r-hued coloring of sparse graphs

Jian Cheng, Hong-Jian Lai, Kate J. Lorenzen, Rong Luo, Joshua C. Thompson, Cun-Quan Zhang

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, United States
Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States
Department of Mathematics, Iowa State University, Ames, IA 50011, United States
Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States

Abstract

For two positive integers k, r, a (k, r)-coloring (or r-hued k-coloring) of a graph G is a proper k-vertex-coloring such that every vertex v of degree \(d_G(v) \) is adjacent to at least \(\min\{d_G(v), r\} \) distinct colors. The r-hued chromatic number, \(\chi_r(G) \), is the smallest integer k for which G has a (k, r)-coloring. The maximum average degree of G, denoted by mad(G), equals \(\max\{2|E(H)|/|V(H)| : H \text{ is a subgraph of } G \} \).

In this paper, we prove the following results using the well-known discharging method. For a graph G, if mad(G) < \(\frac{12}{5} \), then \(\chi_3(G) \leq 6 \); if mad(G) < \(\frac{2}{3} \), then \(\chi_2(G) \leq 5 \); if G has no \(C_5 \)-components and mad(G) < \(\frac{8}{5} \), then \(\chi_2(G) \leq 4 \).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Notations and terminology undefined here are referred to [1]. Let G be a graph with vertex set \(V(G) \) and edge set \(E(G) \). The set of neighbors of a vertex \(v \) is denoted by \(N_G(v) \). We use \(d_G(v) \) and \(\Delta(G) \) to denote the degree of \(v \) and the maximum degree of G, respectively. A vertex of degree k (resp. at least k) is called a k-vertex (resp. \(k^+ \)-vertex). The maximum average degree of G, denoted by mad(G), equals \(\max\{2|E(H)|/|V(H)| : H \text{ is a subgraph of } G \} \).

A graph G is r-regular if each vertex of G has degree r. We use cycles to denote the connected 2-regular graphs and a cycle of length 2k is denoted by \(C_k \).

A path \(P = u_0u_1 \cdots u_k = P_k \) is a k-path of a graph G, if \(u_1, \ldots, u_k \) are 2-vertices and \(u_0, \ u_{k+1} \) are 3-vertices. Vertices \(u_0 \) and \(u_{k+1} \) are called endpoints of P. The collection of l-threads with \(l \geq k \) are \(k^+ \)-threads. Two vertices u and v are loosely adjacent if u and v are contained in some k-thread P.

A k-vertex-coloring (or simply a k-coloring) of a graph G is a mapping \(c : V(G) \to S \), where S is a set of k colors. In general, S is taken to be \(\{1, \ldots, k\} \). If a vertex adjacent to u is colored i, then we say that u sees i. Otherwise, we say that u misses i. If \(W \subseteq V(G) \), denote by \(c(W) \) the set of colors received by at least one vertex of W. A k-coloring is proper if no two adjacent vertices receive the same color. As we are only concerned about the proper coloring, we refer to a proper coloring simply as a coloring. A (k, r)-coloring (or r-hued k-coloring) of a graph G is a k-coloring such that each vertex v is adjacent to at least \(\min\{d_G(v), r\} \) distinct colors. The r-hued chromatic number of a graph G, denoted \(\chi_r(G) \), is the minimum k for which G has a (k, r)-coloring. A list assignment L of a graph G is a function that assigns to every vertex v of G a set \(L(v) \) of positive integers.

The third and fourth authors were partially supported by National Security Agency, No. H98230-14-1-0325 and the fifth author was partially supported by National Security Agency, Nos. H98230-14-1-0154 and H98230-16-1-0004, and National Science Foundation, No. DMS-126480.

* Corresponding author.

E-mail addresses: jicheng@udel.edu (J. Cheng), hong-jian.lai@mail.wvu.edu (H.-J. Lai), lorenkj@iastate.edu (K.J. Lorenzen), rong.luo@mail.wvu.edu (R. Luo), joshuact@math.sc.edu (J.C. Thompson), cun-quan.zhang@mail.wvu.edu (C.-Q. Zhang).

https://doi.org/10.1016/j.dam.2017.11.033
0166-218X/© 2017 Elsevier B.V. All rights reserved.
Given a list assignment L of G, a (L, r)-coloring of G is a coloring c such that each vertex v is adjacent to at least $\min \{ d_G(v), r \}$ distinct colors and $c(v) \in L(v)$. The r-hued choice number of a graph G is the minimum k such that G has a (L, r)-coloring where $|L(v)| = k$ for each vertex $v \in V(G)$, and is denoted by $ch_i(G)$.

