Cycle covers (II) - Circuit chain, Petersen chain and Hamilton weights

Cun-Quan Zhang ${ }^{1}$
Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

A R T I C L E I N F O

Article history:

Received 18 March 2010
Available online 22 April 2016

Keywords:

Circuit double cover
Faithful circuit cover
Eulerian weight
Hamilton weight
Circuit chain
Petersen chain
Removable circuit

A B S T R A C T

The Circuit Double Cover Conjecture is one of the most challenging open problems in graph theory. The main result of the paper is related to the characterization of circuit chain structure, which has been one of the most popular approaches to the conjecture. Let G be a bridgeless cubic graph associated with an eulerian weight $w: E(G) \rightarrow\{1,2\}$ such that (G, w) does not have a faithful circuit cover. If, for every weight 2 edge e_{0} of (G, w), the eulerian weighted graph $\left(G-e_{0}, w\right)$ has a faithful circuit cover and (G, w) has no removable circuit avoiding e_{0}, then it was proved (Alspach et al., 1993 [1] or 1994 [2]) that G contains a Petersen minor. It was further conjectured by Fleischner and Jackson (1988) that this graph G must be the Petersen graph. This conjecture was verified (JCTB 2010) recently under the assumption of the Hamilton weight conjecture. These two earlier results are further strengthened in this paper as follows. If, for a given weight 2 edge e_{0}, the eulerian weighted graph $\left(G-e_{0}, \bar{w}\right)$ has a faithful circuit cover and (G, w) has no removable circuit avoiding e_{0}, then, under the assumption of the Hamilton weight conjecture, G must be a Petersen chain. With a much weaker requirement "for a given e_{0} " instead of "for every e_{0} ", this strengthened result (structure of circuit chain joining a

[^0]missing edge) is expected to be much more useful in future studies about circuit covering problems.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, and may have parallel edges or loops. The following conjecture is one of the most challenging open problems in graph theory.

The Circuit Double Cover Conjecture. (See Tutte [19], Szekeres [18], Itai and Rodeh [11], Seymour [16], or see [4].) Every bridgeless graph G has a family \mathcal{F} of circuits such that every edge of G is contained in precisely two members of \mathcal{F}.

Since a minimum counterexample to the circuit double cover conjecture is cubic and 3 -connected [13], we will discuss circuit covering problems for cubic graphs in most of this paper.

Let G be a smallest counterexample to the circuit double cover conjecture and let $e_{0}=x_{0} y_{0} \in E(G)$. Then $G-e_{0}$ has a circuit double cover \mathcal{C}. Let $\mathcal{P}(\mathcal{P} \subseteq \mathcal{C})$ be a circuit chain joining the endvertices x_{0}, y_{0} of the uncovered edge e_{0}. (A circuit chain joining x_{0}, y_{0} is a family of circuits C_{1}, \cdots, C_{t} with $x_{0} \in V\left(C_{1}\right), y_{0} \in V\left(C_{t}\right)$ and $V\left(C_{i}\right) \cap V\left(C_{j}\right) \neq \emptyset$ if and only if $i=j \pm 1$. See Fig. 1.)

Can we find a family \mathcal{Q} of circuits of the induced subgraph $G\left[\left\{e_{0}\right\} \cup \bigcup_{C \in \mathcal{P}} E(C)\right]$ such that each edge $e \in \bigcup_{C \in \mathcal{P}} E(C)$ is covered by μ members of \mathcal{Q} if e is covered by μ members of \mathcal{P}, and the edge e_{0} is covered twice? (For an example see Fig. 2.)

If yes, then $\mathcal{Q}+(\mathcal{C}-\mathcal{P})$ is a circuit double cover of G. This contradicts that G is a counterexample to the CDC conjecture. So, the answer must be "no".

Question 1.1. What is the structure of the induced subgraph $G\left[\left\{e_{0}\right\} \cup \bigcup_{C \in \mathcal{P}} E(C)\right]$?
This is one of the most popular approaches to the CDC conjecture, originally appearing in [16]. Motivated and promoted by this approach, some related structural studies, new concepts, and techniques have been introduced and studied ([16,1,2], etc.).

Our goal is to determine the structure of the graph described in Question 1.1. The main result (Theorem 4.7) further generalizes some earlier results in [1,2,23], and others. Its relation with the result about minimal contra pairs in [23] will be discussed in detail in Section 4 after the main theorem.

The (1,2)-eulerian weighted graph $\left(P_{10}, w_{10}\right)$ illustrated in Fig. 4 is the minimum contra pair. It was proved in [2] that every contra pair must contain a Petersen minor.

Fig. 1. Circuit chain \mathcal{P} joining the endvertices of e_{0}.

Fig. 2. Circuit cover adjustment for a circuit chain $\left\{C_{1}, C_{2}, C_{3}\right\}$ and a missing edge e_{0}.

However, those pieces of structural information are not enough for further study of or a final attack on the Circuit Double Cover Conjecture. Many conjectures have been proposed for further characterizations of "critical" or "minimal" contra pairs [7,9,10, $12,8]$. Verification of any of those conjectures would provide much better and clearer structural information for a smallest counterexample to the CDC conjecture.

There are articles/results [6,17,15] providing powerful approaches to find a Petersen minor, but almost no result yet for the determination of the precise structure of a Petersen graph, although many long standing open problems $[7,9,10,12,8]$ demand the precise structure of the Petersen graph (instead of graphs with a Petersen minor, the Petersen graph is expected to be the only exception of those conjectures). The determinations of the Petersen graph structure and the existence of a Petersen minor are significantly different in nature. One of the most important parts of the main theorems in this series of articles is to show that we have the structure of the Petersen graph.

2. Notation and terminology

For notations not defined here see [20], [3], [5] or [22].
Let A and B be two sets. The symmetric difference of A and B, denoted by $A \triangle B$, is defined as follows:

$$
A \triangle B=(A \cup B)-(A \cap B) .
$$

Most graphs considered in main theorems, conjectures and lemmas of this paper are cubic. Some subgraphs appearing in the proofs of some theorems or lemmas may have smaller degrees, but their maximum degrees are at most 3 .

Fig. 3. An example of a faithful cover.

Fig. 4. $\left(P_{10}, w_{10}\right)$.
A circuit is a connected 2-regular graph, while an even subgraph (or cycle) is a graph with even degree for every vertex. An edge e is a bridge of a graph G if the removal of e increases the number of components.

Let $G=(V, E)$ be a graph. The suppressed graph, denote by \bar{G}, is the graph obtained from G by suppressing all degree 2 vertices.

An edge-cut T of G is trivial if some component of $G-T$ is a single vertex.
Definition 2.1. Let G be a cubic graph and $w: E(G) \rightarrow\{1,2\}$ be a weight of G. A family \mathcal{F} of a circuits of G is a faithful circuit cover of the weighted graph (G, w) if every edge e is contained in precisely $w(e)$ members of \mathcal{F}. A weight w is eulerian if the total weight of every edge-cut is even.

Let w be an eulerian weight of G. The set of edges with weight i is denoted by $E_{w=i}$. (G, w) is a $(1,2)$-eulerian weighted graph if $w(e)=1$ or 2 for every $e \in E(G)$.

An example of a faithful circuit cover is illustrated in Fig. 3.
It is obvious that bridgeless and eulerian are necessary conditions for a graph G to have a faithful circuit cover with respect to w. The circuit double cover conjecture is obviously a special case of the faithful circuit cover problem where the weight w is 2 for every edge.

Unfortunately, not every eulerian weighted graph has a faithful cover, for example, $\left(P_{10}, w_{10}\right)$ (see Fig. 4).

Definition 2.2. A contra pair (G, w) is an eulerian weighted graph that does not have a faithful circuit cover.

Definition 2.3. Let $\mathcal{C}=\left\{C_{1}, \cdots, C_{s}\right\}$ be a set of circuits of a graph G. The eulerian weight $w_{\mathcal{C}}$ of G induced by the coverage of \mathcal{C} is defined as follows:

$$
w_{\mathcal{C}}(e)=|\{C \in \mathcal{C}: e \in C\}| .
$$

Fig. 5. Weight decomposition $(G, w)=\left(G_{1}, w_{1}\right)+\left(G_{2}, w_{2}\right)$ where G_{2} is a removable circuit.

It is obvious that $w_{\mathcal{C}}$ is eulerian since \mathcal{C} is a set of circuits.
Let (G, w) be a $(1,2)$-eulerian weighted graph and $e_{0} \in E_{w=2}$ such that $G-e_{0}$ is bridgeless. With no confusion and a slight abuse of notation, $\left(G-e_{0}, w\right)$ is the weighted graph where w is the restriction of w on the edge set $E(G)-\left\{e_{0}\right\}$. Since w is eulerian and $w\left(e_{0}\right)=2$, the weight w restricted on the edge set $E(G)-\left\{e_{0}\right\}$ remains eulerian. Thus, two edges incident with an endvertex of e_{0} must have the same weight. Hence, the weighted suppressed graph $\left(\overline{G-e_{0}}, w\right)$ is well-defined.

A removable circuit, which is a very natural concept in an inductive approach for circuit covering problems, will be defined after the following general definition.

Definition 2.4. Let (G, w) be a $(1,2)$-eulerian weighted graph. A w-decomposition of (G, w) is a pair of $(1,2)$-eulerian weighted graphs $\left\{\left(H_{1}, w_{1}\right),\left(H_{2}, w_{2}\right)\right\}$ where H_{1} and H_{2} are subgraphs of G with $H_{1} \cup H_{2}=G$ and w_{i} is an eulerian weight of $H_{i}(i=1,2)$ such that

$$
w(e)= \begin{cases}w_{1}(e) & \text { if } e \in H_{1}-H_{2} \\ w_{2}(e) & \text { if } e \in H_{2}-H_{1} \\ w_{1}(e)+w_{2}(e) & \text { if } e \in H_{1} \cap H_{2}\end{cases}
$$

(See Fig. 5.)
Definition 2.5. Let (G, w) be a $(1,2)$-eulerian weighted graph and let $\left\{\left(H_{1}, w_{1}\right),\left(H_{2}, w_{2}\right)\right\}$ be a w-decomposition of (G, w) such that H_{1} is a circuit with $w_{1} \equiv 1$. If H_{2} is bridgeless, then H_{1} is called a removable circuit of (G, w). (See Fig. 5.)

