if �(x1,y1),(x2,y2)0R 
(x1Ry1,x2Ry2) we have x1= x2 implies y1 = y2.  R is reflexive if  �x0A, (x,x)0R  (xRx).  R  is
antisymmetric. if �x,y0A, (x,y)0R and (y,x)0# implies x = y (xRy and  yRx  implies x = y).  R
is transitive if �x,y,z0A, (x,y)0R and (y,z)0R implies (x,z)0R (xRy and  yRz implies xRz). We
say (all) elements in A are comparable (using R) if  �x,y0A, (x,y)0R or (y,x)0R (xRy or yRx). 
R is symmetric if  �x,y0A, (x,y)0R implies (y,x)0R (xRy implies yRx).  

Defined formally in terms of sets, a function is a relation that passes the vertical line test.
The Cartesian product of A2 with A is  A2×A = {((x,y),z): x,y,z 0 A} and the Cartesian

product of A with A2 is A×A2 = {(x,(y,z)): x,y,z 0 A}.  Although these sets are technically
different, there is an “obvious” one-to-one correspondence between these sets and between
each of them and the set of ordered triples defined informally as A×A×A = {(x,y,z): x,y,z 0 A}. 
Normally we make no distinction between these three sets and denote all three by A3.  By using 
mathematical induction, we also define the nth order Cartesian product of A informally as 
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= {(x1,x2, ... , xn): xi 0 A for i = 1, 2, ... , n}.  We may refer to the elements

in An as (row) vectors and denote them using .  If ,

0An, then  if (and only if) x1=y1, x2=y2, ... , xn=yn.

Informally, a  finite sequence of length n has the form x1, x2, ...,xn.  We may identify the
set of finite sequences of elements in A having length n with the set An.  Thus two sequences
x1,x2, ... , xn and y1,y2, ... , yn are equal if (and only if) x1=y1, x2=y2, ... , xn=yn (or xi = yi for i = 1,
2,...,n.  We may think of the sequence x1,x2, ... , xn as a linear ordering of the elements in the set
A ={x1,x2, ... , xn} if we have assumed a "single" listing  of the elements in A (i.e., xi = xj

implies i = j).
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Remedial Class Notes FUNCTIONS, GRAPHS, BINARY OPERATIONS Handout #4
Chapter1 AND ONE-TO-ONE CORRESPONDENCES Professor Moseley

To develop an intuitive understanding of the concept of function, rather than use the
formal definition, we use the informal definition of a function as a rule of correspondence
between two sets.  We may then define the graph of a function as a specific set of ordered pairs
in a Cartesian product.  (You should make a distinction between this definition of the graph of
a function as a set and the "picture" graph of a real function of a real variable that is a
geometrical interpretation of this set that we draw on a Cartesian coordinate system.)  Since this
definition of a graph of a function is really the formal definition of a function, there is a one-to-
one correspondence  between functions and their graphs.  That is, the graph of a function is
really the formal definition of a function as a set as it defines a function in terms of sets. Having
defined functions in terms of sets, we can then (formally) define a binary operation such as
addition or multiplication as a function on the Cartesian product of a set with itself.  Hence we
can define an ordered pair, Cartesian product, function and  binary operation in terms of sets. 
This is in agreement with the notion that all of mathematics can be built on the foundation of
formal logic and axiomatic set theory.  However, in practice, it is easier to think of set, ordered
pair and  function separately using informal definitions.  The informal definition of a function is
sufficiently precise and so important as to warrant being repeated as a (formal) definition. 
 
DEFINITION.  A function is a rule of correspondence which assigns to each element in a first
set (called the domain of the function) exactly one element in a second set (called the co-
domain of the function).

We can consider functions from any set to any other set.  You are familiar with real
valued functions of a real variable, that is, functions that map a subset of the real numbers  R  to
the real numbers  R.  It is important to note that to define a function, we must first define two
sets, the domain and the co-domain, before giving the rule of correspondence.  Thus, these two
sets are part of the definition of a function.  A function is not completely defined unless both of
these sets have been specified.  (Often in high school algebra texts these are omitted since the
codomain is almost always R and the "natural" domain is the subset of R where the formula or
rule which defines the function is defined.)

