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The Circuit Double Cover Conjecture is one of the most 
challenging open problems in graph theory. The main result 
of the paper is related to the characterization of circuit chain 
structure, which has been one of the most popular approaches 
to the conjecture. Let G be a bridgeless cubic graph associated 
with an eulerian weight w : E(G) → {1, 2} such that (G, w)
does not have a faithful circuit cover. If, for every weight 2
edge e0 of (G, w), the eulerian weighted graph (G − e0, w)
has a faithful circuit cover and (G, w) has no removable 
circuit avoiding e0, then it was proved (Alspach et al., 1993 
[1] or 1994 [2]) that G contains a Petersen minor. It was 
further conjectured by Fleischner and Jackson (1988) that 
this graph G must be the Petersen graph. This conjecture 
was verified (JCTB 2010) recently under the assumption of 
the Hamilton weight conjecture. These two earlier results are 
further strengthened in this paper as follows. If, for a given
weight 2 edge e0, the eulerian weighted graph (G − e0, w) has 
a faithful circuit cover and (G, w) has no removable circuit 
avoiding e0, then, under the assumption of the Hamilton 
weight conjecture, G must be a Petersen chain. With a much 
weaker requirement “for a given e0” instead of “for every e0”, 
this strengthened result (structure of circuit chain joining a 
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missing edge) is expected to be much more useful in future 
studies about circuit covering problems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, and may have parallel edges or loops.
The following conjecture is one of the most challenging open problems in graph theory.

The Circuit Double Cover Conjecture. (See Tutte [19], Szekeres [18], Itai and Rodeh [11], 
Seymour [16], or see [4].) Every bridgeless graph G has a family F of circuits such that 
every edge of G is contained in precisely two members of F .

Since a minimum counterexample to the circuit double cover conjecture is cubic and 
3-connected [13], we will discuss circuit covering problems for cubic graphs in most of 
this paper.

Let G be a smallest counterexample to the circuit double cover conjecture and let 
e0 = x0y0 ∈ E(G). Then G − e0 has a circuit double cover C. Let P (P ⊆ C) be a circuit 
chain joining the endvertices x0, y0 of the uncovered edge e0. (A circuit chain joining x0, 
y0 is a family of circuits C1, · · · , Ct with x0 ∈ V (C1), y0 ∈ V (Ct) and V (Ci) ∩V (Cj) �= ∅
if and only if i = j ± 1. See Fig. 1.)

Can we find a family Q of circuits of the induced subgraph G[{e0} ∪
⋃

C∈P E(C)]
such that each edge e ∈

⋃
C∈P E(C) is covered by μ members of Q if e is covered by 

μ members of P, and the edge e0 is covered twice? (For an example see Fig. 2.)

If yes, then Q + (C − P) is a circuit double cover of G. This contradicts that G is a 
counterexample to the CDC conjecture. So, the answer must be “no”.

Question 1.1. What is the structure of the induced subgraph G[{e0} ∪
⋃

C∈P E(C)]?

This is one of the most popular approaches to the CDC conjecture, originally appear-
ing in [16]. Motivated and promoted by this approach, some related structural studies, 
new concepts, and techniques have been introduced and studied ([16,1,2], etc.).

Our goal is to determine the structure of the graph described in Question 1.1. The 
main result (Theorem 4.7) further generalizes some earlier results in [1,2,23], and others. 
Its relation with the result about minimal contra pairs in [23] will be discussed in detail 
in Section 4 after the main theorem.

The (1, 2)-eulerian weighted graph (P10, w10) illustrated in Fig. 4 is the minimum 
contra pair. It was proved in [2] that every contra pair must contain a Petersen minor. 
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Fig. 1. Circuit chain P joining the endvertices of e0.

Fig. 2. Circuit cover adjustment for a circuit chain {C1, C2, C3} and a missing edge e0.

However, those pieces of structural information are not enough for further study of or 
a final attack on the Circuit Double Cover Conjecture. Many conjectures have been 
proposed for further characterizations of “critical” or “minimal” contra pairs [7,9,10,
12,8]. Verification of any of those conjectures would provide much better and clearer 
structural information for a smallest counterexample to the CDC conjecture.

There are articles/results [6,17,15] providing powerful approaches to find a Petersen 
minor, but almost no result yet for the determination of the precise structure of a Petersen 
graph, although many long standing open problems [7,9,10,12,8] demand the precise 
structure of the Petersen graph (instead of graphs with a Petersen minor, the Petersen 
graph is expected to be the only exception of those conjectures). The determinations 
of the Petersen graph structure and the existence of a Petersen minor are significantly 
different in nature. One of the most important parts of the main theorems in this series 
of articles is to show that we have the structure of the Petersen graph.

2. Notation and terminology

For notations not defined here see [20], [3], [5] or [22].
Let A and B be two sets. The symmetric difference of A and B, denoted by A �B, 

is defined as follows:

A�B = (A ∪B) − (A ∩B).

Most graphs considered in main theorems, conjectures and lemmas of this paper are 
cubic. Some subgraphs appearing in the proofs of some theorems or lemmas may have 
smaller degrees, but their maximum degrees are at most 3.
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Fig. 3. An example of a faithful cover.

Fig. 4. (P10, w10).

A circuit is a connected 2-regular graph, while an even subgraph (or cycle) is a graph 
with even degree for every vertex. An edge e is a bridge of a graph G if the removal of e
increases the number of components.

Let G = (V, E) be a graph. The suppressed graph, denote by G, is the graph obtained 
from G by suppressing all degree 2 vertices.

An edge-cut T of G is trivial if some component of G − T is a single vertex.

Definition 2.1. Let G be a cubic graph and w : E(G) → {1, 2} be a weight of G. A family 
F of a circuits of G is a faithful circuit cover of the weighted graph (G, w) if every edge 
e is contained in precisely w(e) members of F . A weight w is eulerian if the total weight 
of every edge-cut is even.

Let w be an eulerian weight of G. The set of edges with weight i is denoted by Ew=i. 
(G, w) is a (1, 2)-eulerian weighted graph if w(e) = 1 or 2 for every e ∈ E(G).

An example of a faithful circuit cover is illustrated in Fig. 3.
It is obvious that bridgeless and eulerian are necessary conditions for a graph G to 

have a faithful circuit cover with respect to w. The circuit double cover conjecture is 
obviously a special case of the faithful circuit cover problem where the weight w is 2 for 
every edge.

Unfortunately, not every eulerian weighted graph has a faithful cover, for example, 
(P10, w10) (see Fig. 4).

Definition 2.2. A contra pair (G, w) is an eulerian weighted graph that does not have a 
faithful circuit cover.

Definition 2.3. Let C = {C1, · · · , Cs} be a set of circuits of a graph G. The eulerian weight 
wC of G induced by the coverage of C is defined as follows:

wC(e) = |{C ∈ C : e ∈ C}|.
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Fig. 5. Weight decomposition (G,w) = (G1, w1) + (G2, w2) where G2 is a removable circuit.

It is obvious that wC is eulerian since C is a set of circuits.
Let (G, w) be a (1, 2)-eulerian weighted graph and e0 ∈ Ew=2 such that G − e0 is 

bridgeless. With no confusion and a slight abuse of notation, (G − e0, w) is the weighted 
graph where w is the restriction of w on the edge set E(G) − {e0}. Since w is eulerian 
and w(e0) = 2, the weight w restricted on the edge set E(G) − {e0} remains eulerian. 
Thus, two edges incident with an endvertex of e0 must have the same weight. Hence, the 
weighted suppressed graph (G− e0, w) is well-defined.

