Every N_2 -locally connected claw-free graph with minimum degree at least 7 is Z_3 -connected

Erling Wei^{*}, Ye Chen[†], Ping Li[†], Hong-Jian Lai^{‡†}

Abstract

Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and $A^* = A - \{0\}$. A graph G is A-connected if G has an orientation D(G) such that for every function $b: V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v) = 0$, there is a function $f: E(G) \mapsto A^*$ such that for each vertex $v \in V(G)$, the total amount of f values on the edges directed out from v minus the total amount of f values on the edges directed into v equals b(v). Let Z_3 denote the group of order 3. Jaeger et al conjectured that there exists an integer k such that every k-edge-connected graph is Z_3 -connected. In this paper, we prove that every N_2 -locally connected claw-free graph G with minimum degree $\delta(G) \geq 7$ is Z_3 connected.

1 Introduction

We consider finite graphs which permit multiple edges but no loops, and refer to [2] for undefined terminologies and notations. In particular, the minimum degree, the maximum degree of a graph G are denoted by $\delta(G)$, $\Delta(G)$ respectively. If G is a simple graph, then G^c denotes the complement of G. For a subset $X \subseteq V(G)$ or $X \subseteq E(G)$, G[X] denotes the subgraph of G induced by X. Unlike in [2], a 2-regular connected nontrivial graph is called a **circuit**, and a circuit on k vertices is also referred as a k-circuit. Throughout this paper, A denotes an (additive) abelian group with identity 0. For an integer $m \ge 1$, Z_m denotes the set of all integers modulo m, as well as the cyclic group of order m.

Let G be a graph with an orientation D = D(G). For a vertex $v \in V(G)$, we use $E^+(v)$ (or $E^-(v)$, respectively) to denote the set of edges with tails (or heads, respectively) at v. Following [9], define $F(G, A) = \{f : E(G) \mapsto A\}$ and $F^*(G, A) = \{f : E(G) \mapsto A - \{0\}\}$. Given an $f \in F(G, A)$, the **boundary** of f is a map $\partial f : V(G) \mapsto A$ defined by

$$\partial f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e), \ \forall v \in V(G),$$

where " \sum " refers to the addition in A.

A map $b: V(G) \mapsto A$ is called an A-valued zero sum map on G if $\sum_{v \in V(G)} b(v) = 0$. The set of all A-valued zero sum maps on G is denoted by Z(G, A). A graph G is A-connected if G has an orientation D such that for every function $b \in Z(G, A)$, there is a function $f \in F^*(G, A)$ such that $\partial f = b$. Define

 $\Lambda_q(G) = \min\{k : \text{ for any abelian group } A \text{ with } |A| \ge k, G \text{ is } A \text{-connected}\}.$

^{*}School of Information, Renming University of China, Beijing, P. R. China

 $^{^{\}dagger}\textsc{Department}$ of Mathematics, West Virginia University, Morgantown, WV 26506, USA

[‡]College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PRC

An $f \in F(G, A)$ is an A-flow of G if $\partial f = 0$. If an A-flow $f \in F^*(G, A)$, then f is an A-nowhere-zero flow (abbreviated as an A-NZF). When $A = \mathbb{Z}$ is the group of integers and f is a Z-NZF, if for $\forall e \in E(G)$, |f(e)| < k, then f is a **nowhere-zero** k-flow (abbreviated as a k-NZF). It is noted in [9] that for a graph G, the property of being A-connected or having an A-NZF is independent of the choice of the orientation of G. Moreover, Tutte [25] showed that, for a finite abelian group A, a graph G has an A-NZF if and only if G has an |A|-NZF. The following conjectures on nowhere-zero flows, were first proposed by Tutte and supplemented by Jaeger.

Conjecture 1.1 (Tutte [25], [26], see also [8]) (i) Every graph G with $\kappa'(G) \ge 4$ has a 3-NZF. (ii) There exists an integer $k \ge 4$ such that every k-edge-connected graph has 3-NZF.

As the nowhere-zero flow problem is the corresponding homogeneous case of the group connectivity problem, Jaeger, Linial, Payan and Tarsi proposed the following conjectures, which, as suggested by a result of Kochol [10], are stronger than the corresponding conjectures above.

Conjecture 1.2 (Jaeger et. al., [9]) Let G be a graph. (i) If $\kappa'(G) \ge 5$, then $\Lambda_g(G) \le 3$. (ii) There exists an integer $k \ge 5$ such that if $\kappa'(G) \ge k$, then $\Lambda_g(G) \le 3$.