Often we denote the function or rule by f.  If  x  is any element in the domain, then 
y = f(x) indicates the element y in the co-domain that the rule defined by f associates with the
element x in the domain The independent variable is x and the dependent variable is y.  We

use the notations  f: A 6 B  and   to indicate that  A  is the domain and  B  is the co-
domain of the function  f.  We may also denote the domain of  f  by Df  or by  D(f).  The graph
of f:A6B is the set G = { (x,f(x)) 0 AxB: x 0 A }.  It is a subset of the Cartesian product  AxB =
{(x,y): x 0 A and y 0 B}.  To obtain a rigorous definition of a function in terms of sets, we can
define a function to be its graph.  Make a distinction between the graph of a function as a set and
the geometric pictures (which we will call "picture" graphs) of real valued functions of a real
variable that you have drawn on paper and the chalk board using Cartesian coordinates. 
Formally, a relation on A×B that passes the vertical line test is a function.  
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If  f: A 6 B, then the range of  f  is the set  Rf = {y 0 B: � x 0 A  s.t. f(x) = y}which is a
subset of the codomain.  Thus the domain of a function is the set of things that get mapped and
the range is the set of things that get mapped into.  That is, the range is the set of things in the co-
domain (target set) for which there exist an element in the domain (quiver set)  that gets mapped
(or shot) into those things (ie., the range is the things that actually get hit).

To develop an intuitive feel for the  properties of functions, we will continue to use the
informal definition of a function as a rule of correspondence from the domain to the codomain. 
We also accept the existence of  binary operations such as addition, subtraction, multiplication
and division as part of the algebraic structure of number systems and use formulas such as f(x) =
x2  + 3x + 5 to define the rule of correspondence for some functions.

The terms “mapping”, “function”, “operator”, transform, and “transformation” all
have essentially the same meaning.  Different words are used in different contexts to indicate the
nature of the domain and codomain of the mappings under consideration.  Recall that the word
function is usually used for mappings from R to R.  The word operator is used for a mapping
from a set of functions to another set of functions.  The terms transformation and transform are
often used for mappings from a set back to the same set.  An element transforms (or "morphs")
from one form (element) in the set to another.  We use the notation F(A,B) = {f:A6B} to denote

the set of all functions from A to B.  Thus F(R,R) is the set of all real valued function of a real

variable whose domain is R.

DEFINITION.  The graph of f:A6B is the set G = { (x,f(x)) 0 AxB: x 0 A }.  It is a relation
between A and B (i.e., a subset of the Cartesian product  AxB = {(x,y): x 0 A and y 0 B}) such
that if (x1,y1), (x2,y2)0A×B, then x1 = x2 implies y1 = y2.  (For real valued functions of a real
variable, this is called the vertical line test.)

To obtain a rigorous definition of a function in terms of sets, we have formally defined a
function to be its graph.  

Finally, we give a formal definition of one-to-one correspondence in terms of functions.

DEFINITION.  Let  f: X 6 Y.  The function  f is said to be one-to-one  (injective) if 
f(x1) = f(x2) implies x1 = x2.  (This is the contra positive of the statement, if x1 � x2, then  
f(x1) � f(x2).  That is, distinct values of  x  in X get mapped to distinct values of  y  in  Y.  Recall
that the negation of a negative is the positive.  For real valued functions of a real variable, this is
called the horizontal line test.)  The function  f  is said to be onto (surjective) if  R(f) = Y.  (That
is, f is onto if the range is the entire co-domain.)  If f is both 1-1 and onto, then it is said to be
bijective or to form a one-to-one correspondence between the domain and the co-domain. 
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Remedial Class Notes            CARDINALITY, LISTINGS, LINEAR Handout #4
Chapter1 ORDERINGS AND PARTIAL ORDERING Professor Moseley

Recall that a0A can be paired with b0B using the notation (a,b)0A×B.  We could just as

well have used [a,b], = [a,b]T, or +a,b, for an ordered pair.  The concept of a one-to-one

correspondence has been defined in terms of functions.  However, the concept of pairing each
and every element in one set with one and only one element in another set so that every element
in the second set has a mate may be viewed as fundamental or primitive, just like that of set and
function.  Shepards in olden times kept tract of their sheep by putting them in one-to-one
correspondence with a pile of rocks without necessarily knowing how to count their sheep or
how many sheep they had.  