The concept of (k, r)-colorings was introduced by Lai et al. [5], and an upper bound of χ_2 was first studied in the same paper. In [6], Song et al. showed that, for K_4-minor free graphs, $\chi_2(G) \leq r + 3$ if $2 \leq r \leq 3$ and $\chi_2(G) \leq \lfloor 3r/2 \rfloor + 1$ if $r \geq 4$. Song et al. [7] proved that $\chi_r(G) \leq r + 5$ if G is a planar graph of girth at least 6. For any planar graph G, $\chi_2(G) \leq 5$ was proved by Chen et al. [2], and they conjectured that with the exception of C_5, $\chi_2(G) \leq 4$ for all planar graphs. Kim, et al. [3] verified this conjecture in 2013.

Motivated by above results, we use a discharging method and give upper bounds on the 2-hued and 3-hued chromatic numbers for graphs with different maximum average degree constraints in this paper.

Theorem 1.1. If G is a graph with $\text{mad}(G) < \frac{12}{5}$, then $\chi_3(G) \leq 6$.

In fact, we prove a slightly stronger result that $ch_3(G) \leq 6$ for graphs with $\text{mad}(G) < \frac{12}{5}$. See the remark at the end of Section 2.1.

Theorem 1.2. If G is a graph with $\text{mad}(G) < \frac{7}{2}$, then $\chi_3(G) \leq 5$.

Remark.

1. The bound of $\text{mad}(G) < \frac{7}{2}$ is sharp since G_0 as shown in Fig. 1 satisfies that $\text{mad}(G_0) = \frac{7}{2}$ but $\chi_3(G_0) = 6$.

2. The bound $\chi_3(G) \leq 5$ is the best possible bound for which there are infinitely many graphs satisfying $\text{mad}(G) < \frac{7}{2}$ and $\chi_3(G) = 5$. The following are two special cases and the construction of more such graphs.
 (a) C_5 and a graph obtained from two edge-disjoint C_5 joining at exactly one vertex.
 (b) In general, we define a family of connected graphs
 $\mathcal{F} = \{ G : G$ contains a bridge e such that $G - \{ e \} has a C_5 component$\}.$

We claim that each member of \mathcal{F} has 3-hued chromatic number at least 5. Assume $G \in \mathcal{F}$ has an edge xy such that $G - \{ uv \}$ has a $C_5 = wxyzw$ as a component. For any 3-hued coloring c of G, $|\{ c(x), c(w), c(v), c(u) \}| = 4$ and $|\{ c(y), c(z) \} \cap \{ c(x), c(w), c(v) \}| = 0$. Hence, $|c(C_5)| = 5$ and $\chi_3(G) \geq 5$. Combined with Theorem 1.2, each graph G of \mathcal{F} with $\text{mad}(G) < \frac{7}{2}$ has $\chi_3(G) = 5$ and we have infinitely many of such graphs in \mathcal{F}.

In [4], Kim and Park submitted a proof that a graph G with $\text{mad}(G) < \frac{8}{3}$ satisfies $\chi_2(G) \leq 4$. Observe that $\chi_2(C_5) = 5$ while $\text{mad}(C_5) = 2 < \frac{8}{3}$, which reveals a gap in their results. In this paper, we also fix the proof in [4] and prove the following.

Theorem 1.3. Let G be a graph with no C_5-components. If $\text{mad}(G) < \frac{8}{3}$, then $\chi_2(G) \leq 4$.

Remark. In [4], Kim and Park showed that the bound of $\text{mad}(G) < \frac{8}{3}$ is sharp. Let G be the graph obtained by subdividing every edge of K_5 once. It is easy to verify that $\text{mad}(G) = \frac{8}{3}$ but $\chi_2(G) = 5$.

2. 3-hued colorings

Lemma 2.1. Let k be an integer where $k \geq 4$ and $m \geq 2$ be a real number. If a graph G is a graph with minimum number of vertices such that $\chi_3(G) \geq k + 1$ and $\text{mad}(G) \leq m$, then G is connected and has no 1-vertex.