A removable circuit, which is a very natural concept in an inductive approach for 
circuit covering problems, will be defined after the following general definition.

Definition 2.4. Let (G, w) be a (1, 2)-eulerian weighted graph. A w-decomposition of 
(G, w) is a pair of (1, 2)-eulerian weighted graphs {(H1, w1), (H2, w2)} where H1 and H2
are subgraphs of G with H1 ∪H2 = G and wi is an eulerian weight of Hi (i = 1, 2) such 
that

w(e) =

⎧⎪⎨
⎪⎩

w1(e) if e ∈ H1 −H2
w2(e) if e ∈ H2 −H1
w1(e) + w2(e) if e ∈ H1 ∩H2.

(See Fig. 5.)

Definition 2.5. Let (G, w) be a (1, 2)-eulerian weighted graph and let {(H1, w1), (H2, w2)}
be a w-decomposition of (G, w) such that H1 is a circuit with w1 ≡ 1. If H2 is bridgeless, 
then H1 is called a removable circuit of (G, w). (See Fig. 5.)

Definition 2.6. A contra pair (G, w) is minimal if, for every e ∈ Ew=2, the weighted 
graph (G − e, w) has a faithful circuit cover, and (G, w) has no removable circuit.
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Fig. 6. (Y → �) operation.

Definition 2.7. Let G be a cubic graph and H1, H2 be subgraphs of G. An attachment of 
H2 in the suppressed graph H1 is an edge e = uv of H1 such that the edge e corresponds 
to a maximal induced path P = u · · · v (in H1) and V (H2) ∩ [V (P ) − {u, v}] �= ∅.

3. Hamilton weight

As we mentioned above, in order to study the structure of circuit chains and make 
possible adjustments of circuit covers, one of the most basic and natural steps is the 
characterization of the subgraph induced by two incident circuits. This motivates us to 
study (1, 2)-eulerian weighted graphs with precisely two Hamilton circuits as a faithful 
cover.

Definition 3.1 (Hamilton weight). Let G be a bridgeless cubic graph associated with an 
eulerian weight w : E(G) → {1, 2}. If the eulerian weighted graph (G, w) has a faithful 
circuit cover and every faithful circuit cover of (G, w) is a pair of Hamilton circuits, then 
w is a Hamilton weight of G, and (G, w) is called a Hamilton weighted graph.

Definition 3.2 ((Y → �)-operation). (See Fig. 6.) Let v be a degree 3 vertex of an 
eulerian weighted graph (G, w) incident with E(v) = {ei = vui : i = 1, 2, 3}. A (Y →
�)-operation of (G, w) at the vertex v is the construction of a new eulerian weighted 
graph (G′, w′) from (G, w) by splitting v to be three degree 1 vertices {v1, v2, v3} where vi
is incident with ei, and adding a triangle v1v2v3v1 and assigning w′(vjvi) = w′(vhuh) =
w(vuh) to new edges for every {h, i, j} = {1, 2, 3}.

Observation 3.3. Let (G′, w′) be a weighted graph obtained from another weighted graph 
(G, w) via a (Y → �)-operation. Then w is a Hamilton weight of G if and only if w′ is 
a Hamilton weight of G′.

The weighted graph (3K2, w2) consists of two vertices and three parallel edges such 
that one edge is of weight 2 while other two are of weights 1.

Definition 3.4. The family of weighted graphs constructed from (3K2, w2) via a series of 
(Y → �)-operations is denoted by 〈K4〉.

The three smallest cubic graphs in 〈K4〉 are illustrated in Fig. 7. A Hamilton weight is 
also illustrated in the figure: double lines are weight 2 edges, and single lines are weight 
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Fig. 7. Three small 〈K4〉-graphs.

Fig. 8. Edge-dividing operation.

1 edges. It is easy to see that, for every (G, w) ∈ 〈K4〉, Ew=1 induces a 2-factor while 
Ew=2 induces a 1-factor.

The Hamilton Weight Conjecture. (See [21].) Let (G, w) be a Hamilton weighted graph. 
If (G, w) is 3-connected, then (G, w) ∈ 〈K4〉.

This conjecture was proved for the family of Petersen-minor free graphs [14] and its 
relation with the unique 3-edge-coloring problem can be found in [21,22].

Definition 3.5 (Edge-dividing). (See Fig. 8.) Let (G, w) be an eulerian weighted graph 
and e0 ∈ Ew=2 with end-vertices x1 and x2. Let G∗ be the cubic graph obtained from 
G by deleting the edge e0 and adding two new vertices {y1, y2} and four new edges 
{e1, e2, f1, f2} where, for each i = 1, 2, xi and yi are the endvertices of ei, and, y1 and 
y2 are the endvertices of fi. Let w∗ be the weight of G∗ obtained from w: w∗(e) = w(e)
if e /∈ {e1, e2, f1, f2}, and w∗(ei) = 2, w∗(fi) = 1 for each i = 1, 2. Then (G∗, w∗) is the 
weighted graph obtained from (G, w) via an edge-dividing operation at e0.

Observation 3.6. Let (G′, w′) be a weighted graph obtained from another weighted graph 
(G, w) via an edge-dividing operation. Then w is a Hamilton weight of G if and only if 
w′ is a Hamilton weight of G′.

Definition 3.7. The family of weighted graphs (G, w) constructed from (3K2, w2) via a 
series of operations, each of which is either a (Y → �)-operation or an edge-dividing 
operation, is denoted by 〈K4〉2.

Observation 3.8. If (G, w) ∈ 〈K4〉2 other than (3K2, w2), (K4, w4), then (G, w) has a pair 
of disjoint small circuits C1, C2, each of which is either a digon with total weight 2 or a 
triangle with total weight 4.
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Lemma 3.9. (See Lemma 3.3 in [23].) Let (G; w) be a Hamilton weighted graph. Then 
the total weight of every edge cut of G is at least 4.

Lemma 3.10. Under the assumption of the Hamilton weight conjecture, every Hamilton 
weighted graph is a member of 〈K4〉2.

Proof. Induction on |E(G)|. It is trivial if G is 3-connected. Hence, assume that T =
{e1, e2} is a 2-edge-cut with components Q1, Q2. Without loss of generality, let |E(Q1)| ≥
|E(Q2)|.

Let G1 = G/Q2 and w1 be the resulting weight. It is trivial that (G1, w1) is smaller 
than (G, w) and is a Hamilton weighted graph. Hence, by induction, (G1, w1) ∈ 〈K4〉2. 
Let f1 be the weight 2 edge of (G1, w1) created by the contraction of Q2 and the sup-
pression of the resulting degree 2 vertex. (Note that, by Lemma 3.9, the edge f1 is of 
weight 2.)