Let n be an arbitrary number in N and Nn={1, 2, 3, ..., n} be the finite set consisting of
the first n numbers in N.  The concept of cardinality answers the question “How many elements
does a set have?”.  This involves ideas at the very foundation of mathematics.  If, for some n0N,
there exists a one-to-one correspondence between a set A and the set Nn (i.e., we may pair the
elements in A with the numbers in Nn), then A has cardinality n and A is said to be finite.  If we
remove the elements in A one at a time and number them until all elements are gone, we obtain a

listing (i.e., the finite sequence  = a1,a2,...,an) of the elements in A... Since every element

receives a number, the mapping is onto.  Since ai = aj implies i = j the mapping is also one-to-
one, and we have a single listing. 

When there is an “obvious” one-to-one correspondence between two sets (e.g., when they
are finite, have the same number of elements, and are linearly ordered), we may or may not make
a distinction between the two sets.  There is an obvious one-to-one correspondence between N5

={1,2,3,4,5} and S = {a,b,c,d,e}, but we normally consider these sets to be different sets.  Hence
having the same cardinality and some of the same structure (both N5 and S are ordered) is not
sufficient to identify them as the same set.  On the other hand (OTOH), there are sets where we
normally make no distinction.  Recall that the sets A2×A = {((x,y),z): x,y,z 0 A} and A×A2 =
{(x,(y,z)): x,y,z 0 A} are in an “obvious” one-to-one correspondence with the set of ordered
triples A×A×A = {(x,y,z): x,y,z 0 A}.  Often we make no distinction between these three sets
and denote all three by A3.  We may consider elements in corresponding sets to be the same
element.

Recall that we define the nth order Cartesian product of A as =

{(a1,a2, ... , an): ai 0 A for i = 1, 2, ... , n}as the set of finite sequences of elements in A having
length n.  We may also identify finite sequences of length n without parenthesis (that is, those of
the form: a1, a2, ...,an) with the set An.  Regardless, the two sequences (a1,a2, ... , an) and (b1,b2, ... ,
bn) are equal if (and only if) a1=b1, a2=b2, ... , an=bn.  Thus we may think of the finite sequence
(a1,a2, ... , an) as a linear ordering of the elements in {a1,a2, ... , an} if we assume a single listing.

Intuitively, N is the “smallest” infinite set in mathematics.  Thus N is useful not only as a
number system, but also very important in establishing fundamental ideas about infinity.  The
idea that although the set Nn={1, 2, 3, ..., n} is finite, we can always add one more is called
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“potential infinity”.  When we write  N = {1,2,3,...} we have an "actually infinite set".  If there
exists a one-to-one correspondence between a set A and the infinite set N = {1,2,3,...}, then A
has cardinality !0 (!, aleph, is the first letter of the Hebrew alphabet) and A is said to be
countably infinite. A set is countable if it is finite or countably infinite. A one-to-one
correspondence between the infinite sets N and Z can be constructed as follows:

N    1     2    3     4     5    6     7    8     9   10    @@@
)))))))))))))))))))))))))))))))))   that is, by the function  f:N6Z defined by 
Z    0     1   !1   2   !2    3   !3    4   !4    5   @@@

.  Hence Z is countably infinite.  However, N and Z  have

different structures (addition and multiplication) so that we always consider them to be different
sets.  

There is also a one-to-one correspondence between Q and N so that Q is also countably
infinite.  It has been shown that there exists no one-to-one correspondence between R and N, so
that R is uncountably infinite. Its cardinality is often denoted by c (for continuum).  How many
mathematical infinities are there?  Well there are of course an infinite number of such
mathematical infinities.  

 Listings need not be finite.  A countable listing is given by the infinite sequence  =

a1,a2,...,an, ... .  In fact, listings need not be countable, linearly ordered, or one-to-one.  They need

only be onto.  We use    where ax defines a map from a set S with known structure to A

that is onto to denote such a listing.  If the mapping is also one-to-one so that it is a one-to-one
correspondence between S and A, then we have a single listing of the elements in A.  Linear
orderings need not be countable.