Definition 2.6. A contra pair (G, w) is minimal if, for every $e \in E_{w=2}$, the weighted graph $(G-e, w)$ has a faithful circuit cover, and (G, w) has no removable circuit.

Fig. 6. $(Y \rightarrow \triangle)$ operation.

Definition 2.7. Let G be a cubic graph and H_{1}, H_{2} be subgraphs of G. An attachment of H_{2} in the suppressed graph $\overline{H_{1}}$ is an edge $e=u v$ of $\overline{H_{1}}$ such that the edge e corresponds to a maximal induced path $P=u \cdots v\left(\right.$ in $\left.H_{1}\right)$ and $V\left(H_{2}\right) \cap[V(P)-\{u, v\}] \neq \emptyset$.

3. Hamilton weight

As we mentioned above, in order to study the structure of circuit chains and make possible adjustments of circuit covers, one of the most basic and natural steps is the characterization of the subgraph induced by two incident circuits. This motivates us to study (1,2)-eulerian weighted graphs with precisely two Hamilton circuits as a faithful cover.

Definition 3.1 (Hamilton weight). Let G be a bridgeless cubic graph associated with an eulerian weight $w: E(G) \rightarrow\{1,2\}$. If the eulerian weighted graph (G, w) has a faithful circuit cover and every faithful circuit cover of (G, w) is a pair of Hamilton circuits, then w is a Hamilton weight of G, and (G, w) is called a Hamilton weighted graph.

Definition 3.2 $((Y \rightarrow \triangle)$-operation). (See Fig. 6.) Let v be a degree 3 vertex of an eulerian weighted graph (G, w) incident with $E(v)=\left\{e_{i}=v u_{i}: i=1,2,3\right\} . A(Y \rightarrow$ $\triangle)$-operation of (G, w) at the vertex v is the construction of a new eulerian weighted graph $\left(G^{\prime}, w^{\prime}\right)$ from (G, w) by splitting v to be three degree 1 vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ where v_{i} is incident with e_{i}, and adding a triangle $v_{1} v_{2} v_{3} v_{1}$ and assigning $w^{\prime}\left(v_{j} v_{i}\right)=w^{\prime}\left(v_{h} u_{h}\right)=$ $w\left(v u_{h}\right)$ to new edges for every $\{h, i, j\}=\{1,2,3\}$.

Observation 3.3. Let $\left(G^{\prime}, w^{\prime}\right)$ be a weighted graph obtained from another weighted graph (G, w) via a $(Y \rightarrow \triangle)$-operation. Then w is a Hamilton weight of G if and only if w^{\prime} is a Hamilton weight of G^{\prime}.

The weighted graph $\left(3 K_{2}, w_{2}\right)$ consists of two vertices and three parallel edges such that one edge is of weight 2 while other two are of weights 1 .

Definition 3.4. The family of weighted graphs constructed from $\left(3 K_{2}, w_{2}\right)$ via a series of $(Y \rightarrow \triangle)$-operations is denoted by $\left\langle\mathcal{K}_{4}\right\rangle$.

The three smallest cubic graphs in $\left\langle\mathcal{K}_{4}\right\rangle$ are illustrated in Fig. 7. A Hamilton weight is also illustrated in the figure: double lines are weight 2 edges, and single lines are weight

Fig. 7. Three small $\left\langle\mathcal{K}_{4}\right\rangle$-graphs.

Fig. 8. Edge-dividing operation.

1 edges. It is easy to see that, for every $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle, E_{w=1}$ induces a 2-factor while $E_{w=2}$ induces a 1-factor.

The Hamilton Weight Conjecture. (See [21].) Let (G,w) be a Hamilton weighted graph. If (G, w) is 3-connected, then $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle$.

This conjecture was proved for the family of Petersen-minor free graphs [14] and its relation with the unique 3-edge-coloring problem can be found in [21,22].

Definition 3.5 (Edge-dividing). (See Fig. 8.) Let (G, w) be an eulerian weighted graph and $e_{0} \in E_{w=2}$ with end-vertices x_{1} and x_{2}. Let G^{*} be the cubic graph obtained from G by deleting the edge e_{0} and adding two new vertices $\left\{y_{1}, y_{2}\right\}$ and four new edges $\left\{e_{1}, e_{2}, f_{1}, f_{2}\right\}$ where, for each $i=1,2, x_{i}$ and y_{i} are the endvertices of e_{i}, and, y_{1} and y_{2} are the endvertices of f_{i}. Let w^{*} be the weight of G^{*} obtained from $w: w^{*}(e)=w(e)$ if $e \notin\left\{e_{1}, e_{2}, f_{1}, f_{2}\right\}$, and $w^{*}\left(e_{i}\right)=2, w^{*}\left(f_{i}\right)=1$ for each $i=1,2$. Then $\left(G^{*}, w^{*}\right)$ is the weighted graph obtained from (G, w) via an edge-dividing operation at e_{0}.

Observation 3.6. Let $\left(G^{\prime}, w^{\prime}\right)$ be a weighted graph obtained from another weighted graph (G, w) via an edge-dividing operation. Then w is a Hamilton weight of G if and only if w^{\prime} is a Hamilton weight of G^{\prime}.

Definition 3.7. The family of weighted graphs (G, w) constructed from $\left(3 K_{2}, w_{2}\right)$ via a series of operations, each of which is either a $(Y \rightarrow \triangle)$-operation or an edge-dividing operation, is denoted by $\left\langle\mathcal{K}_{4}\right\rangle_{2}$.

Observation 3.8. If $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$ other than $\left(3 K_{2}, w_{2}\right),\left(K_{4}, w_{4}\right)$, then (G, w) has a pair of disjoint small circuits C_{1}, C_{2}, each of which is either a digon with total weight 2 or a triangle with total weight 4.

Lemma 3.9. (See Lemma 3.3 in [23].) Let $(G ; w)$ be a Hamilton weighted graph. Then the total weight of every edge cut of G is at least 4.

Lemma 3.10. Under the assumption of the Hamilton weight conjecture, every Hamilton weighted graph is a member of $\left\langle\mathcal{K}_{4}\right\rangle_{2}$.

Proof. Induction on $|E(G)|$. It is trivial if G is 3-connected. Hence, assume that $T=$ $\left\{e_{1}, e_{2}\right\}$ is a 2-edge-cut with components Q_{1}, Q_{2}. Without loss of generality, let $\left|E\left(Q_{1}\right)\right| \geq$ $\left|E\left(Q_{2}\right)\right|$.

Let $G_{1}=\overline{G / Q_{2}}$ and w_{1} be the resulting weight. It is trivial that $\left(G_{1}, w_{1}\right)$ is smaller than (G, w) and is a Hamilton weighted graph. Hence, by induction, $\left(G_{1}, w_{1}\right) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$. Let f_{1} be the weight 2 edge of $\left(G_{1}, w_{1}\right)$ created by the contraction of Q_{2} and the suppression of the resulting degree 2 vertex. (Note that, by Lemma 3.9, the edge f_{1} is of weight 2.)

The lemma is trivial if $\left(G_{1}, w_{1}\right)=\left(3 K_{2}, w_{2}\right)$ or $\left(K_{4}, w_{4}\right)$ (note that $\left|E\left(Q_{1}\right)\right| \geq$ $\left.\left|E\left(Q_{2}\right)\right|\right)$. Thus, by Observation 3.8, let $\left\{C_{1}, C_{2}\right\}$ be the pair of disjoint small circuits in $\left(G_{1}, w_{1}\right)$ described in Observation 3.8. Without loss of generality, let $f_{1} \notin E\left(C_{1}\right)$. It is evident that $\left(\overline{G / C_{1}}, w\right)$ is also a Hamilton weighted graph, and, therefore, by induction, it is a member of $\left\langle\mathcal{K}_{4}\right\rangle_{2}$. Thus, the Hamilton weighted graph (G, w) is constructed from $\left(\overline{G / C_{1}}, w\right)$, a member of $\left\langle\mathcal{K}_{4}\right\rangle_{2}$, via a $(Y \rightarrow \triangle)$-operation if $\left|E\left(C_{1}\right)\right|=3$ or an edge-dividing operation if $\left|E\left(C_{1}\right)\right|=2$.

4. Circuit chain plus an edge (CCPE graph), Petersen chain and the main theorem

Recall that a circuit chain joining vertices x_{0}, y_{0} is a family of circuits C_{1}, \cdots, C_{t} with $x_{0} \in V\left(C_{1}\right)-V\left(C_{2}\right), y_{0} \in V\left(C_{t}\right)-V\left(C_{t-1}\right)$ and $V\left(C_{i}\right) \cap V\left(C_{j}\right) \neq \emptyset$ if and only if $i=j \pm 1$. (See Fig. 1.)

Definition 4.1. Let G be a bridgeless cubic graph with an eulerian weight $w: E(G) \rightarrow$ $\{1,2\}$, and let $e_{0}=x_{0} y_{0}$ be a weight 2 edge. The eulerian weighted graph (G, w) is called a circuit chain plus an edge e_{0} (abbreviated as CCPE-graph, see Fig. 9), if ($G-e_{0}, w$) has a faithful circuit cover $\left\{C_{1}, C_{2}, \cdots, C_{t}\right\}$ that forms a circuit chain connecting the vertices x_{0} and y_{0}.