The lemma is trivial if (G1, w1) = (3K2, w2) or (K4, w4) (note that |E(Q1)| ≥
|E(Q2)|). Thus, by Observation 3.8, let {C1, C2} be the pair of disjoint small circuits 
in (G1, w1) described in Observation 3.8. Without loss of generality, let f1 /∈ E(C1). It 
is evident that (G/C1, w) is also a Hamilton weighted graph, and, therefore, by induc-
tion, it is a member of 〈K4〉2. Thus, the Hamilton weighted graph (G, w) is constructed 
from (G/C1, w), a member of 〈K4〉2, via a (Y → �)-operation if |E(C1)| = 3 or an 
edge-dividing operation if |E(C1)| = 2. �
4. Circuit chain plus an edge (CCPE graph), Petersen chain and the main theorem

Recall that a circuit chain joining vertices x0, y0 is a family of circuits C1, · · · , Ct

with x0 ∈ V (C1) − V (C2), y0 ∈ V (Ct) − V (Ct−1) and V (Ci) ∩ V (Cj) �= ∅ if and only if 
i = j ± 1. (See Fig. 1.)

Definition 4.1. Let G be a bridgeless cubic graph with an eulerian weight w : E(G) →
{1, 2}, and let e0 = x0y0 be a weight 2 edge. The eulerian weighted graph (G, w) is called 
a circuit chain plus an edge e0 (abbreviated as CCPE-graph, see Fig. 9), if (G − e0, w)
has a faithful circuit cover {C1, C2, · · · , Ct} that forms a circuit chain connecting the 
vertices x0 and y0.

Definition 4.2. Let G be a bridgeless cubic graph with an eulerian weight w : E(G) →
{1, 2}, and let e0 = x0y0 be a weight 2 edge. The eulerian weighted graph (G, w) is called 
a simple Petersen chain with a bowstring e0 (see Fig. 9) if (G, w) has a set of minimal 
3-edge-cuts {T1, T2, · · · , Tc} such that

(1) e0 ∈ Tμ and w(Tμ) = 4 for every μ = 1, · · · , c; and Ti ∩ Tj = {e0} if i �= j;
(2) let Qμ, Rμ be components of G − Tμ with x0 ∈ Qμ and y0 ∈ Rμ,

{x0} = Q1 ⊂ Q2 ⊂ · · · ⊂ Qc = G− {y0},
G− {x } = R ⊃ R ⊃ · · · ⊃ R = {y };
0 1 2 c 0
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Fig. 9. A circuit chain joined by e0: Petersen chain.

Fig. 10. Segments of the Petersen chain in Fig. 9.

(3) for each μ = 1, · · · , c −1, the contracted weighted graph (Sμ = G/[Qμ∪Rμ+1], w) is 
either (P10, w10) or (K4, w4) (the contracted graph Sμ is called a segment of the chain-see 
Fig. 10).

Note that, by the structure of (K4, w4) and (P10, w10), the set of 3-edge-cuts 
{T1, · · · , Tc} consists of all minimal 3-edge-cuts containing e0 of a simple Petersen chain.

Definition 4.3. A Petersen chain (G, w) with a bowstring e0 is obtained from a simple 
Petersen chain with the bowstring e0 = x0y0 via a series of operations, each of which 
is either a (Y → �)-operation at any vertex other than x0 and y0, or an edge-dividing 
operation at any weight 2 edge other than e0.

Since these (Y → �)-operations and edge-dividing operations do not create any new 
2- or 3-edge-cut containing e0, the set {T1, · · · , Tc} (described in Definition 4.2) remains 
the set of all minimal 3-edge-cuts containing e0 of a Petersen chain. Hence, we have the 
following observation.
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Observation 4.4. Let G be a Petersen chain with a bowstring e0, and let {T1, T2, · · · , Tc}
be the set of all minimal 3-edge-cuts containing the edge e0. Then

(1) w(Tμ) = 4 for every μ = 1, · · · , c; and Ti ∩ Tj = {e0} if i �= j;
(2) let Qμ, Rμ be components of G − Tμ with x0 ∈ Qμ and y0 ∈ Rμ,

{x0} = Q1 ⊂ Q2 ⊂ · · · ⊂ Qc = G− {y0},
G− {x0} = R1 ⊃ R2 ⊃ · · · ⊃ Rc = {y0}.

For each μ = 1, · · · , c − 1, let (Sμ = G/[Qμ ∪ Rμ+1], w) be the contracted weighted 
graph. Then either (P10, w10) or (K4, w4) can be obtained from (Sμ = G/[Qμ∪Rμ+1], w)
by recursively contracting triangles and digons not containing x0, y0, and recursively 
suppressing resulting degree 2 vertices. (Each Sμ is called a segment of the chain, see 
Fig. 10.)

Definition 4.5. A segment Sμ of a Petersen chain with bowstring e0 = x0y0 is called a 
K4-segment (or P10-segment, respectively) if K4 (or P10, respectively) can be obtained 
from Sμ be recursively contracting triangles/digons and recursively suppressing degree 
2-vertices (see Fig. 10).

Definition 4.6. A single segment Petersen chain, as the name indicates, is a Petersen 
chain with precisely one segment.

The following theorem is the main theorem which characterizes the structure of CCPE 
graphs.

Theorem 4.7. Let G be a bridgeless cubic graph with an eulerian weight w : E(G) →
{1, 2}, and let e0 = x0y0 be a weight 2 edge. Assume that (G − e0, w) has a faithful 
circuit cover {C1, C2, · · · , Ct} that forms a circuit chain connecting the vertices x0 and 
y0 and (G, w) has no removable circuit C with e0 /∈ E(C), then, under the assumption 
of the Hamilton weight conjecture, (G, w) is a Petersen chain with e0 as the bowstring 
edge.

4.1. Extension from earlier results

Let G be a bridgeless cubic graph with a (1, 2)-eulerian weight w. We further assume 
that (G, w) is a contra pair.

In the paper [23], it was proved that
(*) If, for every e0 = x0y0 ∈ Ew=2, (G − e0, w) has a faithful circuit cover which 
is a circuit chain joining x0 and y0 and (G, w) does not have any removable circuit 
avoiding e0, then (G, w) = (P10, w10) (under the assumption of the Hamilton weight 
conjecture).

The result (*) is further strengthened in this paper as follows (an equivalent version 
of Theorem 4.7),
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(**) If, for a given e0 = x0y0 ∈ Ew=2, (G − e0, w) has a faithful circuit cover which 
is a circuit chain joining x0 and y0 and (G, w) does not have any removable circuit 
avoiding e0, then (G, w) is a Petersen chain (under the assumption of the Hamilton 
weight conjecture).

The following is a brief discussion about the difference between these two results and 
their proofs.

I. We can show that (*) is a corollary of (**): Arguments from [23] show that a contra 
pair for (*) does not have a nontrivial edge cut of size at most 3, so by (**) we must 
have a single segment Petersen chain without digons or triangles.

II. The result (*) is motivated by a long-standing open problem (Fleischner and Jack-
son [7]) that every minimal contra pair must be the weighted Petersen graph (P10, w10).

III. However, the main result (**) of this paper is mainly for the characterization of circuit 
chain structure (Question 1.1) and its future applications, such as, the determination of 
local structure of contra pairs, or adjustment of a circuit chain. In order to have some 
useful lemmas for future applications, a missing weight 2 edge e0 (that links the ends of 
the chain) must be a given edge. That is, the existence of a faithful cover for (G − e, w)
holds for that given edge e = e0, but may not hold for other weight 2 edges e.