Proof. If G has two or more components, then each of the components of G has a $(3, k)$-coloring and so does G, a contradiction to the choice of G.

Suppose that G has a vertex u with $d_G(u) = 1$ and $uv \in E(G)$. Denote $G' = G - \{ u \}$. Then $\text{mad}(G') \leq m$ and thus G' has a $(3, k)$-coloring c since $|V(G')| < |V(G)|$. If v sees three colors in G', we have $k - 1 \geq 3$ available options to color u. If v sees two or fewer colors, then there are at least $k - 3 \geq 1$ available options to color u. In both cases, we can extend the coloring c to u, a contradiction to the choice of G. ■
Lemma 2.2. Let G be a graph with $\Delta \leq 2$, then $\chi_3(G) \leq 5$.

Proof. Since the maximum degree of G is at most 2, G is a union of vertex-disjoint cycles and paths. It is easy to see that each path has a 3-hued coloring with three colors and each cycle has a 3-hued coloring with at most five colors. Thus $\chi_3(G) \leq 5$. ■

2.1. Proof of Theorem 1.1

Let G be a counterexample to Theorem 1.1 with $|V(G)|$ minimized.

Claim 2.1. G has no two adjacent 2-vertices.

Proof. Suppose that G has two adjacent 2-vertices x and y. Note that G is connected by Lemma 2.1 and $\Delta(G) \geq 3$ by Lemma 2.2. We can choose x and y with the property that x is adjacent to a 3rd-vertex u. Let v be the other neighbor of y and denote $G' = G - \{x, y\}$. Therefore, G' has 3-hued 6-coloring c since $|V(G')| < |V(G)|$ and $\text{mad}(G') \leq \text{mad}(G)$. Let us extend the coloring c to x first. If $d_c(u) \geq 4$, then $|c(N_G(u))| \geq 3$ nd thus only $c(u)$ and $c(v)$ are the forbidden colors for x. If $d_c(u) = 3$, then $|c(N_G(u))| \leq 2$, thus $c(N_G(u)) \cup \{c(u), c(v)\}$ is the set of forbidden colors for x. Thus we first extend c to x. In the resulting coloring, y has at most five forbidden colors, $\{c(u), c(x), c(v)\} \cup \{c(N_G(v))\}$ when $d_c(u) = 3$ or at most three forbidden color $\{c(u), c(v), c(x)\}$ if $d_c(u) \neq 3$. Hence, we can further extend c to y and the resulting coloring will contradict the assumption that G is a counterexample. ■

Initial Charge: $M(x) = d(x) - 12/5$ for each vertex x in G. Since $\text{mad}(G) < 12/5$, we have $\sum_{x \in V(G)} M(x) < 0$. It follows from Lemma 2.1 and Claim 2.1 that, G has no 1-vertices and each 2-vertex is adjacent to at most 2-vertices. Note that each k-vertex where $k \geq 3$ is adjacent to at most k-2-vertices. Hence, we can redistribute the charge of the vertices of G as follows.

Discharging Rule: Each 2-vertex receives $1/5$ from each neighbor.

Denote this new charge by $M'(x)$. Hence, $\sum_{x \in V(G)} M'(x) = \sum_{x \in V(G)} M(x) < 0$.

1. For each 2-vertex u, $M'(u) = 2 - 12/5 + 2 \times 1/5 = 0$.
2. For each k-vertex v where $k \geq 3$, $M'(v) = k - 12/5 - k \times 1/5 = (4k - 12)/5 \geq 0$.

Therefore, $M'(x) \geq 0$ for each $x \in V(G)$ and $0 > \sum_{x \in V(G)} M(x) = \sum_{x \in V(G)} M'(v) \geq 0$, a contradiction. This completes the proof of Theorem 1.1. ■

Remark. Note that in Claim 2.1, the choice of available colors for x and y do not depend on the set of colors. Therefore, the above result could be generalized to $\text{ch}_3(G) \leq 6$ for a graph G with $\text{mad}(G) < 12/5$. That is, for every list assignment of size six, there is a 3-hued 6-coloring of G such that each vertex is assigned with a color from its list.

2.2. Proof of Theorem 1.2

Let G be a counterexample to Theorem 1.2 with $|V(G)|$ minimized.

Claim 2.2. G has no 3rd-threads.