Definition 4.2. Let G be a bridgeless cubic graph with an eulerian weight $w: E(G) \rightarrow$ $\{1,2\}$, and let $e_{0}=x_{0} y_{0}$ be a weight 2 edge. The eulerian weighted graph (G, w) is called a simple Petersen chain with a bowstring e_{0} (see Fig. 9) if (G, w) has a set of minimal 3-edge-cuts $\left\{T_{1}, T_{2}, \cdots, T_{c}\right\}$ such that
(1) $e_{0} \in T_{\mu}$ and $w\left(T_{\mu}\right)=4$ for every $\mu=1, \cdots, c$; and $T_{i} \cap T_{j}=\left\{e_{0}\right\}$ if $i \neq j$;
(2) let Q_{μ}, R_{μ} be components of $G-T_{\mu}$ with $x_{0} \in Q_{\mu}$ and $y_{0} \in R_{\mu}$,

$$
\begin{array}{lllllllllll}
\left\{x_{0}\right\} & = & Q_{1} & \subset & Q_{2} & \subset & \cdots & \subset & Q_{c} & =G-\left\{y_{0}\right\} \\
G-\left\{x_{0}\right\} & = & R_{1} & \supset & R_{2} & \supset & \cdots & \supset & R_{c}=\left\{y_{0}\right\}
\end{array}
$$

Fig. 9. A circuit chain joined by e_{0} : Petersen chain.

Fig. 10. Segments of the Petersen chain in Fig. 9.
(3) for each $\mu=1, \cdots, c-1$, the contracted weighted graph $\left(S_{\mu}=G /\left[Q_{\mu} \cup R_{\mu+1}\right], w\right)$ is either $\left(P_{10}, w_{10}\right)$ or $\left(K_{4}, w_{4}\right)$ (the contracted graph S_{μ} is called a segment of the chain-see Fig. 10).

Note that, by the structure of $\left(K_{4}, w_{4}\right)$ and $\left(P_{10}, w_{10}\right)$, the set of 3 -edge-cuts $\left\{T_{1}, \cdots, T_{c}\right\}$ consists of all minimal 3-edge-cuts containing e_{0} of a simple Petersen chain.

Definition 4.3. A Petersen chain (G, w) with a bowstring e_{0} is obtained from a simple Petersen chain with the bowstring $e_{0}=x_{0} y_{0}$ via a series of operations, each of which is either a $(Y \rightarrow \triangle)$-operation at any vertex other than x_{0} and y_{0}, or an edge-dividing operation at any weight 2 edge other than e_{0}.

Since these $(Y \rightarrow \triangle)$-operations and edge-dividing operations do not create any new 2- or 3-edge-cut containing e_{0}, the set $\left\{T_{1}, \cdots, T_{c}\right\}$ (described in Definition 4.2) remains the set of all minimal 3 -edge-cuts containing e_{0} of a Petersen chain. Hence, we have the following observation.

Observation 4.4. Let G be a Petersen chain with a bowstring e_{0}, and let $\left\{T_{1}, T_{2}, \cdots, T_{c}\right\}$ be the set of all minimal 3-edge-cuts containing the edge e_{0}. Then
(1) $w\left(T_{\mu}\right)=4$ for every $\mu=1, \cdots, c$; and $T_{i} \cap T_{j}=\left\{e_{0}\right\}$ if $i \neq j$;
(2) let Q_{μ}, R_{μ} be components of $G-T_{\mu}$ with $x_{0} \in Q_{\mu}$ and $y_{0} \in R_{\mu}$,

$$
\begin{array}{lllllllllll}
\left\{x_{0}\right\} & = & Q_{1} & \subset & Q_{2} & \subset & \cdots & \subset & Q_{c} & =G-\left\{y_{0}\right\} \\
G-\left\{x_{0}\right\} & = & R_{1} & \supset & R_{2} & \supset & \cdots & \supset & R_{c} & =\left\{y_{0}\right\} .
\end{array}
$$

For each $\mu=1, \cdots, c-1$, let $\left(S_{\mu}=G /\left[Q_{\mu} \cup R_{\mu+1}\right]\right.$, $\left.w\right)$ be the contracted weighted graph. Then either $\left(P_{10}, w_{10}\right)$ or $\left(K_{4}, w_{4}\right)$ can be obtained from $\left(S_{\mu}=G /\left[Q_{\mu} \cup R_{\mu+1}\right]\right.$, w) by recursively contracting triangles and digons not containing x_{0}, y_{0}, and recursively suppressing resulting degree 2 vertices. (Each S_{μ} is called a segment of the chain, see Fig. 10.)

Definition 4.5. A segment S_{μ} of a Petersen chain with bowstring $e_{0}=x_{0} y_{0}$ is called a K_{4}-segment (or P_{10}-segment, respectively) if K_{4} (or P_{10}, respectively) can be obtained from S_{μ} be recursively contracting triangles/digons and recursively suppressing degree 2-vertices (see Fig. 10).

Definition 4.6. A single segment Petersen chain, as the name indicates, is a Petersen chain with precisely one segment.

The following theorem is the main theorem which characterizes the structure of CCPE graphs.

Theorem 4.7. Let G be a bridgeless cubic graph with an eulerian weight $w: E(G) \rightarrow$ $\{1,2\}$, and let $e_{0}=x_{0} y_{0}$ be a weight 2 edge. Assume that $\left(G-e_{0}\right.$, w) has a faithful circuit cover $\left\{C_{1}, C_{2}, \cdots, C_{t}\right\}$ that forms a circuit chain connecting the vertices x_{0} and y_{0} and (G, w) has no removable circuit C with $e_{0} \notin E(C)$, then, under the assumption of the Hamilton weight conjecture, (G, w) is a Petersen chain with e_{0} as the bowstring edge.

4.1. Extension from earlier results

Let G be a bridgeless cubic graph with a (1,2)-eulerian weight w. We further assume that (G, w) is a contra pair.

In the paper [23], it was proved that
(*) If, for every $e_{0}=x_{0} y_{0} \in E_{w=2},\left(G-e_{0}, w\right)$ has a faithful circuit cover which is a circuit chain joining x_{0} and y_{0} and (G, w) does not have any removable circuit avoiding e_{0}, then $(G, w)=\left(P_{10}, w_{10}\right)$ (under the assumption of the Hamilton weight conjecture).

The result $\left(^{*}\right)$ is further strengthened in this paper as follows (an equivalent version of Theorem 4.7),
(**) If, for a given $e_{0}=x_{0} y_{0} \in E_{w=2},\left(G-e_{0}, w\right)$ has a faithful circuit cover which is a circuit chain joining x_{0} and y_{0} and (G, w) does not have any removable circuit avoiding e_{0}, then (G, w) is a Petersen chain (under the assumption of the Hamilton weight conjecture).

The following is a brief discussion about the difference between these two results and their proofs.
I. We can show that $\left(^{*}\right)$ is a corollary of $\left({ }^{* *}\right)$: Arguments from [23] show that a contra pair for $\left(^{*}\right)$ does not have a nontrivial edge cut of size at most 3 , so by $\left({ }^{* *}\right)$ we must have a single segment Petersen chain without digons or triangles.
II. The result $\left(^{*}\right)$ is motivated by a long-standing open problem (Fleischner and Jackson [7]) that every minimal contra pair must be the weighted Petersen graph (P_{10}, w_{10}).
III. However, the main result (${ }^{* *}$) of this paper is mainly for the characterization of circuit chain structure (Question 1.1) and its future applications, such as, the determination of local structure of contra pairs, or adjustment of a circuit chain. In order to have some useful lemmas for future applications, a missing weight 2 edge e_{0} (that links the ends of the chain) must be a given edge. That is, the existence of a faithful cover for $(G-e, w)$ holds for that given edge $e=e_{0}$, but may not hold for other weight 2 edges e.
IV. The proof of $\left(^{*}\right)$ in [23] relies on a structural result in [2] that a weighted graph described in $\left(^{*}\right)$ must be a permutation graph. However, this structure cannot be applied any more in this paper because of the difference of " \forall " or " \exists " $e_{0} \in E_{w=2}$. This makes the proof (Section 6) much more complicated: without knowing the structure as a permutation graph, we have to go through a completely new (and lengthy) proof for finding a removable circuit (Subsection 6.3).

On the other hand, as we shall also point out, the very detailed description of the Petersen chain does provide a certain advantage in the inductive proof; it makes part of the proof relatively shorter (such as: Claim 10 in Subsection 6.1): in the induction proof, we are able to use the well-described structure of a sub-chain which was not available at all in [23].

5. Lemmas

5.1. Faithful covers

Theorem 5.1. (See Alspach and Zhang [1], or see [2].) Let G be a bridgeless cubic graph. If G contains no Petersen graph subdivision, then G has a faithful circuit cover with respect to every $(1,2)$-eulerian weight.

5.2. Observations about $\left\langle\mathcal{K}_{4}\right\rangle$-graphs

Observation 5.2. For each $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$ with $|V(G)| \geq 6$, we have the following properties.

Fig. 11. Circuit chains $\mathcal{F}_{1}=\left\{C_{1}, C_{2}, C_{3}\right\}$ and $\mathcal{F}_{2}=\left\{D_{1}, D_{2}\right\}$ in $P_{10}-e_{0}$.

Fig. 12. One is P_{10}, while another is not.
(1) (G, w) has a non-trivial 2- or 3-edge-cut with total weight 4; and $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle$ if and only if G is 3-connected.
(2) For each non-trivial 2- or 3-edge-cut T with components Q_{1} and Q_{2}, each Q_{j} contains a triangle with total weight 4 or a digon with total weight 2.
(3) All triangles of (G, w) are vertex-disjoint if $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle$.

Lemma 5.3. (See Lemma 6.3 in [23].) Let S be a triangle of a weighted graph (G, w). Then $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle$ if and only if the contracted weighted graph $(G / S, w) \in\left\langle\mathcal{K}_{4}\right\rangle$.