IV. The proof of (*) in [23] relies on a structural result in [2] that a weighted graph 
described in (*) must be a permutation graph. However, this structure cannot be applied 
any more in this paper because of the difference of “∀” or “∃” e0 ∈ Ew=2. This makes 
the proof (Section 6) much more complicated: without knowing the structure as a per-
mutation graph, we have to go through a completely new (and lengthy) proof for finding 
a removable circuit (Subsection 6.3).

On the other hand, as we shall also point out, the very detailed description of the 
Petersen chain does provide a certain advantage in the inductive proof; it makes part of 
the proof relatively shorter (such as: Claim 10 in Subsection 6.1): in the induction proof, 
we are able to use the well-described structure of a sub-chain which was not available at 
all in [23].

5. Lemmas

5.1. Faithful covers

Theorem 5.1. (See Alspach and Zhang [1], or see [2].) Let G be a bridgeless cubic graph. 
If G contains no Petersen graph subdivision, then G has a faithful circuit cover with 
respect to every (1, 2)-eulerian weight.

5.2. Observations about 〈K4〉-graphs

Observation 5.2. For each (G, w) ∈ 〈K4〉2 with |V (G)| ≥ 6, we have the following prop-
erties.
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Fig. 11. Circuit chains F1 = {C1, C2, C3} and F2 = {D1, D2} in P10 − e0.

Fig. 12. One is P10, while another is not.

(1) (G, w) has a non-trivial 2- or 3-edge-cut with total weight 4; and (G, w) ∈ 〈K4〉 if 
and only if G is 3-connected.

(2) For each non-trivial 2- or 3-edge-cut T with components Q1 and Q2, each Qj

contains a triangle with total weight 4 or a digon with total weight 2.
(3) All triangles of (G, w) are vertex-disjoint if (G, w) ∈ 〈K4〉.

Lemma 5.3. (See Lemma 6.3 in [23].) Let S be a triangle of a weighted graph (G, w). 
Then (G, w) ∈ 〈K4〉 if and only if the contracted weighted graph (G/S, w) ∈ 〈K4〉.

5.3. Observations about Petersen graph and Petersen chain

Proposition 5.4. The weighted graph (K4− e0, w4) has precisely one faithful circuit cover 
for each e0 ∈ Ew4=2. The weighted graph (P10− e0, w10) has precisely two faithful circuit 
covers F1, F2 for each e0 ∈ Ew10=2 where |F1| = 3 and |F2| = 2. (See Fig. 11.)

Proposition 5.5. Let G be a graph with 11 vertices: d(vi) = 2 for i = 0, 1, 2 and d(vj) = 3
for j = 3, · · · , 10. Construct a new graph Gi from G by adding a new edge joining v0
and vi for each i = 1, 2. If v1 and v2 are not adjacent, then at most one of {G1, G2} is 
isomorphic to the Petersen graph. (See Fig. 12.)

V8 is the cubic graph consisting of a Hamilton circuit v0v1 · · · v7v0 and a perfect 
matching {vivi+4 : i = 0, 1, 2, 3}. Since P10 − e = V8 for any e ∈ E(P10), and P10 − v =
K3,3 for any v ∈ V (P10), we have the following observation.

Proposition 5.6. For any edge e ∈ E(P10) or any vertex v ∈ V (P10), P10 − e and P10 − v

remain non-planar.
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Fig. 13. Circuit chain joining x0 and y0.

The following is a straightforward observation from the definition of Petersen chain 
and Proposition 5.4.

Lemma 5.7. Let (G, w) be a Petersen chain with a bowstring e0 = x0y0. If P =
{C1, · · · , Ct} is a circuit chain of (G, w) joining x0, y0 with |P| = t maximum, then 
each minimal edge-cut Ti of size 3 (i = 1, · · · , c) containing e0 must also contain two 
weight one edges of Cφ(i) where φ : {1, · · · , c} → {1, · · · , t} is a one-to-one mapping such 
that

(1) 1 = φ(1) < φ(2) < · · · < φ(c) = t;
(2) φ(μ + 1) − φ(μ) = 1 or 2;
(3) If φ(μ + 1) − φ(μ) = 1, then the segment Sμ is a K4-segment;
(4) If φ(μ + 1) − φ(μ) = 2 then the segment Sμ is a P10-segment.

Note that K4- and P10-segments are defined in Definition 4.5.

5.4. Circuit chain with faithful cover

The following lemma is useful and will be applied to solve some special cases for 
Theorem 4.7 and some other useful lemmas for further applications.

Lemma 5.8. Let (G, w) be a CCPE graph consisting of a circuit chain P = {C1, · · · , Ct}
plus a weight 2 edge e0 = x0y0 such that (G, w) has no removable circuit C with e0 /∈
E(C) (the same description as in Theorem 4.7). If the eulerian weighted graph (G, w)
itself has a faithful circuit cover, then, under the assumption of the Hamilton weight 
conjecture,

(1) (G, w) ∈ 〈K4〉2;
(2) |E(Cμ) ∩ E(Cμ+1)| = 1 for every μ = 1, · · · , t − 1 if every triangle and digon of 

G contains either x0 or y0 (see Fig. 13). That is, (G, w) is a Petersen chain with e0 as 
the bowstring and every segment of the Petersen chain is a K4-segment.

Proof. It is obvious that every faithful cover of (G, w) consists of precisely two circuits, 
for otherwise, the third one not containing e0 is removable. So, w is a Hamilton weight 
of G and, therefore, by Lemma 3.10, (G, w) ∈ 〈K4〉2. This proves the conclusion (1).

Let (G, w) be a smallest counterexample to the conclusion (2) of the lemma. It is easy 
to see that |V (G)| ≥ 6.

Consider a non-trivial 2- or 3-edge-cut T separating G into components Q1 and Q2. By 
Observation 5.2-(1) such a T exists. By Observation 5.2-(2) each Qi contains a triangle 
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or digon, so x0 is in Q1 and y0 is in Q2 (or vice versa) and e0 ∈ T . The edges incident 
with every digon or triangle form a 2- or 3-edge-cut T , so e0 is incident with every digon 
or triangle. Hence G contains exactly two circuits of length 2 or 3, one containing x0 and 
the other y0. If either is a digon then there is a 2-edge-cut containing e0, contradicting 
the fact that {C1, · · · , Ct} is a circuit chain from x0 to y0. Therefore there are exactly 
two triangles, which must be C1 and Ct.

Since (G/Ct, w) is smaller than the smallest counterexample, conclusion (2) holds for 
(G/Ct, w). That is, |E(Cμ) ∩E(Cμ+1)| = 1 for each μ = 1, · · · , t − 2. The proof of (2) is 
completed since Ct is a triangle that intersects Ct−1 with precisely one edge. �
Lemma 5.9. Let (G, w) be a CCPE graph consisting of a circuit chain P = {C1, · · · , Ct}
plus a weight 2 edge e0 = x0y0 such that (G, w) has no removable circuit C with e0 /∈
E(C) (the same description as in Theorem 4.7). Assume that |P| = t is maximum. Let 
fx0 , fy0 be subdivided edges of G − e0 containing x0 or y0, respectively. If |P| = t = 2, 
then, under the assumption of the Hamilton weight conjecture,

(1) (G, w) ∈ 〈K4〉2;
(2) there is a 3-edge-cut of G− e0 containing both subdivided weight one edges fx0, fy0;
(3) every 3-edge-cut of G containing e0 is trivial (that is, E(x0) and E(y0) are the 

only two 3-edge-cuts of G containing e0).

