Name: _

Math 378 Spring 2011 Bonus Questions 5

1. Let $S = \{1, 2, ..., n\}$. One way to think about a permutation of S is the following chart:

1	2	3	4	5	6	7	8	9	10
3	1	2	5	4	9	10	8	7	6

We can think of a permutation as a bijective function $f : S \to S$. A cycle of a permutation is represented as a grouping of the elements that have changed position with each other (these could be thought of as "mini-permutations" or "sub-permutations"). Using the permutation above as an example, the cycles would be (1 3 2), (4 5), (6 9 7 10) and (8). The length of these cycles is the number of elements in each cycle (ie. cycle lengths 3, 2, 4 and 1).

(a) Let I(n) be the number of permutations having the property that all of its cycles have length 1 or 2. Find a recurrence relation for I(n).

Some values for I(n) are: I(1) = 1, I(2) = 2. I(3) = 4 is given by the permutations (written in cycle form): (1)(2)(3), $(1\ 2)(3)$, $(1\ 3)(2)$ and $(2\ 3)(1)$.

(*Hint*: Split I(n) in two, permutations that fix n and permutations that don't fix n.)

(b) Prove that I(n) is even for all $n > 1^{\dagger}$.

(c) Prove that $I(n) > \sqrt{n!}$ for all n > 1.

(*Hint*: For this, you will need the fact that $(1 + \sqrt{n-1}) > \sqrt{n}$. Tell me why this holds.)

(d) What does (c) say about $\frac{I(n)}{n!}$?

[†]This is a special case of a general fact from group theory where our group is G = Sym(n). If G is a finite group of even order, the number of solutions of $x^2 = 1$ is even. This is because the elements f for which $f^2 = 1$ come in pairs $\{f, f^{-1}\}$. I've used f above, and this is because we can think of Sym(n) as a group of bijective functions as well as permutations of $\{1, 2, \ldots, n\}$.