Many researchers have been studying these conjectures and a number of results towards these conjectures have been obtained. Steinberg and Younger [23], and independently Thomassen [24] proved that within the family of projective planar graphs, 4-edge-connectedness is sufficient for the existence of a 3-NZF. Lai and Li [14] proved that every 5-edge-connected planar graph G satisfies $\Lambda_g(G) = 3$. Several researchers proved sufficient degree conditions for the existence of a 3-NZF or Z₃-connectedness. See [4], [5], [20], [28], and [29], among others. In [17] (see also [13]), it is shown that when the edge connectivity of a simple graph G on n vertices is at least $3 \log_2(n)$, then G is Z₃-connected. Recent studies also show that among certain triangulated graphs, high edge-connectivity will assure the existence of 3-NZF, or stronger, Z₃-connectedness. See [27], [6], [15], among others.

The **line graph** of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. For a graph G, an induced subgraph H isomorphic to $K_{1,3}$ is called a **claw** of G, and the only vertex of degree 3 of H is called the **center** of the claw. A graph G is **claw-free** if it does not have an induced subgraph isomorphic to $K_{1,3}$. Beineke ([1]) and Robertson ([21] and [7]) showed that every line graph is also a claw-free graph.

Theorem 1.3 Let G be a graph and let L(G) be the line graph of G.

(i) (Corollary 1.5 of [16]) Every line graph of a 4-edge-connected graph is Z_3 -connected.

(ii) (Theorem 3.1 of [12]) Every 2-edge-connected, locally 3-edge-connected graph is Z₃-connected.

(iii) ([19]) Every 5-edge-connected graph is Z_3 -connected if and only if every 5-edge-connected line graph is Z_3 -connected.

These recent researches motivate the current project. We are to investigate which families of claw-free graphs in which¹ certain connectivity property along with would imply Z_3 -connectedness.

In [22], Ryjáček introduced the N_2 -locally connected graphs. Let G be a graph. Denoted by $N(v, G) = \{z \in V(G) : vz \in E(G)\}$ be the neighborhood of v in G. For notational convenience, we shall also use N(v, G) to denote the subgraph of G induced by N(v, G). When the context is clear, we can write N(v) for abbreviation. Let $N_2(v, G)$ be the edge subset $\{e = xy \in E(G) : v \notin \{x, y\} \text{ and } \{x, y\} \cap N(v) \neq \emptyset\}$.

¹I am not sure whether "in which" is needed here

Figure 1: An N₂-locally connected claw-free graph with $\kappa'(G) = 2$.

A vertex v is N_2 -locally connected if the induced subgraph $G[N_2(v)]$ is connected; and G is called N_2 -locally connected if every vertex of G is N_2 -locally connected. It follows from the definitions that every locally connected graph is N_2 -locally connected.

A result related to Hamilton connectivity of N_2 -locally connected is as following:

Theorem 1.4 (Theorem 1.4 of [18]) Every 3-connected N_2 -locally connected claw-free graph is Hamiltonian.

The condition that a graph is N_2 -locally connected does not imply high edge connectivity. Consider the graph G shown in Figure 1, where each K_n represents a complete graph on n vertices. Then G is an N_2 -locally connected claw-free graph with $\kappa'(G) = 2$.

Our main result of this paper can be stated as follows.

Theorem 1.5 Every N_2 -locally connected claw-free graph with $\delta(G) \geq 7$ is Z_3 -connected.

In Section 2, we present some of the preliminaries that will be needed in the proofs. The last section is devoted to the proof of the main theorem.

2 Preliminaries

Let G be a graph and $X \subseteq E(G)$. The **contraction** G/X is the graph obtained by identifying two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, G/H is the graph G/E(H).

Theorem 2.1 (Proposition 3.2 of [11]) For any Abelian group A, $\langle A \rangle$ is a family of connected graphs satisfying each of the following:

(C1) $K_1 \in \langle A \rangle$, (C2) if $e \in E(G)$ and if $G \in \langle A \rangle$, then $G/e \in \langle A \rangle$, and (C3) if $H \in \langle A \rangle$ and if $G/H \in \langle A \rangle$, then $G \in \langle A \rangle$.

Let C_n denote the *n*-circuit, and K_n denote the complete graph on *n* vertices. We have the following result.