Proof. By Lemma 3.10 and the choice of P that |P| = 2 is maximum, the weighted graph 
(G− e0, w) ∈ 〈K4〉2. Since every member of 〈K4〉2 is planar, by Proposition 5.6, G does 
not contain a subdivision of the Petersen graph. Hence, by Theorem 5.1, (G, w) has a 
faithful cover. Conclusion (1) of the lemma follows immediately from Lemma 5.8-(1).

Now we only need to prove the conclusions (2) and (3).
After recursively contracting all triangles/digons not containing x0, y0 and recursively 

suppressing all degree 2 vertices (along some subdivided weight 2 edges), we still satisfy 
the conditions of Theorem 4.7 with t = 2, and we still have a faithful circuit cover, so 
by Lemma 5.8-(2), we have (K4, w4). The lemma holds for (K4, w4), and so holds for 
(G, w) (since none of those operations (or their inverses) affects the conclusions (2) and 
(3) of the lemma). �
5.5. L-graphs

Before the proof of the main theorem (Theorem 4.7), we introduce a new concept, 
L-graph, which is critical in the final determination of the Petersen graph structure.

Definition 5.10. A weighted L-graph is a cubic graph L of order 2n (n ≥ 2) associated 
with an eulerian weight w : E(L) → {1, 2} and a weight one edge e0 = v0vn (called a 
diagonal crossing chord) such that

(1) (L, w) ∈ 〈K4〉,
(2) every triangle of L must contain either v0 or vn.
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Fig. 14. An L-graph with the diagonal crossing chord e and F .

(See Fig. 14; we will show that all L-graphs have a similar structure.)

Lemma 5.11. The following two statements are equivalent:
(1) (L, w) is an L-graph with a diagonal crossing chord e∗ = x∗y∗;
(2) Let e∗ be a weight one edge of (3K2, w2), (L, w) is constructed recursively from 

(3K2, w2) by a series of (Y → �)-operations only at some endvertex of e∗. (Note that the 
edge e∗ will remain as the diagonal crossing chord during the expansion of the L-graph.)

Proof. (2) ⇒ (1) is trivial. We prove (1) ⇒ (2) by induction on |V (L)|. The lemma 
is true if |V (L)| ≤ 4. So, by Observation 5.2-(3), L has precisely two triangles, each 
contains precisely one of {x∗, y∗}. Let S be a triangle of L containing x∗ (but not y∗).
By Lemma 5.3, (L/S, w) ∈ 〈K4〉 and, without causing any confusion, denote the new 
contracted vertex by x∗ which remains as an endvertex of e∗. It is easy to see that 
(L/S, w) is an L-graph (by Definition 5.10). Since any resulting triangle (after contraction 
of S) must contain the contracted vertex x∗, by induction, (1) ⇒ (2) for (L/S, w). 
Now (1), and hence (2), is true for (L/S, w), so (2) holds for (L, w), since (L, w) is 
obtained from (L/S, w) via a (Y → �)-operation at x∗. �

Since an L-graph (L, w) ∈ 〈K4〉 and is a Hamilton weighted graph, let {C1, C2} be 
the faithful circuit cover of (L, w). Each Cj is a Hamilton circuit. One may draw the 
L-graph (L, w) on the plane as follows (by Lemma 5.11, see Fig. 14):

The Hamilton circuit C2 = v0 · · · , v2n−1v0 is the boundary of the exterior face with 
a diagonal crossing chord v0vn and a set Z of parallel chords where Z = {v2n−μvμ : μ =
1, · · · , n − 1}. And another Hamilton circuit C1 = v0v2n−1v1v2v2n−2v2n−3v3v4 · · · vnv0, 
and w is a Hamilton weight with Ew=2 = {v2i−1v2i : i = 1, · · · , n} where C1 and C2
intersect.

Fig. 14 is an illustration of a weighted L-graph with 8 vertices. Note that, in Fig. 14, 
double lines are edges in Ew=2 and single lines are edges in Ew=1.

One can see that all parallel chords (Z-chords) do not cross each other, while the 
diagonal crossing chord v0vn crosses every parallel chord.
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Lemma 5.12. Let (L, w) ∈ 〈K4〉 of order 2n (≥ 4). Let {C1, C2} be a faithful circuit cover 
of (L, w). Let e ∈ C1 − C2 and F ⊆ C2 − C1. Assume that

(a) every triangle of L contains some edge of F ∪ {e} and,
(b) for every edge f ∈ F , L contains a 3-edge-cut T with both f, e ∈ T .

Then (L, w) must be a weighted L-graph described above with e = v0vn as the diagonal 
crossing chord and

{v0v1, vνvν+1} ⊆ F ⊆ {v2iv2i+1 : i = 0, · · · , n− 1} = E(C2) −E(C1)

where ν = n if n is even and ν = n − 1 if n is odd.

Proof. By Definition 5.10, we only need to show that every triangle of L must contain 
an endvertex of e = v0vn.

Suppose that S is a triangle of L such that v0 and vn /∈ V (S) (and so e /∈ E(S)). 
Hence, by (a), let f = z1z2 ∈ E(S) ∩ F . By (b), there is a 3-edge-cut T containing both 
e and f .

Note that |S ∩ T | must be even since one is a circuit, while another one is a cut. 
Since f ∈ S ∩ T , |S ∩ T | = 2. Note that S is a triangle, so either T = E(zj) (for some 
j ∈ {1, 2}) or L has a 2-edge-cut E(zi) � T (for some i ∈ {1, 2}). So, T = E(zj) since 
L is 3-connected. Hence, both f, e ∈ E(zj) for some j ∈ {1, 2}. This contradicts that v0
and vn /∈ V (S). �

Fig. 14 is an illustration of a weighted L-graph with 8 vertices in which the circuit 
C2 = v0 · · · v7v0 and the circuit C1 = v0v7v1v2v6v5v3v4v0 and edges labeled with f are 
possible locations of edges of F .

6. Proof of Theorem 4.7

6.1. First part of the proof: the case of |P| > 3

Let (G, w) be a smallest counterexample to the theorem. And we choose t = |P| as 
large as possible.

I. Since (G, w) has no removable circuit avoiding e0, we have the following claim for 
(G, w).

Claim 1. Every faithful circuit cover of (G − e0, w) is a circuit chain joining x0 and y0.

By Lemma 5.9, if t = 2, then (G, w) ∈ 〈K4〉2 (a single segment Petersen chain). It 
contradicts that (G, w) is a counterexample. Hence,

Claim 2. t ≥ 3.

By Lemma 5.8, we have that
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Fig. 15. Circuit chain and subchain.

Claim 3. (G, w) is a contra pair.

Since t ≥ 3 there are no circuits of length ≤ 3 containing e0. Therefore any circuit 
of length ≤ 3 can be contracted to obtain a smaller CCPE graph, which is a Petersen 
chain by Theorem 4.6; then (G, w) is also a Petersen chain, a contradiction. Hence,

Claim 4. G is of girth at least 4.

Claim 5. G does not contain any non-trivial 3-edge-cut T consisting of e0 and a pair of 
weight one edges.

Proof. For otherwise, let Q and R be the components of G − T , one may apply the 
theorem to the smaller CCPE graphs (G/Q, w) and (G/R, w). �
II.