Proof. Suppose that G has a 3rd-thread $u_0u_1 \cdots u_{k-1}u_k$ where $k \geq 4$. Let $G' = G - \{u_1, u_2, u_3\}$. Then G' has a 3-hued 5-coloring c since $|V(G')| < |V(G)|$ and $\text{mad}(G') \leq \text{mad}(G)$. Let us extend the coloring c to u_1 first. Observe that u_1 has at most three forbidden colors. Therefore we have at least two available options to color u_1. In the resulting coloring, u_3 has at most four forbidden colors and then we can further extend c to u_3. After that, u_2 has at most four forbidden colors $\{c(u_0), c(u_1), c(u_3), c(u_4)\}$. In the last step, we extend the coloring c to u_2 to obtain a 3-hued 5-coloring of G, a contradiction to the choice of G. ■

Claim 2.3. If $P = uvw$ is a 2-thread of G, then $d_c(u) = d_c(v) = 3$.

Proof. Suppose that $P = uvw$ be a 2-thread of G in which either $d_c(u) \geq 4$ or $d_c(v) \geq 4$. Without loss of generality, assume $d_c(u) \geq 4$. Let $G' = G - \{x, y\}$. So G' has a 3-hued 5-coloring c by the minimality of G. Let us color y first. The worst case is that y has degree three in G and then y would have at most four forbidden colors $\{c(u), c(v)\} \cup c(N_G(v))$. Thus we can always extend the coloring c to y. In the resulting coloring, u has already seen three colors in c, so x has at most three forbidden colors. Hence, we can further extend the coloring c to x, a contradiction to the choice of G. ■

Claim 2.4. Let $P = uvw$ be a 2-thread of G and $G' = G - \{x, y\}$. If c is a 3-hued 5-coloring of G', then we can always extend c to G except when $c(N_G(u)) = c(N_G(v))$ and $c(u) \neq c(v)$.

Proof. Suppose that c is a 3-hued 5-coloring of G' such that either $c(N(u)) \neq c(N(v))$ or $c(u) = c(v)$. Let us color x first. By Claim 2.3, $d_c(u) = d_c(v) = 2$. Thus x has at most 4 forbidden colors $c(N_G(u)) \cup \{c(u), c(v)\}$ and we can color x with one of the available options. In the resulting coloring, the set of forbidden colors of y is $c(N_G(v)) \cup \{c(u), c(x), c(v)\}$.
If \(c(u) = c(v) \), then \(|c(N_G(v)) \cup \{c(u), c(x), c(v)\}| \leq 4 \). If \(c(N_G(u)) \neq c(N_G(v)) \), then we can recolor \(x \) such that \(c(x) \in c(N_G(v)) - c(N_G(u)) \), and therefore \(|c(N_G(v)) \cup \{c(u), c(x), c(v)\}| \leq 4 \). In both cases, we can extend the coloring \(c \) to \(y \), a contradiction to the choice of \(G \).

Claim 2.5. No 3-vertex is loosely adjacent to five or more 2-vertices.

Proof. Let \(u \) be a 3-vertex of \(G \) such that \(u \) is loosely adjacent to at least five 2-vertices. Since \(G \) has no \(3^+ \)-vertices by Claim 2.2, \(u \) is a common endpoint of either three 2-edges or two 2-edges and 1-thread (see Fig. 2). Hence, \(d_G(x_1) = d_G(x_2) = d_G(y_1) = d_G(y_2) = d_G(z) = 2 \). By Claim 2.3, \(d_G(x_3) = d_G(y_3) = 3 \). Let \(G' = G - \{u, x_1, x_2, y_1, y_2\} \). Then \(G' \) has a 3-hued 5-coloring \(c \) by the minimality of \(G \).

If \(c(z) \notin c(N_G(y_3)) \), then we can extend the coloring \(c \) to \(u \) first since \(u \) has at most two forbidden colors. In the resulting coloring, \(x_2 \) has at most four forbidden colors, \(\{c(u), c(x_3)\} \cup c(N_G(x_3)) \). Thus we can extend the coloring to \(x_2 \) with one of the available options. Then \(x_1 \) will have at most four forbidden colors \(\{c(z), c(u), c(x_2), c(x_3)\} \), and we can further extend the coloring to \(x_1 \). After that, \(c(N_G(u)) \neq c(N_G(y_3)) \) since \(c(z) \notin c(N_G(y_3)) \). By Claim 2.4, we can extend the coloring to \(\{y_1, y_2\} \), a contradiction to the choice of \(G \). If \(c(z) \notin c(N_G(x_3)) \), we can extend the coloring to \(G \) by symmetry. Hence, we can assume that \(c(z) \in c(N_G(x_3)) \cap c(N_G(y_3)) \). Then \(\{c(x_3), c(z)\} \cup c(N_G(x_3)) = \{c(x_3), c(z)\} \cup c(N_G(y_3)) \).