Theorem 2.2 ([9], Proposition 3.2 of [12]) Let G be a graph and A be an Abelian group with $|A| \ge 3$. Then $\langle A \rangle$ satisfies each of the following:

(i) (Lemma 3.3 of [11]) $\Lambda_g(C_n) = n + 1$.

(ii) (Corollary 3.5 of [11]) Let $n \ge 5$ be an integer. Then $K_n \in \langle A \rangle$.

Figure 2: Figure for Example 1.

Next, we will give an example that shows the condition N_2 -locally connected in Theorem 1.5 is necessary. We need another theorem. In [12], it is shown that for every Abelian group A, every graph G has a unique subgraph $M_A(G)$ such that each component of $M_A(G)$ is a maximally A-connected subgraph of G. The contraction $G/M_A(G)$ is **the** A-reduction of G.

Theorem 2.3 (Corollary 2.3 of [12]) Let G be a graph. Then each of the following holds. (i) $G \in \langle A \rangle$ if and only if $G/M_A(G) \cong K_1$. (ii) $G/M_A(G)$ does not have nontrivial subgraph that is A-connected.

Example 1 Let G be the graph shown in Figure 2. Each K_n in Figure 2 represents a complete graph with $n \ge 6$. Then G is a claw-free graph with $\delta(G) \ge 7$, and G is not N_2 -locally connected. By Theorem 2.2, K_n and C_2 is Z_3 -connected. After we contract K_n and C_2 successively, the resulting graph is a C_3 . Since C_3 is not Z_3 -connected, by Theorem 2.3(i), G is not Z_3 -connected.

3 Proof of the Main Theorem

Lemma 3.1 Let G be a nonempty claw-free graph with $\delta(G) \geq 2$, and for any $v \in V(G)$, let H = G[N(v)] denote the subgraph of G induced by N(v). Then N(v) can be partitioned into V_1 and V_2 such that $G[V_1]$ and $G[V_2]$ are complete subgraphs.

Proof: Let H^c be the complement of H = G[N(v)]. And $|N(v)| \ge 2$ by $\delta(G) \ge 2$. If $E(H^c) = \emptyset$, then G[N(v)] is a clique. Any partition (V_1, V_2) of N(v) has the property that $G[V_i]$ (i = 1, 2) is a complete graph. If $E(H^c) \ne \emptyset$, since G is a claw-free graph, every path in H^c has length at most 1. Thus H^c is the union of disjoint edges (and some isolated vertices). Let V_1 denote the vertex set that contains exactly one end of these disjoint edges, and let $V_2 = N(v) - V_1$. Then the subgraphs induced by V_1 and V_2 in H^c are independent sets in H^c , and so $G[V_1]$ and $G[V_2]$ are both complete graphs.

Since G is a claw-free graph with $\delta(G) \geq 2$, by Lemma 3.1, for any $v \in V(G)$, the subgraph H = G[N(v)] induced by N(v) contains two edge-disjoint cliques as subgraphs. Since G is N₂-locally connected, we can classify v into the following two types.

Figure 3: Two types of vertex v.

Type 1: Two cliques of H are connected in the induced graph G[N(v)] (see Figure 3).

Type 2: Two cliques of H are disconnected in the induced graph G[N(v)] (see Figure 3).

If v is of Type 1, let $Q_v = G[N(v) \cup \{v\}]$ be the subgraph induced by $N(v) \cup \{v\}$ in G. If v is of Type 2, let Q_v be the subgraph induced by $N(v) \cup \{v, w\}$ in G where $w \in V(G)$ is a vertex which is adjacent to both K_s and K_t . Note that w has neighbors in each of the two different cliques of H.

Let G' be the A-reduction of G. By Theorem 2.3(ii), G' does not have nontrivial subgraph that is Z_3 -connected. By the definition of contraction, $E(G') \subseteq E(G)$. For any $v \in V(G')$, G has a maximal Z_3 -connected subgraph H_v such that v is the vertex in G' onto which H_v is contracted. We call H_v the **preimage of** v.

Lemma 3.2 Let G be an N₂-locally connected claw-free graph with $\delta(G) \geq 7$, and let $A = Z_3$. If v is a vertex of Type 1, then $E(Q_v) \subset E(M_A(G))$, and so $E(Q_v) \cap E(G') = \emptyset$.