5.3. Observations about Petersen graph and Petersen chain

Proposition 5.4. The weighted graph $\left(K_{4}-e_{0}, w_{4}\right)$ has precisely one faithful circuit cover for each $e_{0} \in E_{w_{4}=2}$. The weighted graph $\left(P_{10}-e_{0}, w_{10}\right)$ has precisely two faithful circuit covers $\mathcal{F}_{1}, \mathcal{F}_{2}$ for each $e_{0} \in E_{w_{10}=2}$ where $\left|\mathcal{F}_{1}\right|=3$ and $\left|\mathcal{F}_{2}\right|=2$. (See Fig. 11.)

Proposition 5.5. Let G be a graph with 11 vertices: $d\left(v_{i}\right)=2$ for $i=0,1,2$ and $d\left(v_{j}\right)=3$ for $j=3, \cdots, 10$. Construct a new graph G_{i} from G by adding a new edge joining v_{0} and v_{i} for each $i=1,2$. If v_{1} and v_{2} are not adjacent, then at most one of $\left\{\overline{G_{1}}, \overline{G_{2}}\right\}$ is isomorphic to the Petersen graph. (See Fig. 12.)
V_{8} is the cubic graph consisting of a Hamilton circuit $v_{0} v_{1} \cdots v_{7} v_{0}$ and a perfect matching $\left\{v_{i} v_{i+4}: i=0,1,2,3\right\}$. Since $\overline{P_{10}-e}=V_{8}$ for any $e \in E\left(P_{10}\right)$, and $\overline{P_{10}-v}=$ $K_{3,3}$ for any $v \in V\left(P_{10}\right)$, we have the following observation.

Proposition 5.6. For any edge $e \in E\left(P_{10}\right)$ or any vertex $v \in V\left(P_{10}\right), P_{10}-e$ and $P_{10}-v$ remain non-planar.

Fig. 13. Circuit chain joining x_{0} and y_{0}.

The following is a straightforward observation from the definition of Petersen chain and Proposition 5.4.

Lemma 5.7. Let (G, w) be a Petersen chain with a bowstring $e_{0}=x_{0} y_{0}$. If $\mathcal{P}=$ $\left\{C_{1}, \cdots, C_{t}\right\}$ is a circuit chain of (G, w) joining x_{0}, y_{0} with $|\mathcal{P}|=t$ maximum, then each minimal edge-cut T_{i} of size $3(i=1, \cdots, c)$ containing e_{0} must also contain two weight one edges of $C_{\phi(i)}$ where $\phi:\{1, \cdots, c\} \rightarrow\{1, \cdots, t\}$ is a one-to-one mapping such that
(1) $1=\phi(1)<\phi(2)<\cdots<\phi(c)=t$;
(2) $\phi(\mu+1)-\phi(\mu)=1$ or 2 ;
(3) If $\phi(\mu+1)-\phi(\mu)=1$, then the segment S_{μ} is a K_{4}-segment;
(4) If $\phi(\mu+1)-\phi(\mu)=2$ then the segment S_{μ} is a P_{10}-segment.

Note that $K_{4^{-}}$and P_{10}-segments are defined in Definition 4.5.

5.4. Circuit chain with faithful cover

The following lemma is useful and will be applied to solve some special cases for Theorem 4.7 and some other useful lemmas for further applications.

Lemma 5.8. Let (G, w) be a CCPE graph consisting of a circuit chain $\mathcal{P}=\left\{C_{1}, \cdots, C_{t}\right\}$ plus a weight 2 edge $e_{0}=x_{0} y_{0}$ such that (G, w) has no removable circuit C with $e_{0} \notin$ $E(C)$ (the same description as in Theorem 4.7). If the eulerian weighted graph (G, w) itself has a faithful circuit cover, then, under the assumption of the Hamilton weight conjecture,
(1) $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$;
(2) $\left|E\left(C_{\mu}\right) \cap E\left(C_{\mu+1}\right)\right|=1$ for every $\mu=1, \cdots, t-1$ if every triangle and digon of G contains either x_{0} or y_{0} (see Fig. 13). That is, (G, w) is a Petersen chain with e_{0} as the bowstring and every segment of the Petersen chain is a K_{4}-segment.

Proof. It is obvious that every faithful cover of (G, w) consists of precisely two circuits, for otherwise, the third one not containing e_{0} is removable. So, w is a Hamilton weight of G and, therefore, by Lemma 3.10, $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$. This proves the conclusion (1).

Let (G, w) be a smallest counterexample to the conclusion (2) of the lemma. It is easy to see that $|V(G)| \geq 6$.

Consider a non-trivial 2- or 3-edge-cut T separating G into components Q_{1} and Q_{2}. By Observation 5.2-(1) such a T exists. By Observation 5.2-(2) each Q_{i} contains a triangle
or digon, so x_{0} is in Q_{1} and y_{0} is in Q_{2} (or vice versa) and $e_{0} \in T$. The edges incident with every digon or triangle form a 2 - or 3 -edge-cut T, so e_{0} is incident with every digon or triangle. Hence G contains exactly two circuits of length 2 or 3 , one containing x_{0} and the other y_{0}. If either is a digon then there is a 2 -edge-cut containing e_{0}, contradicting the fact that $\left\{C_{1}, \cdots, C_{t}\right\}$ is a circuit chain from x_{0} to y_{0}. Therefore there are exactly two triangles, which must be C_{1} and C_{t}.

Since $\left(G / C_{t}, w\right)$ is smaller than the smallest counterexample, conclusion (2) holds for $\left(G / C_{t}, w\right)$. That is, $\left|E\left(C_{\mu}\right) \cap E\left(C_{\mu+1}\right)\right|=1$ for each $\mu=1, \cdots, t-2$. The proof of (2) is completed since C_{t} is a triangle that intersects C_{t-1} with precisely one edge.

Lemma 5.9. Let (G, w) be a CCPE graph consisting of a circuit chain $\mathcal{P}=\left\{C_{1}, \cdots, C_{t}\right\}$ plus a weight 2 edge $e_{0}=x_{0} y_{0}$ such that (G, w) has no removable circuit C with $e_{0} \notin$ $E(C)$ (the same description as in Theorem 4.7). Assume that $|\mathcal{P}|=t$ is maximum. Let $f_{x_{0}}, f_{y_{0}}$ be subdivided edges of $G-e_{0}$ containing x_{0} or y_{0}, respectively. If $|\mathcal{P}|=t=2$, then, under the assumption of the Hamilton weight conjecture,
(1) $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$;
(2) there is a 3 -edge-cut of $\overline{G-e_{0}}$ containing both subdivided weight one edges $f_{x 0}, f_{y 0}$;
(3) every 3-edge-cut of G containing e_{0} is trivial (that is, $E\left(x_{0}\right)$ and $E\left(y_{0}\right)$ are the only two 3 -edge-cuts of G containing $\left.e_{0}\right)$.

Proof. By Lemma 3.10 and the choice of \mathcal{P} that $|\mathcal{P}|=2$ is maximum, the weighted graph $\left(\overline{G-e_{0}}, w\right) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$. Since every member of $\left\langle\mathcal{K}_{4}\right\rangle_{2}$ is planar, by Proposition 5.6, G does not contain a subdivision of the Petersen graph. Hence, by Theorem 5.1, (G, w) has a faithful cover. Conclusion (1) of the lemma follows immediately from Lemma 5.8-(1).

Now we only need to prove the conclusions (2) and (3).
After recursively contracting all triangles/digons not containing x_{0}, y_{0} and recursively suppressing all degree 2 vertices (along some subdivided weight 2 edges), we still satisfy the conditions of Theorem 4.7 with $t=2$, and we still have a faithful circuit cover, so by Lemma 5.8-(2), we have $\left(K_{4}, w_{4}\right)$. The lemma holds for $\left(K_{4}, w_{4}\right)$, and so holds for (G, w) (since none of those operations (or their inverses) affects the conclusions (2) and (3) of the lemma).

5.5. L-graphs

Before the proof of the main theorem (Theorem 4.7), we introduce a new concept, L-graph, which is critical in the final determination of the Petersen graph structure.

Definition 5.10. A weighted L-graph is a cubic graph L of order $2 n(n \geq 2)$ associated with an eulerian weight $w: E(L) \rightarrow\{1,2\}$ and a weight one edge $e_{0}=v_{0} v_{n}$ (called a diagonal crossing chord) such that
(1) $(L, w) \in\left\langle\mathcal{K}_{4}\right\rangle$,
(2) every triangle of L must contain either v_{0} or v_{n}.

Fig. 14. An L-graph with the diagonal crossing chord e and F.
(See Fig. 14; we will show that all L-graphs have a similar structure.)
Lemma 5.11. The following two statements are equivalent:
(1) (L, w) is an L-graph with a diagonal crossing chord $e^{*}=x^{*} y^{*}$;
(2) Let e^{*} be a weight one edge of $\left(3 K_{2}, w_{2}\right)$, (L, w) is constructed recursively from $\left(3 K_{2}, w_{2}\right)$ by a series of $(Y \rightarrow \triangle)$-operations only at some endvertex of e^{*}. (Note that the edge e^{*} will remain as the diagonal crossing chord during the expansion of the L-graph.)

Proof. $(2) \Rightarrow(1)$ is trivial. We prove $(1) \Rightarrow(2)$ by induction on $|V(L)|$. The lemma is true if $|V(L)| \leq 4$. So, by Observation 5.2-(3), L has precisely two triangles, each contains precisely one of $\left\{x^{*}, y^{*}\right\}$. Let S be a triangle of L containing x^{*} (but not y^{*}). By Lemma 5.3, $(L / S, w) \in\left\langle\mathcal{K}_{4}\right\rangle$ and, without causing any confusion, denote the new contracted vertex by x^{*} which remains as an endvertex of e^{*}. It is easy to see that $(L / S, w)$ is an L-graph (by Definition 5.10). Since any resulting triangle (after contraction of S) must contain the contracted vertex x^{*}, by induction, (1) $\Rightarrow(2)$ for $(L / S, w)$. Now (1), and hence (2), is true for $(L / S, w)$, so (2) holds for (L, w), since (L, w) is obtained from $(L / S, w)$ via a $(Y \rightarrow \triangle)$-operation at x^{*}.