We first extend the coloring \(c \) to \(x_1 \) by coloring \(x_1 \) with a color not in \(\{c(x_3), c(z)\} \cup c(N_G(x_3)) \), then color \(x_2 \) with a color not in \(\{c(x_1), c(x_3)\} \cup c(N_G(x_3)) \) and then further extend the coloring to \(u \) by coloring it with a color not in \(\{c(x_1), c(x_2), c(z), c(u)\} \). Thus the resulting coloring is a 3-hued 5-coloring of \(G - \{y_1, y_2\} \) and it satisfies \(c(N_G(u)) \neq c(N_G(y_3)) \) since \(c(x_1) \notin c(N_G(y_3)) \). By Claim 2.4, we can finally extend the coloring to \(\{y_1, y_2\} \), a contradiction to the choice of \(G \).

Initial Charge: \(M(x) = d(x) - 7/3 \) for each vertex \(x \) in \(G \).

Since \(\text{mad}(G) < 7/3 \), \(\sum_{x \in V(G)} M(x) < 0 \). \(G \) has no 1-vertices by Lemma 2.1. Claim 2.5 says that each 3-vertex is loosely adjacent to at most four 2-vertices. By Claims 2.2 and 2.3, each \(k \)-vertex where \(k \geq 4 \) can only be the endpoint of 1-thread and therefore is loosely adjacent to at most \(k \)-2-vertices. Now we can redistribute the charge as follows.

Discharging Rule: Each 2-vertex \(u \) receives \(1/6 \) from each endpoint of the thread containing \(u \). Denote the new charge by \(M'(x) \). Hence, \(\sum_{x \in E(G)} M'(x) = \sum_{x \in E(G)} M(x) < 0 \).

1. For each 2-vertex \(u \), \(M'(u) = M(u) + 2 \times 1/6 = 2 - 7/3 + 1/3 = 2 - 6/3 = 0 \).
2. For each 3-vertex \(v \), \(M'(v) \geq M(v) - 4 \times 1/6 = 3 - 7/3 - 2/3 = 0 \).
3. For each \(k \)-vertex \(w \) with \(k \geq 4 \), \(M'(w) \geq M(w) - k \times 1/6 = (5k - 14)/6 > 0 \).

Hence, \(M'(x) \geq 0 \) for each \(x \in V(G) \). So \(\sum_{x \in V(G)} M(x) = \sum_{x \in V(G)} M'(x) \geq 0 \), a contradiction. We complete the proof of Theorem 1.2.

3. **Proof of Theorem 1.3**

Let \(G \) be a counterexample to Theorem 1.3 with \(|V(G)| + |E(G)| \) minimized. Then \(G \) must be connected. Otherwise, each component of \(G \) (not a \(C_3 \)) has a 2-hued 4-coloring, and so does \(G \). This would contradict the choice of \(G \).

Claim 3.1. \(G \) contains no cycle \(C \) as a subgraph such that \(C = uwxyzu \) and \(w, x, y, z \) are 2-vertices of \(G \).

Proof. Suppose that \(G \) contains a cycle \(C = uwxyzu \) where \(w, x, y, z \) are 2-vertices. Since \(G \neq C_5 \), \(d_G(u) \geq 3 \). Let \(G' = G - \{w, x, y\} \). Since \(G \) is connected, so is \(G' \). This implies that \(G' \neq C_5 \) since \(d_G(z) = 1 \). Hence, \(G' \) has a 2-hued 4-coloring \(c \) by the minimality of \(G \). Let us extend the coloring by assigning \(c(u) = c(z), c(x) = a, c(y) = b \) where \(a \neq b \) and \(a, b \notin \{c(u), c(z)\} \). It is easy to verify that the resulting coloring is a 2-hued 4-coloring of \(G \). This contradicts the choice of \(G \).