Proof: Suppose that v is of Type 1. Denote the two adjacent complete graphs in G[N(v)] by K_s and K_t with $s \ge t$, and let e = uu' be an edge joining K_s and K_t , with $u \in V(K_s)$ and $u' \in V(K_t)$. As $\delta(G) \ge 7$, $s \ge 4$ (see Figure 3 for an illustration). Let $H' = H[V(K_s) \cup \{u', v\}]$ and let $H_1 = H[V(K_s) \cup \{v\}]$. Since $H_1 \cong K_{s+1}$ with $s + 1 \ge 5$, it follows by Theorem 2.2 (ii) that H_1 is Z_3 -connected. Since H'/H_1 is a 2-circuit, by Theorem 2.2(i) that H'/H_1 is also Z_3 -connected. Hence by Theorem 2.1(C3) that H' lies in a 2-circuit, and so by Theorem 2.2(i), Q_v/H' must be Z_3 -connected. Since H' is Z_3 -connected, it follows by Theorem 2.1(C3) that Q_v is Z_3 -connected. Thus $E(Q_v) \subset E(M_A(G))$, and so by the definition of contraction, $E(Q_v) \cap E(G') = \emptyset$.

Next, we shall prove the main theorem.

Proof of Theorem 1.5: Let G be an N_2 -locally connected claw-free graph with $\delta(G) \geq 7$. Let $G' = G/M_A(G)^2$ denote the Z_3 -reduction of G. By Theorem 2.3, if we can prove $G' \cong K_1$, then we have G is Z_3 -connected.

² in the last version, here is M(G), and so on in the proof of this theorem. And I changed all of them to $M_A(G)$. Seven places together

We prove by way of contradiction. Suppose that G' has an edge e. Then $e = uv \in E(Q_v)$ for some vertices $u, v \in V(G)$ as $E(G') \subseteq E(G)$. By Lemma 3.2, vertex v cannot be of Type 1 in G, as in this case $E(Q_v) \cap E(G') = \emptyset$. Hence v is of Type 2. Let the two nonadjacent complete graphs be K_s and K_t with $s \ge t$ (see Figure 3 for an illustration). Since G is N_2 -locally connected, there is a vertex w connecting to both K_s and K_t via two edges $e_1 = wx_1$ and $e_2 = wx_2$, where $x_1 \in V(K_s)$ and $x_2 \in V(K_t)$. As $\delta(G) \ge 7$, $s \ge 4$. Then the subgraph H_1 induced by $V(K_s) \cup \{v\}$ is isomorphic to K_{s+1} . Since $s+1 \ge 5$, by Theorem 2.2 (ii), H_1 is Z_3 -connected, and so by the definition of G', $E(H_1) \cap E(G') = \emptyset$.

To find a contradiction, it suffices to show that $E(Q_v) \subseteq E(M_A(G))$, as this will imply that $E(Q_v) \cap E(G') = \emptyset$, contrary to the assumption that $e = uv \in E(Q_v) \cap E(G')$.

We first claim that $e_1, e_2 \notin E(M_A(G))$. If, to the contrary, that one of e_i (say e_1) is in $E(M_A(G))$, then $M_A(G)$ has a maximal Z_3 -connected subgraph N which contains $E(H_1) \cup \{e_1\}$. Let $L = Q_v \cup N$ denote the subgraph of G induced by $E(Q_v) \cup E(N)$, and let $L_1 = L[E(H_1) \cup \{e_1, e_2, vx_2\} \cup E(N)]$ be a subgraph of L. Since $E(H_1) \cup \{e_1\} \subseteq E(N)$, L_1/N is a 2-circuit consisting of edges $\{e_2, vx_2\}$, and so by Theorem 2.2 (i), L_1/N is Z_3 -connected. As N is Z_3 -connected, by Theorem 2.1(C3), L_1 is also Z_3 -connected. Since N is a maximal Z_3 -connected subgraph of G, we must have $E(L_1) \subseteq E(N)$.

It now follows by $E(L_1) \subseteq E(N)$, every vertex in L/L_1 lies in a 2-circuit, and so by Theorem 2.2 (i), L/L_1 is Z_3 -connected. As L_1 is also Z_3 -connected, it follows by Theorem 2.1(C3) that L is also Z_3 -connected. This proves that $E(L) \subseteq E(M_A(G))$. In particular, $E(Q_u) \subseteq E(L) \subseteq E(M_A(G))$, a contradiction obtains.