Notation 6.1. For 1 ≤ α < β ≤ t, let (Gα,β , wα,β) be the induced subgraph G[Cα ∪
· · · ∪ Cβ ] associated with the eulerian weight w{Cα,···,Cβ} induced by the circuit subchain 
{Cα, · · · , Cβ}. (See Fig. 15. See Definition 2.3 for induced eulerian weight w{Cα,···,Cβ}.)

Claim 6. For each μ < t, the number of attachments of Cμ+1 in (G1,μ, w1,μ) is at least 2.

Proof. For otherwise, G has a 3-edge-cut consisting of e0 and two weight ones edges of 
Cμ (part of the attachment of Cμ+1 in (G1,μ, w1,μ)). This contradicts Claim 5. �

By Lemma 3.10 and the assumption that |P| is maximum.

Claim 7. (Gμ,(μ+1), wμ,(μ+1)) ∈ 〈K4〉2.

Claim 8. G does not have any 2-edge-cut T separating e0 from other edges.
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Proof. Suppose that T is a 2-edge-cut of G with components Q′ and Q′′ and e0 ∈ Q′.
If w(T ) = 2 then only one circuit Cμ of P passes through T , which means Q′′ contains 

only vertices of Cμ, which is impossible.
So w(T ) = 4 and two circuits Cμ, Cμ+1 pass through T . Since (G, w) has no remov-

able circuit avoiding e0, {Cμ, Cμ+1} covers Q′′. Hence, Q′′ is a subgraph of Gμ,(μ+1). 
By Claim 7 and Observation 5.2, Q′′ contains a triangle or digon. This contradicts 
Claim 4. �
Claim 9. For each i = 1, · · · , t − 1, the suppressed cubic graph Gi,i+1 is 3-connected and, 
therefore, the weighted graph (Gi,i+1, wi,i+1) ∈ 〈K4〉.

Proof. By Claim 7, (Gi,i+1, wi,i+1)) ∈ 〈K4〉2. Let (J, wJ ) = (Gi,i+1, wi,i+1)).
Suppose that (J, wJ) ∈ 〈K4〉2 − 〈K4〉. By Observation 5.2-(1), J has a 2-edge-cut 

T with w(T ) = 4 and with components Q′ and Q′′. By Claim 8, let Q′ contain an 
attachment z′ of Ci−1 (or contain the vertex x0 if i = 1), and Q′′ contain an attachment 
z′′ of Ci+2 (or contain the vertex y0 if i + 1 = t). Let D be the component of EwJ=1
containing z′′. Then, {Ci�D, Ci+1�D} is another faithful cover of (J, wJ) consisting of 
precisely two circuits (since |P| is maximum). Hence, P−{Ci, Ci+1} +{Ci�D, Ci+1�D}
is a faithful cover of (G − e0, w), but not a circuit chain (since Ci �D contains both z′

and z′′, and therefore, Ci+1 �D is removable). �
III. Let Ft = {f1, · · · , fs} be the set of all attachments of Ct in G1,(t−1) and let f0 be 
the attachment of e0 in G1,(t−1). Here, by Claim 6,

|Ft| = s ≥ 2. (1)

Notation 6.2. (i) Construct (H, wH) from (G1,(t−1), w1,(t−1)) by replacing each induced 
path (subdivided edge fμ) with a path of length 2. With no confusion, let each of those 
subdivided edges be fμ (∈ Ft) containing a degree 2 vertex yμ, and x0 is the degree 2
vertex in the subdivided edge f0. Here, x0 ∈ f0 ⊂ C1 − C2 and yμ ∈ fμ ⊂ Ct−1 − Ct−2
for each μ = 1, · · · , s.

(ii) Construct (Hμ, wμ) from (H, wH) by adding a weight 2 edge eμ joining x0 and yμ
and suppressing all degree 2 vertices (see Fig. 15).

IV. This is the final step of this subsection.

Claim 10.

t = 3.

Proof. Suppose that t ≥ 4.
IV-1. By applying the theorem to the smaller CCPE weighted graph (Hμ, wμ) (for 

each μ = 1, · · · , s), it has the following properties:
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(a) (Hμ, wμ) is a Petersen chain with the bowstring eμ (since any removable circuit 
of (Hμ, wμ) avoiding eμ is also removable in (G, w)).

(b) (Hμ, wμ) does not have any 3-edge-cut T of (G, w) that consists of the bowstring 
eμ and two weight one edges of Ci for some i : 1 < i < t − 1. (Since T − eμ + e0 would be 
a non-trivial 3-edge-cut of (G, w) and this contradicts Claim 5.) Thus, E(x0) and E(yμ)
are the only 3-edge-cuts of (Hμ, wμ) containing the bowstring eμ.

(c) (Hμ, wμ) must be a Petersen chain with a single segment (by (b) and Lemma 5.7). 
Thus, t − 1 = 3, and so φ(1) = 1 and φ(2) = 3. Hence, by Lemma 5.7-(4) the segment is 
a P10-segment.

(d) From Observation 4.4 and the discussion following Definition 4.3, (Hμ, wμ) be-
comes (P10, w10) after a series of contractions of triangles/digons not containing x0 or 
yμ and suppressions of degree 2 vertices.

(e) Thus, in (Hμ, wμ) the endvertex yμ of the bowstring eμ is not contained in any 
circuit of length ≤ 4, because that would result in P10 having a circuit of length ≤ 4
after the contractions and suppressions from (d).

IV-2. By (c), (Hμ, wμ) is a Petersen chain with a single P10-segment. To show that it 
must be a copy of (P10, w10), it suffices to show that

|V (Hμ)| = 10, (2)

for each μ = 1, · · · , s.
Suppose that |V (Hμ)| > 10. By (c), (Hμ, wμ) is a Petersen chain with single segment, 

but not simple (since the Petersen graph has 10 vertices). Hence, the weighted graph 
(Hμ, wμ) has the following further properties:

(f) In (Hμ, wμ), there must be some circuit(s) of length ≤ 3 (by Definition 4.3);
(g) Those triangle(s)/digon(s) described in (f) must contain some edge fν for ν ∈

{1, · · · , s} − {μ} (since, by Claim 4, G is of girth at least 4).
Hence, some triangle(s)/digon(s) described in (g) becomes circuit(s) of length ≤ 4 in 

(Hν , wν) (for some ν �= μ). This contradicts (e) in IV-1 (by a symmetric argument for 
replacing μ with ν) and completes the proof of Equation (2).

Thus, both (Hμ, wμ) and (Hν , wν) are copies of (P10, w10), which contradicts Propo-
sition 5.5 (see Fig. 12). �
6.2. Second part of the proof: two copies of L-graphs

By Lemma 5.9-(1), we have the following immediate corollary.

Claim 11. For each fμ ∈ Ft, (Hμ, wμ) ∈ 〈K4〉2.

Claim 12. (G1,2, w1,2) (and (G2,3, w2,3)) is an L-graph in which the diagonal crossing 
chord is the attachment f0 of e0 as in Notation 6.2.
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Fig. 16. (G − e0, w) is a pair of weighted L-graphs with C2 as their overlapping part.

Proof. By Lemma 5.9-(2), we have that, for each fμ ∈ Ft, both f0 and fμ are contained 
in some 3-edge-cut of G1,2 (satisfying hypothesis (b) of Lemma 5.12). Since G is of girth 
at least 4 (by Claim 4), every triangle/digon of G1,2 must contain some edge of Ft∪{f0}
(satisfying hypothesis (a) of Lemma 5.12).