DEFINITION.  A relation # on a nonempty set A is a linear ordering of  A if 
a) �x0A, (x,x)0#  (x#x).      (# is reflexive.)
b)  �x,y0A, (x,y)0# and (y,x)0# implies x=y (x#y and y#x implies x=y).   (# is antisymmetric.)
c) �x,y,z0A, (x,y)0# and (y,z)0# implies x#z (x#y and y#z implies x#z).  (# is transitive).
d) �x,y0A, (x,y)0# or (y,x)0# (x#y or y#x).  (All x and y in A are comparable).

The number systems N, W Z, Q, and R are all linearly ordered.  C is not.

THEOREM.  Let # be a linear ordering that contains more than one element.  If (x,y)0# (that is,
x#y) and x�y, then either (x,y)0# or (y,x)0#, but not both (either x#y or y#x, but not both).

If x#y and x�y, we write x<y.  The mutual exclusiveness of the three possibilities: x<y, y<x, or
x=y of a linear ordering is called the trichotomy property.  A relation on a set that is only
reflexive, antisymmetric and transitive is called a partial ordering.  The subsets of a universal
set U (i.e., P(U) ) are partially ordered by set inclusion.  That is, A, B0P(U) are related if AfB.
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Remedial Class Notes PROPERTIES OF ELEMENTS, PROPERTIES Handout #5
Chapter1 OF SUBSETS, AND EQUIVALENCE RELATIONS Professor Moseley

Let U be a universal set for an axiomatic system (i.e., let U be a space).  Let AfU so that
A0P(U).  If A is finite, we may put its elements in one-to-one correspondence with the set 

Nn={1, 2, 3, ..., n}.  That is we may obtain a listing (or finite sequence)  = a1,a2,...,an.  If 

ai = aj implies i = j, then we have a "single listing".  Listings need not be finite.  A countable

listing is given by the infinite sequence  = a1,a2,...,an, ... .  In fact, listings need not be

countable.  We use    where ax defines a map from a known set S to A that is onto to

denote such a listing.  If the mapping is also one-to-one so that it is a one-to-one correspondence
between S and A, then we have a "single listing".

The elements of U may have properties.  For example, if n0N has the property that n =
2m for some m0N, then n is said to be even.  If n is not even, it is said to be odd.  Let E = {n0N:

n is even} = {2,4,6,8,10,...} and O = {n0N: n is odd} = {1,3,5,7,9,...}.  Since Then is a

(single) listing of E, E = {2m: m0N}.  Since this is a single listing, there is a one-to-one
correspondence between 
e and N.  Hence the cardinality of E is !0.  E and O are subsets of N (ie., E,O0P(N) ) and EcO =
N.  It is possible for an infinite set to be in one-to-one coorespondance with a proper subset.  Let
n0N and n�1.  Then if n has only the divisors n and 1, it is said to be prime.  Thus P =
{2,3,5,7,11,13,17,...} is the set of prime numbers.  If x0R can be written as x = p/q where p,q0Z
and q �0, then x is said to be rational.  Otherwise, x is irrational. Q is the set of rational
numbers and is the set of irrational numbers.  If x0R  is such that 5x2+2 = 7, then x is said

to be a solution of the equation 5x2+2 = 7.  Let S = {x0R: 5x2+2 = 7} be the set of all solutions
to 5x2+2 = 7; that is, S is the solution set for 5x2+2 = 7.  (Note that solving the equation we
obtain the explicit description S = {!1,1}.)    If f0F(R,R) is continuous at all point in R, then f is

said to be continuous.   Let C(R,R) = {f0F(R: f is continuous}.  

Let U be a space, x0U be a variable, and C(x) be an open statement about a property; that
is, x has the property if C(x) is true.  Then S = {x0U:C(x)}0P(U) is the subset of U containing
all elements in U which have the property.  Subsets of U can have properties also.  Let a0U.  We
say that AfU contains a if a0A.  Then S = {AfU: A contains a}0P(U) is the subset of P(U) that
contains all of the subsets of U that contain a.  (We usually avoid the word contains as it is used
to mean both "has as an element" and "has as a subset".)  Recall that AfU is finite if, for some
n0N, there exists a one-to-one correspondence between A and Nn = {1,2,..., n}.  Then S = {AfU:
A is finite}0P(U) is the set of all finite subsets of U.  For a,b0R with a<b, we let =

{x0R:a#x#b} and call  a finite closed interval in R.  We let Intc = { :a<b}0P(R)

be the set of all finite closed intervals in R.  
A relation that is reflexive, symmetric and transitive is called an equivalence relation. 