Since an L-graph $(L, w) \in\left\langle\mathcal{K}_{4}\right\rangle$ and is a Hamilton weighted graph, let $\left\{C_{1}, C_{2}\right\}$ be the faithful circuit cover of (L, w). Each C_{j} is a Hamilton circuit. One may draw the L-graph (L, w) on the plane as follows (by Lemma 5.11, see Fig. 14):

The Hamilton circuit $C_{2}=v_{0} \cdots, v_{2 n-1} v_{0}$ is the boundary of the exterior face with a diagonal crossing chord $v_{0} v_{n}$ and a set Z of parallel chords where $Z=\left\{v_{2 n-\mu} v_{\mu}: \mu=\right.$ $1, \cdots, n-1\}$. And another Hamilton circuit $C_{1}=v_{0} v_{2 n-1} v_{1} v_{2} v_{2 n-2} v_{2 n-3} v_{3} v_{4} \cdots v_{n} v_{0}$, and w is a Hamilton weight with $E_{w=2}=\left\{v_{2 i-1} v_{2 i}: i=1, \cdots, n\right\}$ where C_{1} and C_{2} intersect.

Fig. 14 is an illustration of a weighted L-graph with 8 vertices. Note that, in Fig. 14, double lines are edges in $E_{w=2}$ and single lines are edges in $E_{w=1}$.

One can see that all parallel chords (Z-chords) do not cross each other, while the diagonal crossing chord $v_{0} v_{n}$ crosses every parallel chord.

Lemma 5.12. Let $(L, w) \in\left\langle\mathcal{K}_{4}\right\rangle$ of order $2 n(\geq 4)$. Let $\left\{C_{1}, C_{2}\right\}$ be a faithful circuit cover of (L, w). Let $e \in C_{1}-C_{2}$ and $F \subseteq C_{2}-C_{1}$. Assume that
(a) every triangle of L contains some edge of $F \cup\{e\}$ and,
(b) for every edge $f \in F, L$ contains a 3 -edge-cut T with both $f, e \in T$.

Then (L, w) must be a weighted L-graph described above with $e=v_{0} v_{n}$ as the diagonal crossing chord and

$$
\left\{v_{0} v_{1}, v_{\nu} v_{\nu+1}\right\} \subseteq F \subseteq\left\{v_{2 i} v_{2 i+1}: i=0, \cdots, n-1\right\}=E\left(C_{2}\right)-E\left(C_{1}\right)
$$

where $\nu=n$ if n is even and $\nu=n-1$ if n is odd.
Proof. By Definition 5.10, we only need to show that every triangle of L must contain an endvertex of $e=v_{0} v_{n}$.

Suppose that S is a triangle of L such that v_{0} and $v_{n} \notin V(S)$ (and so $e \notin E(S)$). Hence, by (a), let $f=z_{1} z_{2} \in E(S) \cap F$. By (b), there is a 3-edge-cut T containing both e and f.

Note that $|S \cap T|$ must be even since one is a circuit, while another one is a cut. Since $f \in S \cap T,|S \cap T|=2$. Note that S is a triangle, so either $T=E\left(z_{j}\right)$ (for some $j \in\{1,2\}$) or L has a 2-edge-cut $E\left(z_{i}\right) \triangle T$ (for some $i \in\{1,2\}$). So, $T=E\left(z_{j}\right)$ since L is 3 -connected. Hence, both $f, e \in E\left(z_{j}\right)$ for some $j \in\{1,2\}$. This contradicts that v_{0} and $v_{n} \notin V(S)$.

Fig. 14 is an illustration of a weighted L-graph with 8 vertices in which the circuit $C_{2}=v_{0} \cdots v_{7} v_{0}$ and the circuit $C_{1}=v_{0} v_{7} v_{1} v_{2} v_{6} v_{5} v_{3} v_{4} v_{0}$ and edges labeled with f are possible locations of edges of F.

6. Proof of Theorem 4.7

6.1. First part of the proof: the case of $|\mathcal{P}|>3$

Let (G, w) be a smallest counterexample to the theorem. And we choose $t=|\mathcal{P}|$ as large as possible.
I. Since (G, w) has no removable circuit avoiding e_{0}, we have the following claim for (G, w).

Claim 1. Every faithful circuit cover of $\left(G-e_{0}, w\right)$ is a circuit chain joining x_{0} and y_{0}.
By Lemma 5.9, if $t=2$, then $(G, w) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$ (a single segment Petersen chain). It contradicts that (G, w) is a counterexample. Hence,

Claim 2. $t \geq 3$.
By Lemma 5.8, we have that

Fig. 15. Circuit chain and subchain.

Claim 3. (G, w) is a contra pair.

Since $t \geq 3$ there are no circuits of length ≤ 3 containing e_{0}. Therefore any circuit of length ≤ 3 can be contracted to obtain a smaller CCPE graph, which is a Petersen chain by Theorem 4.6; then (G, w) is also a Petersen chain, a contradiction. Hence,

Claim 4. G is of girth at least 4.

Claim 5. G does not contain any non-trivial 3 -edge-cut T consisting of e_{0} and a pair of weight one edges.

Proof. For otherwise, let Q and R be the components of $G-T$, one may apply the theorem to the smaller CCPE graphs $(G / Q, w)$ and $(G / R, w)$.

II.

Notation 6.1. For $1 \leq \alpha<\beta \leq t$, let $\left(G_{\alpha, \beta}, w_{\alpha, \beta}\right)$ be the induced subgraph $G\left[C_{\alpha} \cup\right.$ $\left.\cdots \cup C_{\beta}\right]$ associated with the eulerian weight $w_{\left\{C_{\alpha}, \cdots, C_{\beta}\right\}}$ induced by the circuit subchain $\left\{C_{\alpha}, \cdots, C_{\beta}\right\}$. (See Fig. 15. See Definition 2.3 for induced eulerian weight $w_{\left\{C_{\alpha}, \cdots, C_{\beta}\right\}}$.)

Claim 6. For each $\mu<t$, the number of attachments of $C_{\mu+1}$ in $\left(\overline{G_{1, \mu}}, w_{1, \mu}\right)$ is at least 2 .

Proof. For otherwise, G has a 3 -edge-cut consisting of e_{0} and two weight ones edges of C_{μ} (part of the attachment of $C_{\mu+1}$ in $\left(\overline{G_{1, \mu}}, w_{1, \mu}\right)$). This contradicts Claim 5.

By Lemma 3.10 and the assumption that $|\mathcal{P}|$ is maximum.
Claim 7. $\left(\overline{G_{\mu,(\mu+1)}}, w_{\mu,(\mu+1)}\right) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$.
Claim 8. G does not have any 2-edge-cut T separating e_{0} from other edges.

Proof. Suppose that T is a 2-edge-cut of G with components Q^{\prime} and $Q^{\prime \prime}$ and $e_{0} \in Q^{\prime}$.
If $w(T)=2$ then only one circuit C_{μ} of \mathcal{P} passes through T, which means $Q^{\prime \prime}$ contains only vertices of C_{μ}, which is impossible.

So $w(T)=4$ and two circuits $C_{\mu}, C_{\mu+1}$ pass through T. Since (G, w) has no removable circuit avoiding $e_{0},\left\{C_{\mu}, C_{\mu+1}\right\}$ covers $Q^{\prime \prime}$. Hence, $Q^{\prime \prime}$ is a subgraph of $G_{\mu,(\mu+1)}$. By Claim 7 and Observation 5.2, $Q^{\prime \prime}$ contains a triangle or digon. This contradicts Claim 4.

Claim 9. For each $i=1, \cdots, t-1$, the suppressed cubic graph $\overline{G_{i, i+1}}$ is 3 -connected and, therefore, the weighted graph $\left(\overline{G_{i, i+1}}, w_{i, i+1}\right) \in\left\langle\mathcal{K}_{4}\right\rangle$.

Proof. By Claim 7, $\left.\left(\overline{G_{i, i+1}}, w_{i, i+1}\right)\right) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$. Let $\left.\left(J, w_{J}\right)=\left(\overline{G_{i, i+1}}, w_{i, i+1}\right)\right)$.
Suppose that $\left(J, w_{J}\right) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}-\left\langle\mathcal{K}_{4}\right\rangle$. By Observation $5.2-(1)$, J has a 2-edge-cut T with $w(T)=4$ and with components Q^{\prime} and $Q^{\prime \prime}$. By Claim 8, let Q^{\prime} contain an attachment z^{\prime} of C_{i-1} (or contain the vertex x_{0} if $i=1$), and $Q^{\prime \prime}$ contain an attachment $z^{\prime \prime}$ of C_{i+2} (or contain the vertex y_{0} if $i+1=t$). Let D be the component of $E_{w_{J}=1}$ containing $z^{\prime \prime}$. Then, $\left\{C_{i} \triangle D, C_{i+1} \triangle D\right\}$ is another faithful cover of $\left(J, w_{J}\right)$ consisting of precisely two circuits (since $|\mathcal{P}|$ is maximum). Hence, $\mathcal{P}-\left\{C_{i}, C_{i+1}\right\}+\left\{C_{i} \triangle D, C_{i+1} \triangle D\right\}$ is a faithful cover of $\left(G-e_{0}, w\right)$, but not a circuit chain (since $C_{i} \triangle D$ contains both z^{\prime} and $z^{\prime \prime}$, and therefore, $C_{i+1} \triangle D$ is removable).
III. Let $F_{t}=\left\{f_{1}, \cdots, f_{s}\right\}$ be the set of all attachments of C_{t} in $\overline{G_{1,(t-1)}}$ and let f_{0} be the attachment of e_{0} in $\overline{G_{1,(t-1)}}$. Here, by Claim 6,

$$
\begin{equation*}
\left|F_{t}\right|=s \geq 2 \tag{1}
\end{equation*}
$$

Notation 6.2. (i) Construct $\left(H, w_{H}\right)$ from $\left(G_{1,(t-1)}, w_{1,(t-1)}\right)$ by replacing each induced path (subdivided edge f_{μ}) with a path of length 2 . With no confusion, let each of those subdivided edges be $f_{\mu}\left(\in F_{t}\right)$ containing a degree 2 vertex y_{μ}, and x_{0} is the degree 2 vertex in the subdivided edge f_{0}. Here, $x_{0} \in f_{0} \subset C_{1}-C_{2}$ and $y_{\mu} \in f_{\mu} \subset C_{t-1}-C_{t-2}$ for each $\mu=1, \cdots, s$.
(ii) Construct $\left(H_{\mu}, w_{\mu}\right)$ from $\left(H, w_{H}\right)$ by adding a weight 2 edge e_{μ} joining x_{0} and y_{μ} and suppressing all degree 2 vertices (see Fig. 15).
IV. This is the final step of this subsection.