This contradiction implies the theorem.

References

- [1] L. Beineke, Derived graphs and digraphs, Beiträge zur Graphentheorie, Teubner, Leipzig, 1968.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [3] Z.-H. Chen, H.-J. Lai and H. Y. Lai, Nowhere zero flows in line graphs, Discrete Mathematics, 230 (2001), 133-141.
- [4] G. Fan and C. Zhou, Ore-condition and nowhere-zero 3-flows, SIAM J. Discrete Math., 22 (2008), 288-294.
- [5] G. Fan and C. Zhou, Degree sum and nowhere-zero 3-flows, Discrete Math., 308 (24) (2008), 6233-6240.
- [6] G. Fan, H.-J. Lai, R. Xu, C. Q. Zhang and C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory, Ser. B, 98 (2008), 1325-1336.
- [7] F. Harary, Graph Theory, Edison-Wesley Publishing Company, Reading, (1969).
- [8] F. Jaeger, Nowhere-zero flow problems, in "Selected Topics in Graph Theory" (L. Beineke and R. Wilson, Eds), Vol. 3. 91-95, Academic Press, London/New York, 1988.
- [9] F. Jaeger, N. Linial, C. Payan and N. Tarsi, Group connectivity of graphs a nonhomogeneous analogue of nowhere zero flow properties, J. Combin. Theory, Ser. B, 56 (1992), 165-182.
- [10] M. Kochol, An equivalent version of the 3-flow conjecture, J. Combin. Theory Ser B, 83 (2001), 258-261.

- [11] H.-J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin. 16(2000), 165-176.
- [12] H.-J. Lai, Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory, 42 (2003), no. 3, 211-219.
- [13] H.-J. Lai and C. Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete Math, 110 (1992), 179-183.
- [14] H.-J. Lai and X. Li, Group chromatic number of graph, Graphs and Combinatorics, 21 (2005), 469-474.
- [15] H.-J. Lai, R. Xu and J. Zhou, On group connectivity of graphs, Graphs and Combinatorics, 24 (2008), 1-9.
- [16] H.-J. Lai, L. Miao and Y. H. Shao, Every line graph of a 4-edge-connected graph is Z_3 -connected, European Journal od Combinatorics, 30 (2009), 595-601.
- [17] H.-J. Lai, Y. Shao, H. Wu and J. Zhou, On mod (2p + 1)-orientations of graphs, J. Combin. Theory Ser B, 99 (2009), 399-406.
- [18] H.-J. Lai, Y. Shao and M. Zhan, Hamiltonian N₂-locally connected claw-free graphs, J. Graph Theory, 48 (2005), 142-146.
- [19] H.-J. Lai, H. Li, P. Li, Y. T. Liang and S. M. Yao, Group connectivity in line graphs, submitted.
- [20] R. Luo, R. Xu, J. Yin and G. Yin, Ore-condition and Z₃-connectivity, European Journal of Combinatorics, 29 (2008), 1587-1595.
- [21] N. Robertson, unpublished notes, see Page 74 of "Graph Theory" by F. Harary, Addison-Wesley, Reading Massachusetts, 1969.
- [22] Z. Ryjáček, Hamiltonian circuits in N_2 -locally connected $K_{1,3}$ -free graphs, J. Graph Theory, 14 (1990), 321-331.
- [23] R. Steinberg and D. H. Younger, Grötzsch's Theorem for the projective plane, Ars Combinatoria, 28 (1989), 15-31.
- [24] C. Thomassen, Grötzsch's 3-color Theorem and its counterparts for the torus and the projective plane, J. Combinatorial Theory, Ser. B, 62 (1994), 268-297.
- [25] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math., 6 (1954), 80-91.
- [26] W. T. Tutte, On the algebraic theory of graph colourings, J. Combin. Theory, 1(1966), 15-50.
- [27] R. Xu and C., Q. Zhang, Nowhere-zero 3-flows in squares of graphs, Electronic Journal of Combinatorics 10, R5 (2003).
- [28] X. J. Yao, X. W. Li and H.-J. Lai, Degree conditions for group connectivity, Discrete Math., 310 (2010), 1050-1058.
- [29] X. Zhang, M. Zhan, R. Xu, Y. H. Shao, X. Li and H.-J. Lai, Z₃-connectivity in graphs satisfying degree sum condition, Discrete Math., submitted.