Department of Mathematics
Fest Yirginia University
College of Arts and Sciences
21 April, 1988

TO MY COLLEAGUES IN MATHEMATICS

Have you ever seen any expansion resembling the following?
Special expansion of a function F by means of a function f :

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{A_{n}}{n!} D_{x}^{n} f(x) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\left.\sum_{k=0}^{n}\binom{n}{k} D_{t}^{k}\left(\frac{1}{\int_{-\infty}^{+\infty} f(x) e^{t x} d x}\right)\right|_{t=0} \int_{-\infty}^{+\infty} x^{n-k} F(x) d x \tag{2}
\end{equation*}
$$

Can you determine any conditions sufficient to allow such an expansion?
I ran into this expansion many years ago in a statistics journal, I see from my old notes, where I had written that the author attributed it to A. C. Aitken (Univ. of Edinburgh). However a few years before his death I asked Aitken about it in a letter and he denied any association with it and did not volunteer any remarks to shed light on it. I have, unfortunately, been unable to determine where I ran into the expansion. It seems to be unusual and I offer it to you for study. I have mentioned it to several other colleagues in letters recently, but no one has added anything. I would like to determine what functions, F, allow such an expansion using another function, f .

Henry W. Gould
Department of Mathematics
West Virginia University, PO Box 6310
Morgantown, WV 26506-6310