Claim 10.

$$
t=3
$$

Proof. Suppose that $t \geq 4$.
IV-1. By applying the theorem to the smaller CCPE weighted graph (H_{μ}, w_{μ}) (for each $\mu=1, \cdots, s)$, it has the following properties:
(a) $\left(H_{\mu}, w_{\mu}\right)$ is a Petersen chain with the bowstring e_{μ} (since any removable circuit of $\left(H_{\mu}, w_{\mu}\right)$ avoiding e_{μ} is also removable in (G, w)).
(b) $\left(H_{\mu}, w_{\mu}\right)$ does not have any 3 -edge-cut T of (G, w) that consists of the bowstring e_{μ} and two weight one edges of C_{i} for some $i: 1<i<t-1$. (Since $T-e_{\mu}+e_{0}$ would be a non-trivial 3-edge-cut of (G, w) and this contradicts Claim 5.) Thus, $E\left(x_{0}\right)$ and $E\left(y_{\mu}\right)$ are the only 3 -edge-cuts of $\left(H_{\mu}, w_{\mu}\right)$ containing the bowstring e_{μ}.
(c) $\left(H_{\mu}, w_{\mu}\right)$ must be a Petersen chain with a single segment (by (b) and Lemma 5.7). Thus, $t-1=3$, and so $\phi(1)=1$ and $\phi(2)=3$. Hence, by Lemma 5.7-(4) the segment is a P_{10}-segment.
(d) From Observation 4.4 and the discussion following Definition 4.3, $\left(H_{\mu}, w_{\mu}\right)$ becomes $\left(P_{10}, w_{10}\right)$ after a series of contractions of triangles/digons not containing x_{0} or y_{μ} and suppressions of degree 2 vertices.
(e) Thus, in $\left(H_{\mu}, w_{\mu}\right)$ the endvertex y_{μ} of the bowstring e_{μ} is not contained in any circuit of length ≤ 4, because that would result in P_{10} having a circuit of length ≤ 4 after the contractions and suppressions from (d).

IV-2. By (c), $\left(H_{\mu}, w_{\mu}\right)$ is a Petersen chain with a single P_{10}-segment. To show that it must be a copy of $\left(P_{10}, w_{10}\right)$, it suffices to show that

$$
\begin{equation*}
\left|V\left(H_{\mu}\right)\right|=10 \tag{2}
\end{equation*}
$$

for each $\mu=1, \cdots, s$.
Suppose that $\left|V\left(H_{\mu}\right)\right|>10$. By (c), $\left(H_{\mu}, w_{\mu}\right)$ is a Petersen chain with single segment, but not simple (since the Petersen graph has 10 vertices). Hence, the weighted graph $\left(H_{\mu}, w_{\mu}\right)$ has the following further properties:
(f) In $\left(H_{\mu}, w_{\mu}\right)$, there must be some circuit(s) of length ≤ 3 (by Definition 4.3);
(g) Those triangle(s)/digon(s) described in (f) must contain some edge f_{ν} for $\nu \in$ $\{1, \cdots, s\}-\{\mu\}$ (since, by Claim $4, G$ is of girth at least 4).

Hence, some triangle(s)/digon(s) described in (g) becomes circuit(s) of length ≤ 4 in $\left(H_{\nu}, w_{\nu}\right)$ (for some $\nu \neq \mu$). This contradicts (e) in IV-1 (by a symmetric argument for replacing μ with ν) and completes the proof of Equation (2).

Thus, both $\left(H_{\mu}, w_{\mu}\right)$ and $\left(H_{\nu}, w_{\nu}\right)$ are copies of $\left(P_{10}, w_{10}\right)$, which contradicts Proposition 5.5 (see Fig. 12).

6.2. Second part of the proof: two copies of L-graphs

By Lemma 5.9-(1), we have the following immediate corollary.

Claim 11. For each $f_{\mu} \in F_{t},\left(H_{\mu}, w_{\mu}\right) \in\left\langle\mathcal{K}_{4}\right\rangle_{2}$.
Claim 12. $\left(\overline{G_{1,2}}, w_{1,2}\right)$ (and $\left(\overline{G_{2,3}}, w_{2,3}\right)$) is an L-graph in which the diagonal crossing chord is the attachment f_{0} of e_{0} as in Notation 6.2.

Fig. 16. $\left(G-e_{0}, w\right)$ is a pair of weighted L-graphs with C_{2} as their overlapping part.

Proof. By Lemma 5.9-(2), we have that, for each $f_{\mu} \in F_{t}$, both f_{0} and f_{μ} are contained in some 3-edge-cut of $\overline{G_{1,2}}$ (satisfying hypothesis (b) of Lemma 5.12). Since G is of girth at least 4 (by Claim 4), every triangle/digon of $\overline{G_{1,2}}$ must contain some edge of $F_{t} \cup\left\{f_{0}\right\}$ (satisfying hypothesis (a) of Lemma 5.12).

By Lemma 5.12, ($\left.\overline{G_{1,2}}, w_{1,2}\right)$ must be a weighted L-graph with f_{0} (an attachment of e_{0}) as the diagonal crossing chord.

Similarly, the graph $G_{2,3}=\overline{C_{2} \cup C_{3}}$ is also an L-graph with an attachment of e_{0} as the diagonal crossing chord.

6.3. Final step: removable circuit in (G, w)

We continue the proof of the main theorem. The final step is the core of the proof: determine that the graph G is the Petersen graph.

6.3.1. Preliminary

By Claim 12, $\left(\overline{G_{1,2}}, w_{1,2}\right)$ (and $\left.\left(\overline{G_{2,3}}, w_{2,3}\right)\right)$ is an L-graph in which the diagonal crossing chord is the attachment of e_{0}.
A drawing of two L-graphs. Let $C_{2}=v_{0} \cdots v_{r-1} v_{0}$. Draw the graph $\overline{C_{1} \cup C_{2} \cup C_{3}}=$ $\overline{G-e_{0}}$ on the plane such that C_{2} is the boundary of the exterior region and all chords $\left(\left(C_{1} \cup C_{3}\right)-C_{2}\right)$ are in the interior region of C_{2}. (Note, this drawing is not a planar embedding: some crossing must occur inside the interior of C_{2}.)

See Fig. 16 for an illustration of these circuits in G. Note that, in the first graph of Fig. 16, double lines are edges in $E_{=2}$ and single lines are edges in $E_{w=1}$.

Notation 6.3. (1) For each weighted L-graph $\overline{C_{i} \cup C_{2}}(i=1,3)$, edges of $C_{i}-C_{2}$ are called C_{i}-chords.

Fig. 17. A C_{1}-triangle $v_{\alpha} v_{\beta} v_{\gamma} \cdots v_{\alpha}$ is a circuit of length ≥ 5 in G.
(2) For each $i \in\{1,3\}, C_{i}$-chords are classified into two types: diagonal crossing chord and zigzag parallel chords $\left(Z\left(C_{i}\right)\right.$-chords): the edge containing the vertex x_{0} or y_{0} is the C_{i}-diagonal crossing chord, all other edges of $C_{i}-C_{2}$ are $Z\left(C_{i}\right)$-chords (zigzag parallel chords).
(3) For each $\{i, j\}=\{1,3\}$, each triangle of $\overline{C_{i} \cup C_{2}}$ not containing the C_{i}-diagonal crossing chord is called a C_{i}-triangle and the unique $Z\left(C_{i}\right)$-chord contained in a given C_{i}-triangle is called a C_{i}-triangle chord (see Fig. 17).

By Claim 4, G is of girth at least 4, so we have the following property.
Claim 13. For each $\{i, j\}=\{1,3\}$, let $S=v_{\alpha} v_{\beta} v_{\gamma} v_{\alpha}$ be a C_{i}-triangle with $v_{\alpha} v_{\beta}$ as the unique $Z\left(C_{1}\right)$-chord (the triangle chord), $v_{\beta} v_{\gamma} \in C_{1} \cap C_{2}$ (see Fig. 17). Then S is a triangle in the suppressed graph $\overline{G\left[C_{1} \cup C_{2}\right]}$, but not a triangle in the original graph G since the edge $v_{\alpha} v_{\gamma}$ of S is subdivided at least twice by vertices of C_{j} in G.

Notation 6.4. Define a mapping $\lambda:\{0,1, \cdots, r-1\} \rightarrow\{0,1, \cdots, r-1\}$ such that, for each integer $\alpha \in\{0, \cdots, r-1\}, \lambda(\alpha)=\beta$ if there is a C_{i}-chord (for some $i \in\{1,3\}$) joining v_{α} and v_{β}.

Notation 6.5. For the circuit $C_{2}=v_{0} \cdots v_{2 k-1} v_{0}$, and integers $a, b: 0 \leq a<b \leq 2 k-1$, the segment (subpath) $v_{a} v_{a+1} \cdots v_{b-1} v_{b}$ of C_{2} between v_{a} and v_{b} is denoted by $v_{a} C_{2} v_{b}$, while the segment $v_{a} v_{a-1} \cdots v_{b+1} v_{b}$ of C_{2} between v_{a} and v_{b} is denoted by $v_{a} \overline{C_{2}} v_{b}(\bmod r)$.

