\qquad

Math 378 Spring 2011 Bonus Questions 5

1. Let $\mathcal{S}=\{1,2, \ldots, n\}$. One way to think about a permutation of \mathcal{S} is the following chart:

1	2	3	4	5	6	7	8	9	10
3	1	2	5	4	9	10	8	7	6

We can think of a permutation as a bijective function $f: \mathcal{S} \rightarrow \mathcal{S}$. A cycle of a permutation is represented as a grouping of the elements that have changed position with each other (these could be thought of as "mini-permutations" or "sub-permutations"). Using the permutation above as an example, the cycles would be (132), (45), (69710) and (8). The length of these cycles is the number of elements in each cycle (ie. cycle lengths $3,2,4$ and 1).
(a) Let $I(n)$ be the number of permutations having the property that all of its cycles have length 1 or 2 . Find a recurrence relation for $I(n)$.

Some values for $I(n)$ are: $I(1)=1, I(2)=2 . I(3)=4$ is given by the permutations (written in cycle form): $(1)(2)(3),(12)(3),(13)(2)$ and $(23)(1)$.
(Hint: Split $I(n)$ in two, permutations that fix n and permutations that don't fix n.)
(b) Prove that $I(n)$ is even for all $n>1^{\dagger}$.
(c) Prove that $I(n)>\sqrt{n!}$ for all $n>1$.
(Hint: For this, you will need the fact that $(1+\sqrt{n-1})>\sqrt{n}$. Tell me why this holds.)
(d) What does (c) say about $\frac{I(n)}{n!}$?

[^0]
[^0]: ${ }^{\dagger}$ This is a special case of a general fact from group theory where our group is $G=\operatorname{Sym}(n)$. If G is a finite group of even order, the number of solutions of $x^{2}=1$ is even.. This is because the elements f for which $f^{2}=1$ come in pairs $\left\{f, f^{-1}\right\}$. I've used f above, and this is because we can think of $\operatorname{Sym}(n)$ as a group of bijective functions as well as permutations of $\{1,2, \ldots, n\}$.