An equivalence relation partitions a set into equivalence classes.  Often we consider all of the
elements
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in an equivalence class as the same element.  An example is fractions.  We consider the fractions
3/4 and 6/8 as the same number even though they are not the same symbol.  

 Recall that an equivalence relation on U partitions U into equivalence classes.  If  

 is a single listing of the equivalence classes for the equivalence relation, then 

1) if " � $.    (the sets are mutually exclusive) and 

2)                            (the sets are all inclusive).

Also, is the set of all equivalence classes.  If for some "0S, f0U", we let . 

If one equivalence class has at least two elements, then   is a multiple listing of the

equivalence classes and .  Also, is the set of all

equivalence classes.  If for some "0S, f0U", we say that f is a representative element in . 

Note that if f,g0U, then  iff there is "0S such that f,g0U".  An equivalence class has as

many names as it has (representative) elements.

Let Q* = { (p,q,)0Z2, q � 0}.  Then is a (multiple) listing of the elements

in Q = {p/q:(p,q)0Q*} = { p/q : p,q 0 Z, q � 0}.   Let - be the equivalence relation on Q*

defined by (p,q) - (r,s) iff ps = qr.  Let be the equivalence class represented by (p,q).  Then

 is the set of all equivalence classes and, with the addition of the

appropreate structure, is isomorphic to Q.
A geometric example of an equivalence relation is that of vectors interpreted as directed

line segments.  We consider two directed line segments with the same magnitude and direction
to be the same vector.  The concept of an equivalence relation defining equivalence classes
where all elements in an equivalence class are considered to be the same element appear
regularly in more advanced mathematics.  For example, piecewise continuous functions that
differ only at their points of discontinuity are often considered to be the same function.
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Remedial Class Notes   AXIOMATIC SYSTEMS, MATHEMATICAL Handout #6
Chapter 1 INDUCTION, AND NAMES FOR NUMBERS Professor Moseley

Let us assume that formal logic (or at least informal logic) and axiomatic set theory (or
at least naive set theory) have been established.  Instead of thinking of the number systems as
being discovered (that is that they exist and we simply discover what their properties are) we
will think of them as being invented or created in our minds by the axioms we use to describe
them.  This is the axiomatic approach to mathematics originally established by Euclid for
geometry about 400 BC.  We wish to follow this path not only for all of the number systems,
beginning with the Peano Postulates and then establishing the natural numbers N = {1,2,3,...}
followed by Z, Q, R, and C, but also for any one of the number systems and indeed for any
abstract mathematical structure.  Later we will give axioms for the real numbers R without first
establishing Q.  We will also give axioms for (i.e., definitions of) the abstract algebraic
structures known as a field (containing scalars) and a vector space (containing vectors).  The
axiomatic properties for R are divided into three categories: The algebraic (or field) properties,
the order properties, and the least upper bound property.  By separating the fundamental
properties, we can see which properties are needed to solve particular kinds of problems.  We
use algebraic (or field) properties to solve algebra problems (e.g., algebraic equations), but we
need both field properties and order properties to solve inequalities.  We need the least upper
bound property to assure that square roots of all positive real numbers exist.  It is important to
realize that it is the structure on a set that allows us to solve problems such as equations.