By Lemma 5.12, (G1,2, w1,2) must be a weighted L-graph with f0 (an attachment 
of e0) as the diagonal crossing chord.

Similarly, the graph G2,3 = C2 ∪ C3 is also an L-graph with an attachment of e0 as 
the diagonal crossing chord. �
6.3. Final step: removable circuit in (G, w)

We continue the proof of the main theorem. The final step is the core of the proof: 
determine that the graph G is the Petersen graph.

6.3.1. Preliminary
By Claim 12, (G1,2, w1,2) (and (G2,3, w2,3)) is an L-graph in which the diagonal cross-

ing chord is the attachment of e0.
A drawing of two L-graphs. Let C2 = v0 · · · vr−1v0. Draw the graph C1 ∪ C2 ∪ C3 =

G− e0 on the plane such that C2 is the boundary of the exterior region and all chords 
((C1 ∪ C3) − C2) are in the interior region of C2. (Note, this drawing is not a planar 
embedding: some crossing must occur inside the interior of C2.)

See Fig. 16 for an illustration of these circuits in G. Note that, in the first graph of 
Fig. 16, double lines are edges in E=2 and single lines are edges in Ew=1.

Notation 6.3. (1) For each weighted L-graph Ci ∪ C2 (i = 1, 3), edges of Ci − C2 are 
called Ci-chords.
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Fig. 17. A C1-triangle vαvβvγ · · · vα is a circuit of length ≥ 5 in G.

(2) For each i ∈ {1, 3}, Ci-chords are classified into two types: diagonal crossing chord 
and zigzag parallel chords (Z(Ci)-chords): the edge containing the vertex x0 or y0 is the
Ci-diagonal crossing chord, all other edges of Ci − C2 are Z(Ci)-chords (zigzag parallel 
chords).

(3) For each {i, j} = {1, 3}, each triangle of Ci ∪ C2 not containing the Ci-diagonal 
crossing chord is called a Ci-triangle and the unique Z(Ci)-chord contained in a given 
Ci-triangle is called a Ci-triangle chord (see Fig. 17).

By Claim 4, G is of girth at least 4, so we have the following property.

Claim 13. For each {i, j} = {1, 3}, let S = vαvβvγvα be a Ci-triangle with vαvβ as the 
unique Z(C1)-chord (the triangle chord), vβvγ ∈ C1 ∩ C2 (see Fig. 17). Then S is a 
triangle in the suppressed graph G[C1 ∪ C2], but not a triangle in the original graph G
since the edge vαvγ of S is subdivided at least twice by vertices of Cj in G.

Notation 6.4. Define a mapping λ : {0, 1, · · · , r − 1} → {0, 1, · · · , r − 1} such that, for 
each integer α ∈ {0, · · · , r − 1}, λ(α) = β if there is a Ci-chord (for some i ∈ {1, 3}) 
joining vα and vβ.

Notation 6.5. For the circuit C2 = v0 · · · v2k−1v0, and integers a, b: 0 ≤ a < b ≤ 2k−1, the 
segment (subpath) vava+1 · · · vb−1vb of C2 between va and vb is denoted by vaC2vb, while 
the segment vava−1 · · · vb+1vb of C2 between va and vb is denoted by vaC2vb (mod r).

Notation 6.6. For each {i, j} = {1, 3} and each Z(Ci)-chord e = vμvλ(μ) ∈ Ci − C2
(a zigzag parallel chord belonging to Ci), the crossing degree dX(e) of e is the number of 
Cj-chords crossing the edge e in the interior of C2.

Since Cj is a circuit (for {i, j} = {1, 3}), it is easy to see that

dX(e) ≡ 0 (mod 2) (3)
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Fig. 18. If dX(e) = 0 then a C1-triangle is of length 3 in G.

Fig. 19. A quadruple.

for every Ci-chord e (see Fig. 18). We further claim that,

dX(e) > 0 (4)

for every Z(Ci)-chord e.
Suppose that dX(e) = 0, for some Z(C1)-chord e = vαvλ(α). Without loss of generality, 

let V (C3) ⊆ {vα+1, vα+2, · · · , vλ(α)−2, vλ(α)−1}. Hence, {vλ(α), vλ(α)+1, · · · , vα−1, vα} ⊆
V (C1). Therefore, the induced subgraph G[{vλ(α) · · · vα}] contains a C1-triangle, which 
is not subdivided by C3. This contradicts Claim 13.

6.3.2. Quadruples and removable circuit

Definition 6.7. Let (a, b, c, d) be a quadruple (see Fig. 19) such that
(1) va, vb, vc, vd are around the circuit C2 in this order;
(2) vava+1, vcvc+1 ∈ C3 ∩ C2, and vbvb−1, vdvd−1 ∈ C1 ∩ C2;
(3) vavc is a Z(C1)-chord and vbvd is a Z(C3)-chord.

The proof will be completed after the proofs of the following two claims.

Claim 14. If (G, w) �= (P10, w10), then a quadruple described in Definition 6.7 exists.
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Fig. 20. C3-chord vqvλ(q) with one end vq inside a C1-triangle v0v1vpv0.

Claim 15. If a quadruple described in Definition 6.7 exists, then the circuit D =
vaC2vbvdC2vcva is a removable circuit of (G, w).

6.3.3. Existence of a quadruple (proof of Claim 14)
In this subsection, we will prove one of the following statements must be true.
(1) the existence of the quadruple described in Definition 6.7;
(2) (G, w) = (P10, w10).
Suppose that (G, w) �= (P10, w10) and there is no such quadruple around the circuit C2.

I. Let v0vp be a Ci-triangle chord (i = 1 or 3) such that the crossing degree dX of v0vp
is as large as possible (among all Ci-triangle chords for both i = 1, 3). Note, Ci-triangle 
chords are defined in Notation 6.3-(3).

Without loss of generality, let v0v1C2vpv0 be a C1-triangle (see Notation 6.3) with v1
incident with the C1-diagonal crossing chord (see Fig. 20).

Since v0vp is a C1-triangle chord, the path v2C2vp−1 contains no vertex of C1. By 
Claim 4, v1C2vp is not a single edge in G, which must contain some vertices of C3. 
Therefore, by the definition of L-graph, edges in the path v2C2vp−1 are alternatively in 
C2 − C3 and C2 ∩ C3. That is,

v2v3, · · · , v2iv2i+1, · · · , vp−2vp−1 ∈ C3 ∩ C2 (5)

for i = 1, · · · , p−2
2 and

p ≥ 4 and p ≡ 0 (mod 2).

II.

Claim 16. For each odd integer q ∈ {2, · · · , p −1}, the C3-chord vqvλ(q) is the C3-diagonal 
crossing chord (see Fig. 20).
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Fig. 21. C3-chords vqvλ(q), vq+1vλ(q+1) crossing the C1-triangle chord v0vp.

Suppose not, then vqvλ(q) is a Z(C3)-chord. If λ(q) ∈ {2, · · · , p −1}, then the C3-chord 
vqvλ(q) is of zero crossing degree. This contradicts Inequality (4). So, λ(q) ∈ {p + 1, · · · ,
r−1}. Then (0, q, p, λ(q)) is the quadruple that we needed and contradicts our assumption 
(see Fig. 20).