Claim 3.2. \(G \) has no 1-vertex.
\textbf{Proof.} Suppose that G has a vertex u with $d_G(u) = 1$ and $uv \in E(G)$. Denote $G' = G - \{u\}$. Then G' is connected and $G' \neq C_5$ for which would contradict Claim 3.1. Therefore, G' has a 2-hued 4-coloring c by the minimality of G. Note that u has at least two available colors. Thus we can extend the coloring c to u. This contradicts the assumption that G is a counterexample. \hfill \blacksquare

\textbf{Claim 3.3.} $\Delta(G) \geq 3$.

\textbf{Proof.} Suppose $\Delta(G) \leq 2$. Claim 3.2 says that G has no 1-vertex. Since G is connected, G must be a C_k where $k \neq 5$. Note that, except for C_5, every cycle can be 2-hued colored with four or fewer colors. This contradicts the choice of G. \hfill \blacksquare

\textbf{Claim 3.4.} G has no two adjacent 2-vertices.

\textbf{Proof.} Suppose that G has two adjacent 2-vertices x and y. Since $\Delta(G) \geq 3$ by Claim 3.3, we can choose x and y in a way that x is adjacent to a 3^+-vertex u. Let v be the other neighbor of y and denote $G' = G - \{x, y\}$. Now we consider the following two cases.

\textbf{Case 1.} $G' = C_5$.

By Claim 3.1, u and v are distinct vertices in C_5. G must be one of the configurations in Fig. 3. The corresponding 2-hued 4-colorings have been labeled in Fig. 3. This contradicts the choice of G.

\textbf{Case 2.} $G' \neq C_5$.

If G' is disconnected, then G' has no C_3-components by Claim 3.1. If G' is connected, $G' \neq C_5$ by assumption. In both cases, G' has no C_3-components. By the minimality of G, G' has a 2-hued 4-coloring c. Let us color y first. Note that y has at most three forbidden colors and therefore we can extend c to y. Note that u has already seen at least two distinct colors in c since $d_G(u) \geq 2$. Hence, x has at most three forbidden colors, $c(u)$, $c(y)$, and $c(v)$, and therefore we can further extend c to x. This contradicts the choice of G. \hfill \blacksquare

\textbf{Claim 3.5.} Each 3-vertex in G is loosely adjacent to at most two 2-vertices.

\textbf{Proof.} Suppose that G has a 3-vertex x which is loosely adjacent to at least three 2-vertices. By Claim 3.4, G has no 2^+-threads. Thus x is adjacent to three 2-vertices, say $\{y_1, y_2, y_3\}$, and each y_i is contained in a 1-thread $xy_i v_i$ for each $i = 1, 2, 3$, where v_1, v_2, and v_3 are all 3^+-vertices.

We claim that x is not a cut-vertex. Otherwise, assume that x is a cut-vertex. Then at least one of $\{y_1, y_2, y_3\}$ is a cut-vertex. Without loss of generality, let y_1 be a cut-vertex of G. Then xy_1 is a cut-edge. By Claim 3.1 and since one component has minimum degree 1, no components of $G_1 = G - \{xy_1\}$ is a C_5. By the minimality of G, $G - \{xy_1\}$ has a 2-hued 4-coloring c. Note that $c(y_1) \neq c(v_1)$ and x is in a component that does not contain y_1 and v_1. Thus we may assume $c(x) \notin \{c(y_1), c(v_1)\}$. Observe that in G_1, both x and v_1 are 2^+-vertices. Thus c is a 2-hued 4-coloring of G_1, a contradiction to the choice of G. This proves that x is not a cut-vertex.

Let $G' = G - \{x, y_1, y_2, y_3\}$. Since G is connected and x is not a cut-vertex, G' is also connected. We consider the following two cases.

\textbf{Case 1.} $G' = C_5$.

If $v_1 = v_2 = v_3$, then G will satisfy the configuration in Claim 3.1, a contradiction. So $v_i \neq v_j$ for some $1 \leq i < j \leq 3$. Hence, G must be one of the configurations in Fig. 4. The corresponding 2-hued 4-coloring has been labeled in Fig. 4. This contradicts the choice of G.

\textbf{Case 2.} $G' \neq C_5$.