Notation 6.6. For each $\{i, j\}=\{1,3\}$ and each $Z\left(C_{i}\right)$-chord $e=v_{\mu} v_{\lambda(\mu)} \in C_{i}-C_{2}$ (a zigzag parallel chord belonging to C_{i}), the crossing degree $d_{X}(e)$ of e is the number of C_{j}-chords crossing the edge e in the interior of C_{2}.

Since C_{j} is a circuit (for $\{i, j\}=\{1,3\}$), it is easy to see that

$$
\begin{equation*}
d_{X}(e) \equiv 0 \quad(\bmod 2) \tag{3}
\end{equation*}
$$

Fig. 18. If $d_{X}(e)=0$ then a C_{1}-triangle is of length 3 in G.

Fig. 19. A quadruple.
for every C_{i}-chord e (see Fig. 18). We further claim that,

$$
\begin{equation*}
d_{X}(e)>0 \tag{4}
\end{equation*}
$$

for every $Z\left(C_{i}\right)$-chord e.
Suppose that $d_{X}(e)=0$, for some $Z\left(C_{1}\right)$-chord $e=v_{\alpha} v_{\lambda(\alpha)}$. Without loss of generality, let $V\left(C_{3}\right) \subseteq\left\{v_{\alpha+1}, v_{\alpha+2}, \cdots, v_{\lambda(\alpha)-2}, v_{\lambda(\alpha)-1}\right\}$. Hence, $\left\{v_{\lambda(\alpha)}, v_{\lambda(\alpha)+1}, \cdots, v_{\alpha-1}, v_{\alpha}\right\} \subseteq$ $V\left(C_{1}\right)$. Therefore, the induced subgraph $G\left[\left\{v_{\lambda(\alpha)} \cdots v_{\alpha}\right\}\right]$ contains a C_{1}-triangle, which is not subdivided by C_{3}. This contradicts Claim 13.

6.3.2. Quadruples and removable circuit

Definition 6.7. Let (a, b, c, d) be a quadruple (see Fig. 19) such that
(1) $v_{a}, v_{b}, v_{c}, v_{d}$ are around the circuit C_{2} in this order;
(2) $v_{a} v_{a+1}, v_{c} v_{c+1} \in C_{3} \cap C_{2}$, and $v_{b} v_{b-1}, v_{d} v_{d-1} \in C_{1} \cap C_{2}$;
(3) $v_{a} v_{c}$ is a $Z\left(C_{1}\right)$-chord and $v_{b} v_{d}$ is a $Z\left(C_{3}\right)$-chord.

The proof will be completed after the proofs of the following two claims.
Claim 14. If $(G, w) \neq\left(P_{10}, w_{10}\right)$, then a quadruple described in Definition 6.7 exists.

Fig. 20. C_{3}-chord $v_{q} v_{\lambda(q)}$ with one end v_{q} inside a C_{1}-triangle $v_{0} v_{1} v_{p} v_{0}$.

Claim 15. If a quadruple described in Definition 6.7 exists, then the circuit $D=$ $v_{a} C_{2} v_{b} v_{d} \overline{C_{2}} v_{c} v_{a}$ is a removable circuit of (G, w).

6.3.3. Existence of a quadruple (proof of Claim 14)

In this subsection, we will prove one of the following statements must be true.
(1) the existence of the quadruple described in Definition 6.7;
(2) $(G, w)=\left(P_{10}, w_{10}\right)$.

Suppose that $(G, w) \neq\left(P_{10}, w_{10}\right)$ and there is no such quadruple around the circuit C_{2}.
I. Let $v_{0} v_{p}$ be a C_{i}-triangle chord ($i=1$ or 3) such that the crossing degree d_{X} of $v_{0} v_{p}$ is as large as possible (among all C_{i}-triangle chords for both $i=1,3$). Note, C_{i}-triangle chords are defined in Notation 6.3-(3).

Without loss of generality, let $v_{0} v_{1} C_{2} v_{p} v_{0}$ be a C_{1}-triangle (see Notation 6.3) with v_{1} incident with the C_{1}-diagonal crossing chord (see Fig. 20).

Since $v_{0} v_{p}$ is a C_{1}-triangle chord, the path $v_{2} C_{2} v_{p-1}$ contains no vertex of C_{1}. By Claim 4, $v_{1} C_{2} v_{p}$ is not a single edge in G, which must contain some vertices of C_{3}. Therefore, by the definition of L-graph, edges in the path $v_{2} C_{2} v_{p-1}$ are alternatively in $C_{2}-C_{3}$ and $C_{2} \cap C_{3}$. That is,

$$
\begin{equation*}
v_{2} v_{3}, \cdots, v_{2 i} v_{2 i+1}, \cdots, v_{p-2} v_{p-1} \in C_{3} \cap C_{2} \tag{5}
\end{equation*}
$$

for $i=1, \cdots, \frac{p-2}{2}$ and

$$
p \geq 4 \text { and } p \equiv 0 \quad(\bmod 2)
$$

II.

Claim 16. For each odd integer $q \in\{2, \cdots, p-1\}$, the C_{3}-chord $v_{q} v_{\lambda(q)}$ is the C_{3}-diagonal crossing chord (see Fig. 20).

Fig. 21. C_{3}-chords $v_{q} v_{\lambda(q)}, v_{q+1} v_{\lambda(q+1)}$ crossing the C_{1}-triangle chord $v_{0} v_{p}$.

Suppose not, then $v_{q} v_{\lambda(q)}$ is a $Z\left(C_{3}\right)$-chord. If $\lambda(q) \in\{2, \cdots, p-1\}$, then the C_{3}-chord $v_{q} v_{\lambda(q)}$ is of zero crossing degree. This contradicts Inequality (4). So, $\lambda(q) \in\{p+1, \cdots$, $r-1\}$. Then $(0, q, p, \lambda(q))$ is the quadruple that we needed and contradicts our assumption (see Fig. 20).
III. Since there is only one C_{3}-diagonal chord, by Claim 16, q is the only odd integer in $\{2, \cdots, p-1\}$. By Equation (5),

$$
3=q=p-1
$$

IV. In summary, we have proved the following results.
(IV-1) $d_{X}\left(v_{0} v_{p}\right)=2$ (by III);
(IV-2) $\left|\left\{v_{2}, \cdots, v_{p-1}\right\}\right|=2$ (by III);
(IV-3) both $v_{2} v_{\lambda(2)}, v_{3} v_{\lambda(3)}$ are C_{3}-chords crossing the $Z\left(C_{1}\right)$-chord $v_{0} v_{p}$ (by Claim 13);
$(I V-4) v_{3} v_{\lambda(3)}$ is the C_{3}-diagonal crossing chord, and, $v_{2} v_{\lambda(2)}$ is a $Z\left(C_{3}\right)$-chord (by III);
(IV-5) $v_{2} v_{\lambda(2)}$ is a C_{3}-triangle chord (corollary of (IV-4)).
V. By Equation (3) and Inequality (4), the crossing degree of every C_{i}-triangle chord is positive and even $(i=1,3)$. By IV and the maximality of the crossing degree of the triangle chord $v_{0} v_{p}$ (defined in I), the crossing degree of every C_{i}-triangle chord is precisely 2 (for each $i=1,3$). Hence, all results we have had in IV for $v_{0} v_{p}$ can be applied to each C_{i}-triangle chord ($i=1,3$).

First, here are some direct results from IV (see Fig. 21):

$$
p=4 \text { and } \lambda(3)>\lambda(2)>p+1=5,
$$

and $v_{2} v_{\lambda(2)}$ is a C_{3}-triangle chord (by (IV-5)), and $v_{3} v_{\lambda(3)}$ is a C_{3}-diagonal crossing chord (by (IV-4)).

Symmetrically (see Fig. 21) we may apply the results of IV to the C_{3}-triangle $v_{2} v_{3} C_{2} v_{\lambda(2)} v_{2}$, where $\lambda(2)=6$ since $\left|\left\{v_{4}, \cdots, v_{\lambda(2)-1}\right\}\right|=2$ (by IV-(2)). Furthermore, we

Fig. 22. The Petersen graph.
have that $v_{4} v_{5} \in C_{1} \cap C_{2}, v_{0} v_{4} v_{5} C_{2} v_{0}$ is a C_{1}-triangle (other than $v_{0} v_{1} C_{2} v_{4} v_{0}$) with $v_{0} v_{4}$ as the C_{1}-triangle chord, $v_{5} v_{\lambda(5)}$ is the C_{1}-diagonal crossing chord with $\lambda(5)=1$ since there is only one C_{1}-diagonal chord $v_{1} v_{\lambda(1)}=v_{\lambda(5)} v_{5}$.

Note that, we have completely identified all edges of $C_{1}=v_{0} v_{1} x_{0} v_{5} v_{4} v_{0}$. That is, $\overline{C_{1} \cup C_{2}}=K_{4}$.

Furthermore, applying the results of IV to the C_{1}-triangle $v_{4} v_{5} C_{2} v_{0} v_{4}$, we have that $\left|\left\{v_{6}, \cdots, v_{r-1}\right\}\right|=2$ and $v_{6} v_{2}$ is a C_{3}-triangle chord, $v_{7} v_{\lambda(7)}=v_{3} v_{\lambda(3)}$ is the C_{3}-diagonal crossing chord. Therefore, $\overline{C_{3} \cup C_{2}}=K_{4}, r=8$ and the graph G is the Petersen graph (see Fig. 22). This contradicts the assumption that $(G, w) \neq\left(P_{10}, w_{10}\right)$.