III. Since there is only one C3-diagonal chord, by Claim 16, q is the only odd integer in 
{2, · · · , p − 1}. By Equation (5),

3 = q = p− 1.

IV. In summary, we have proved the following results.
(IV-1) dX(v0vp) = 2 (by III);
(IV-2) |{v2, · · · , vp−1}| = 2 (by III);
(IV-3) both v2vλ(2), v3vλ(3) are C3-chords crossing the Z(C1)-chord v0vp (by Claim 13);
(IV-4) v3vλ(3) is the C3-diagonal crossing chord, and, v2vλ(2) is a Z(C3)-chord 

(by III);
(IV-5) v2vλ(2) is a C3-triangle chord (corollary of (IV-4)).

V. By Equation (3) and Inequality (4), the crossing degree of every Ci-triangle chord 
is positive and even (i = 1, 3). By IV and the maximality of the crossing degree of 
the triangle chord v0vp (defined in I), the crossing degree of every Ci-triangle chord is 
precisely 2 (for each i = 1, 3). Hence, all results we have had in IV for v0vp can be applied 
to each Ci-triangle chord (i = 1, 3).

First, here are some direct results from IV (see Fig. 21):

p = 4 and λ(3) > λ(2) > p + 1 = 5,

and v2vλ(2) is a C3-triangle chord (by (IV-5)), and v3vλ(3) is a C3-diagonal crossing 
chord (by (IV-4)).

Symmetrically (see Fig. 21) we may apply the results of IV to the C3-triangle 
v2v3C2vλ(2)v2, where λ(2) = 6 since |{v4, · · · , vλ(2)−1}| = 2 (by IV-(2)). Furthermore, we 



60 C.-Q. Zhang / Journal of Combinatorial Theory, Series B 120 (2016) 36–63
Fig. 22. The Petersen graph.

have that v4v5 ∈ C1∩C2, v0v4v5C2v0 is a C1-triangle (other than v0v1C2v4v0) with v0v4
as the C1-triangle chord, v5vλ(5) is the C1-diagonal crossing chord with λ(5) = 1 since 
there is only one C1-diagonal chord v1vλ(1) = vλ(5)v5.

Note that, we have completely identified all edges of C1 = v0v1x0v5v4v0. That is, 
C1 ∪ C2 = K4.

Furthermore, applying the results of IV to the C1-triangle v4v5C2v0v4, we have that 
|{v6, · · · , vr−1}| = 2 and v6v2 is a C3-triangle chord, v7vλ(7) = v3vλ(3) is the C3-diagonal 
crossing chord. Therefore, C3 ∪ C2 = K4, r = 8 and the graph G is the Petersen graph 
(see Fig. 22). This contradicts the assumption that (G, w) �= (P10, w10).

6.3.4. Existence of removable circuit (Claim 15)
In this subsection, we will prove Claim 15 that

D = vava+1C2vb−1vbvdvd−1C2vc+1vcva

is a removable circuit. (See Fig. 19.) We may consider the following weight decomposition 
(Definition 2.4)

(G,w) = (G1, w1) + (D,wD)

where wD(e) = 1 if e ∈ E(D). Since D is a circuit, it is trivial that w1 is a (1, 2)-eulerian 
weight of G1. So, we only need to show that G1 is bridgeless. Assume that there is a 
bridge e∗ of G1 with w1(e∗) = 2 (since w1 is eulerian).

I. Let G′
1 = G1 − e0. It is obvious that G′

1 is covered by paths:

P0 = vb−1vbC2vcvc+1, P2 = vd−1vdC2vava+1,

P1 = C1 − {vb, vd} = vd−1C1vb−1, P3 = C3 − {va, vc} = va+1C3vc+1.

(See Fig. 19.) Note that P0 and P2 are two segments (subpaths) of C2 (by deleting 
some edges of D), and Pi is a segment of Ci for i = 1 and 3. It is easy to see that 
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vc+1P0vb−1P1vd−1P2va+1P3vc+1 is a closed walk of G′
1 covering every edge e once if 

w1(e) = 1, twice if w1(e) = 2.
By the discussion above and the structure of weighted L-graphs (C1 ∪ C2, w1,2), 

(C2 ∪ C3, w1,2), we have the following summary:
(I-1) G′

1 is a connected graph, so is G1;
(I-2) Paths of {P0, · · · , P3} have the following set of the endvertices

{va+1, vb−1, vc+1, vd−1}

where

vb−1 ∈ P0 ∩ P1, vd−1 ∈ P1 ∩ P2, va+1 ∈ P2 ∩ P3, vc+1 ∈ P3 ∩ P0;

(I-3) Pi ∩ Pj = ∅ if i �= j ± 1 (mod 4).

II. Let R1, R2 be components of G1 − e∗.
(II-1) The edge e0 = x0y0 is not a bridge of G1 (that is, e∗ �= e0) since G′

1 = G1 − e0
is connected (by (I-1)). Thus, e∗ �= e0.

(II-2) Since w1(e∗) = 2, by (II-1), let Pα, Pβ (∈ {P0, · · · , P3}) contain the edge e∗. 
By (I-3), we have that α = β ± 1 (mod 4). Without loss of generality, let e∗ ∈ P0 ∩ P1. 
It is easy to see that P2 and P3 must be contained in the same component of G1 − e∗

since va+1 ∈ V (P2) ∩ V (P3) (by (I-2)). So, without loss of generality, let P2 ∪ P3 ⊆ R2. 
Therefore, by (I-2) again,

vc+1, vd−1, va+1 ∈ R2.

Since each of P0 and P1 passes through the bridge e∗ precisely once,

vb−1 ∈ R1.

(II-3) Let e∗ = vqvq+1 where

vq, vq+1 ∈ {vb+1, vb+2, · · · , vc−2, vc−1} ⊆ P0 ⊂ C2.

For the path P0 = vb−1C2vc+1, by (II-2), the segments vb−1C2vq ⊆ R1 and 
vq+1C2vc+1 ⊆ R2.

Note that the segment vb−1C2vq is contained in R1 while C3 is contained in R2. Thus, 
vb−1C2vq contains vertices of C1, but not C3.

(II-4) We claim that vd−1vλ(d−1) is not the C1-diagonal (see Fig. 23,) for otherwise, 
vd−1vdvbC2vd−1 is a C1-triangle of C1 ∪ C2 and therefore, the segment vbC2vd−1 contains 
no edges of C1∩C2. This contradicts that vqvq+1 (∈ P1∩P2 ⊂ C1∩C2) lies in the segment 
of C2 from vb to vd−1.

Since, both vdvb and vd−1vλ(d−1) are Z(C1)-chords and the vertex vλ(d−1) must be in 
{vb, vb+1, · · · , vq}. That is, according to the structure of L-graph, λ(d − 1) = b + 1 ≤ q.
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Fig. 23. The Z(C1)-chord vd−1vλ(d−1) = vd−1vb+1.

Furthermore, this edge vd−1vλ(d−1) = vd−1vb+1 joins the components R1 and R2
since vd−1 ∈ R2 while vλ(d−1) = vb+1 ∈ R1. This contradicts that e∗ = vqvq+1 is a bridge 
of G − E(D). This completes the proof of Claim 15, and also completes the proof of 
the theorem: we have obtained a contradiction to the assumption that (G, w) has no 
removable cycle not containing e0.
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