Since G' is connected, G' has no C_5 components. Therefore, G' has a 2-hued 4-coloring c by the minimality of G. Since there are 4 colors, we can first extend c to x by coloring it with a color not in $\{c(v_1), c(v_2), c(v_3)\}$. Note that each of v_i has degree at least two in G' and thus sees at least two colors. We first color y_1 with a color not in $\{c(x), c(v_1)\}$ and then color y_2 with a color not in $\{c(x), c(y_1), c(v_2)\}$ and finally color y_3 with a color not in $\{c(x), c(v_3)\}$. It is easy to check that the extension of c is a 2-hued 4-coloring of G, a contradiction to the choice of G. \hfill \blacksquare

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig3.png}
\caption{Configurations when $G' = C_5$ in Claim 3.4.}
\end{figure}
Claim 3.6. Each 3-vertex in \(G \) is loosely adjacent to at most one 2-vertex.

Proof. By Claim 3.5, suppose that \(G \) has a 3-vertex \(x \) such that \(x \) is loosely adjacent to exactly two 2-vertices, say \(y_1 \) and \(y_2 \). Since \(G \) has no 2-threads, \(x \) is adjacent to \(y_1 \) and \(y_2 \), and each \(y_i \) is contained in a 1-thread \(xy_i v_i \) for each \(i = 1, 2 \). Let \(v_3 \) be the third neighbor of \(x \). Thus \(v_1, v_2, v_3 \) are all 3\(^+\)-vertices.

With a similar argument as in Claim 3.5, we can show that \(x \) is not a cut-vertex. Let \(G' = G - \{x, y_1, y_2\} \). Thus \(G' \) is connected. We consider the following two cases.

Case 1. \(G' = C_5 \).

If \(v_1 = v_2 = v_3 \), then \(G \) will satisfy the configuration in Claim 3.1, a contradiction. So \(v_i \neq v_j \) for some \(1 \leq i < j \leq 3 \). Hence, \(G \) must be one of the configurations in Fig. 5. The corresponding 2-hued 4-coloring has been labeled in Fig. 5. This contradicts to the choice of \(G \).

Case 2. \(G' \neq C_5 \).

Since \(G' \) is connected, \(G' \) has no \(C_5 \) components. Therefore, \(G' \) has a 2-hued 4-coloring \(c \) by the minimality of \(G \). Note that for each \(i = 1, 2, 3 \), \(d_{G'}(v_i) \geq 2 \) and thus \(v_i \) sees at least two colors. We first color \(x \) with a color not in \(\{c(v_1), c(v_2), c(v_3)\} \), then color \(y_1 \) with a color not in \(\{c(v_1), c(x), c(v_3)\} \), and then color \(y_2 \) with a color not in \(\{c(x), c(v_2)\} \). It is easy to see that this is a 2-hued 4-coloring of \(G \), a contradiction to the choice of \(G \). ■

Initial Charge: \(M(x) = d(x) - 8/3 \) for each vertex \(x \) in \(G \).

Since \(\text{mad}(G) < 8/3 \), \(\sum_{x \in V(G)} M(x) < 0 \). By Claim 3.2, \(G \) has no 1-vertices. By Claim 3.4, each 2-vertex is adjacent to two 3\(^+\)-vertices. Claim 3.6 says that each 3-vertex is adjacent to at most one 2-vertex. By Claim 3.4, each \(k \)-vertex with \(k \geq 4 \) is adjacent to at most \(k \) 2-vertices. Now let us redistribute the charge as follows.

Discharging Rule: Each 2-vertex receives \(1/3 \) from its two neighbors.

Denote the new charge by \(M'(x) \). Hence, \(\sum_{x \in V(G)} M(x) = \sum_{x \in V(G)} M'(x) < 0 \).

(1) For each 2-vertex \(x \), \(M'(x) \geq 2 - 8/3 + 2 \times 1/3 = 0 \).
(2) For each 3-vertex \(y \), \(M'(y) \geq 3 - 8 / 3 - 1 / 3 = 0 \).

(3) For each \(k \)-vertex \(z \) with \(k \geq 4 \), \(M'(z) \geq k - 8 / 3 - k \times 1 / 3 = (2k - 8) / 3 \geq 0 \).

For any \(x \in V(G) \), \(M'(x) \geq 0 \) and therefore \(\sum_{x \in V(G)} M(x) = \sum_{x \in V(G)} M'(x) \geq 0 \), a contradiction. This completes the proof of Theorem 1.3. ■

References