6.3.4. Existence of removable circuit (Claim 15)

In this subsection, we will prove Claim 15 that

$$
D=v_{a} v_{a+1} C_{2} v_{b-1} v_{b} v_{d} v_{d-1} \overline{C_{2}} v_{c+1} v_{c} v_{a}
$$

is a removable circuit. (See Fig. 19.) We may consider the following weight decomposition (Definition 2.4)

$$
(G, w)=\left(G_{1}, w_{1}\right)+\left(D, w_{D}\right)
$$

where $w_{D}(e)=1$ if $e \in E(D)$. Since D is a circuit, it is trivial that w_{1} is a (1,2)-eulerian weight of G_{1}. So, we only need to show that G_{1} is bridgeless. Assume that there is a bridge e^{*} of G_{1} with $w_{1}\left(e^{*}\right)=2$ (since w_{1} is eulerian).
I. Let $G_{1}^{\prime}=G_{1}-e_{0}$. It is obvious that G_{1}^{\prime} is covered by paths:

$$
\begin{gathered}
P_{0}=v_{b-1} v_{b} C_{2} v_{c} v_{c+1}, P_{2}=v_{d-1} v_{d} C_{2} v_{a} v_{a+1} \\
P_{1}=C_{1}-\left\{v_{b}, v_{d}\right\}=v_{d-1} C_{1} v_{b-1}, P_{3}=C_{3}-\left\{v_{a}, v_{c}\right\}=v_{a+1} C_{3} v_{c+1}
\end{gathered}
$$

(See Fig. 19.) Note that P_{0} and P_{2} are two segments (subpaths) of C_{2} (by deleting some edges of D), and P_{i} is a segment of C_{i} for $i=1$ and 3 . It is easy to see that
$v_{c+1} P_{0} v_{b-1} P_{1} v_{d-1} P_{2} v_{a+1} P_{3} v_{c+1}$ is a closed walk of G_{1}^{\prime} covering every edge e once if $w_{1}(e)=1$, twice if $w_{1}(e)=2$.

By the discussion above and the structure of weighted L-graphs ($\overline{C_{1} \cup C_{2}}, w_{1,2}$), ($\overline{C_{2} \cup C_{3}}, w_{1,2}$), we have the following summary:
(I-1) G_{1}^{\prime} is a connected graph, so is G_{1};
(I-2) Paths of $\left\{P_{0}, \cdots, P_{3}\right\}$ have the following set of the endvertices

$$
\left\{v_{a+1}, v_{b-1}, v_{c+1}, v_{d-1}\right\}
$$

where

$$
v_{b-1} \in P_{0} \cap P_{1}, v_{d-1} \in P_{1} \cap P_{2}, v_{a+1} \in P_{2} \cap P_{3}, v_{c+1} \in P_{3} \cap P_{0}
$$

(I-3) $P_{i} \cap P_{j}=\emptyset$ if $i \neq j \pm 1(\bmod 4)$.
II. Let R_{1}, R_{2} be components of $G_{1}-e^{*}$.
(II-1) The edge $e_{0}=x_{0} y_{0}$ is not a bridge of G_{1} (that is, $e^{*} \neq e_{0}$) since $G_{1}^{\prime}=G_{1}-e_{0}$ is connected (by (I-1)). Thus, $e^{*} \neq e_{0}$.
(II-2) Since $w_{1}\left(e^{*}\right)=2$, by (II-1), let $P_{\alpha}, P_{\beta}\left(\in\left\{P_{0}, \cdots, P_{3}\right\}\right)$ contain the edge e^{*}. By (I-3), we have that $\alpha=\beta \pm 1(\bmod 4)$. Without loss of generality, let $e^{*} \in P_{0} \cap P_{1}$. It is easy to see that P_{2} and P_{3} must be contained in the same component of $G_{1}-e^{*}$ since $v_{a+1} \in V\left(P_{2}\right) \cap V\left(P_{3}\right)$ (by (I-2)). So, without loss of generality, let $P_{2} \cup P_{3} \subseteq R_{2}$. Therefore, by (I-2) again,

$$
v_{c+1}, v_{d-1}, v_{a+1} \in R_{2}
$$

Since each of P_{0} and P_{1} passes through the bridge e^{*} precisely once,

$$
v_{b-1} \in R_{1} .
$$

(II-3) Let $e^{*}=v_{q} v_{q+1}$ where

$$
v_{q}, v_{q+1} \in\left\{v_{b+1}, v_{b+2}, \cdots, v_{c-2}, v_{c-1}\right\} \subseteq P_{0} \subset C_{2}
$$

For the path $P_{0}=v_{b-1} C_{2} v_{c+1}$, by (II-2), the segments $v_{b-1} C_{2} v_{q} \subseteq R_{1}$ and $v_{q+1} C_{2} v_{c+1} \subseteq R_{2}$.

Note that the segment $v_{b-1} C_{2} v_{q}$ is contained in R_{1} while C_{3} is contained in R_{2}. Thus, $v_{b-1} C_{2} v_{q}$ contains vertices of C_{1}, but not C_{3}.
(II-4) We claim that $v_{d-1} v_{\lambda(d-1)}$ is not the C_{1}-diagonal (see Fig. 23,) for otherwise, $v_{d-1} v_{d} v_{b} C_{2} v_{d-1}$ is a C_{1}-triangle of $\overline{C_{1} \cup C_{2}}$ and therefore, the segment $v_{b} C_{2} v_{d-1}$ contains no edges of $C_{1} \cap C_{2}$. This contradicts that $v_{q} v_{q+1}\left(\in P_{1} \cap P_{2} \subset C_{1} \cap C_{2}\right)$ lies in the segment of C_{2} from v_{b} to v_{d-1}.

Since, both $v_{d} v_{b}$ and $v_{d-1} v_{\lambda(d-1)}$ are $Z\left(C_{1}\right)$-chords and the vertex $v_{\lambda(d-1)}$ must be in $\left\{v_{b}, v_{b+1}, \cdots, v_{q}\right\}$. That is, according to the structure of L-graph, $\lambda(d-1)=b+1 \leq q$.

Fig. 23. The $Z\left(C_{1}\right)$-chord $v_{d-1} v_{\lambda(d-1)}=v_{d-1} v_{b+1}$.

Furthermore, this edge $v_{d-1} v_{\lambda(d-1)}=v_{d-1} v_{b+1}$ joins the components R_{1} and R_{2} since $v_{d-1} \in R_{2}$ while $v_{\lambda(d-1)}=v_{b+1} \in R_{1}$. This contradicts that $e^{*}=v_{q} v_{q+1}$ is a bridge of $G-E(D)$. This completes the proof of Claim 15 , and also completes the proof of the theorem: we have obtained a contradiction to the assumption that (G, w) has no removable cycle not containing e_{0}.

References

[1] B. Alspach, C.-Q. Zhang, Cycle covers of cubic multigraphs, Discrete Math. 111 (1993) 11-17.
[2] B. Alspach, L.A. Goddyn, C.-Q. Zhang, Graphs with the circuit cover property, Trans. Amer. Math. Soc. 344 (1) (1994) 131-154.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, 2008.
[5] R. Diestel, Graph Theory, 3rd ed., Springer-Verlag, Heidelberg, ISBN 3-540-26183-4, 2000.
[6] M.N. Ellingham, Petersen subdivisions in some regular graphs, Congr. Numer. 44 (Nov. 1984) 33-40.
[7] H. Fleischner, Some blood, sweat, but no tears in eulerian graph theory, Congr. Numer. 63 (Nov. 1988) 9-48.
[8] H. Fleischner, F. Genest, B. Jackson, Compatible circuit decompositions of 4-regular graphs, J. Graph Theory 56 (2007) 227-240.
[9] L.A. Goddyn, Cycle double covers-current status and new approaches, in: Contributed Lecture at Cycle Double Cover Conjecture Workshop, IINFORM, Vienna, 1991.
[10] L.A. Goddyn, J. van den Heuvel, S. McGuinness, Removable circuits in multigraphs, J. Combin. Theory Ser. B 71 (1997) 130-143.
[11] A. Itai, M. Rodeh, Covering a graph by circuits, in: Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 62, Springer-Verlag, Berlin, 1978, pp. 289-299.
[12] B. Jackson, On circuit covers, circuit decompositions and Euler tours of graphs, in: Keele (Ed.), Surveys in Combinatorics, in: London Math. Soc. Lecture Note Ser., vol. 187, Cambridge Univ. Press, Cambridge, 1993, pp. 191-210.
[13] F. Jaeger, A survey of the cycle double cover conjecture, in: B. Alspach, C. Godsil (Eds.), Cycles in Graphs, in: Ann. Discrete Math., vol. 27, 1985, pp. 1-12.
[14] H.-J. Lai, C.-Q. Zhang, Hamilton weight and Petersen minor, J. Graph Theory 38 (2001) 197-219.
[15] N. Robertson, P.D. Seymour, R. Thomas, Tutte's edge-colouring conjecture, J. Combin. Theory Ser. B 70 (1) (1997) 166-183.
[16] P.D. Seymour, Sums of circuits, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 342-355.
[17] P.D. Seymour, K. Truemper, A Petersen on a pentagon, J. Combin. Theory Ser. B 72 (1) (1998) 63-79.
[18] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367-387.
[19] W.T. Tutte, Personal correspondence with H. Fleischner, July 22, 1987.
[20] D. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, ISBN 0-13-014400-2, 2000.
[21] C.-Q. Zhang, Hamiltonian weights and unique 3-edge-colorings of cubic graphs, J. Graph Theory 20 (1) (1995) 91-99.
[22] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, 1997.
[23] C.-Q. Zhang, Cycle covers (I) - minimal contra pairs and Hamilton weights, J. Combin. Theory Ser. B 100 (2010) 419-438.

[^0]: E-mail address: cqzhang@math.wvu.edu.
 ${ }^{1}$ This work is partially supported by National Security Agency, Nos. H98230-12-1-0233, H98230-14-1-0154, H98230-16-1-0004, and National Science Foundation, No. DMS-126480.