Now think of any set that has the algebraic properties of the real numbers, but not
necessarily any other properties.  Informally, a field is a number system where we can add,
subtract, multiply, and divide (except by zero of course).  In such a set, we can still solve
equations by using the algebraic (or field) properties for the set to isolate the unknown variable. 
Thus we may abstract our notion of solving equations involving real numbers to solving
equations using field algebra for the abstract algebraic structure known as a field.  This
abstraction provides economy of thought (and proof) if there is more that one example of a field
and there is.  Q, R, and C are all fields.  Thus if we can establish a problem solving algorithm
using field algebra in a field, then this algorithm can be used for solving problems in Q, R, and
C.  Interestingly, this means that if all of the numbers in an algebraic equation whose solution
can be obtained by using field algebra (addition, multiplication, subtraction, and division) are
rational, then the solution will be rational.  If all of the numbers in an algebraic equation whose
solution can be obtained by using field algebra (addition, multiplication, subtraction, and
division) are real numbers, then the solution will be a real number (either rational or irrational). 
If all of the numbers in an algebraic equation whose solution can be obtained by using field
algebra (addition, multiplication, subtraction, and division) are complex numbers, then the
solution will be a complex number.  (It may be real and even rational since these are subsets of
C.)  If all of the numbers in an algebraic equation are rational and computing the square root of a
positive number is required, we need the least upper bound property for R.  If computing the
square root of a negative number is required, we need the algebra of C.

Thus, to minimize the work required to establish results for solving problems (either for
us or more likely for mathematicians), we wish to develop our problem-solving strategies in
abstract settings.  This may be hard at first, but will be economical in the long run.  Our abstract
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structure will be referred to as an axiomatic system.  It will consist of axiomatically requiring
the existence of one or more sets with axiomatically defined structure, for example, the real
number system with all (or just some) of its axiomatically defined properties.  Recall that a
universal set with structure is called a space.  Since we are thinking abstractly, the elements in
the abstract space may or may not have names.  The space could be small, but is more likely to
have an infinite number of elements. 

If a set is finite, we can, “at least in theory”identify and  name all of the elements if given
enough time.  However, how do we name all of the elements in an infinite set?  For instance,
how do we name all of the elements in all of our number systems?  Although no one has ever
written down names for all of the elements in N, we have a naming scheme using the decimal
system so that, “at least in theory”, we can name all numbers in N using the symbols in D = {0,
1, 2, 3, 4, 5, 6, 7, 8, 9}.  It is important to note that, although we have not written down a name
for every number in N, given the decimal name for any element in N, we can write the name of
the next larger number.  This is one aspect of the idea (or axiom) of mathematical induction. 
Suppose S is a countably infinite set.  Suppose we choose an element in S and give it a name. 
By mathematical induction we agree that having chosen and named n elements in the set, we can
choose and name (via some scheme to insure that all elements have unique names) an element
that has not already been named.  We accept that all of the elements in the set will eventually get
unique names.  We say that we have defined them (i.e., we have given them names) inductively.

Having named all of the numbers in N, we may define and name all of the numbers in Z
by Z = {(a,n): a 0 {-,+} and n 0 N } c { 0 }.  To define and obtain names for the rational
numbers we let Q* = { (p,q,): p,q 0 Z, q � 0}.  Then Q is the set of equivalence classes of Q*

determined by the equivalence relation - on Q* defined by (p,q) - (r,s) iff ps = qr.  This means
that numbers like (3,4) (i.e. 3/4) and (6,8) (i.e. 6/8) are considered to be the same number and
that they have more than one fraction name.  It can be shown that all rational numbers not only
have fraction names, but also have decimal names.  These may be infinite, but if they are, there
is a repeating pattern.  However, the decimal names for real irrational numbers such as e and B
do not have any repeating pattern.  Hence, the decimal system provides names for all real
numbers even though it may take a countably infinite number of symbols from D = {0, 1, 2, 3, 4,
5, 6, 7, 8, 9} to name any given real number.  We may define and name a complex number in C
as z = x + yi (Euler notation)  That is, we may name a complex number by giving two real
numbers.  Even though we can not physically give the entire name of even one irrational
number, since we may compute its decimal name to any specified degree of accuracy, we accept
that all real numbers have been (or at least can be) named.  Recall that some irrational numbers
(such as e and B) which are defined by a property have been given names.  However, although B
has been computed to many, many decimal places, but no one knows its entire decimal name.  

If a problem has a unique solution in a set where all of the elements have names, the
object of the solution process is to obtain the name of the solution element.  If the problem has a
large or infinite number of solutions or all elements do not have names, we must define more
clearly what we mean by solving the problem.  This may involve particular kinds of set
descriptions for the set of solutions (e.g., solving inequalities) or approximate solutions (e.g.,
finding a rational approximation to an equation whose solution is irrational).  We discuss the
concept of mathematical problem solving in more detail in the next chapter.
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