
Math 378 Spring 2011
Assignment 5
Solutions

Brualdi 7.1.
Solution.

Conjecture (a). f1 � f3 � � � � � f2n�1 � f2n

Proof. [By Induction] Base case: Let n � 1, f1 � 1 � f2. Now, assume that f1 � f3 �
� � � � f2N�1 � f2N for all N   n. Note that

f2n � f2n�1 � f2n�2

f2n � f2n�1 � f2pn�1q
f2n � f2n�1 � f2pn�1q�1 � � � � � f3 � f1loooooooooooooomoooooooooooooon

By inductive hypothesis

f2n � f2n�1 � f2n�3 � � � � � f3 � f1.

�

Conjecture (b). f0 � f2 � � � � � f2n � f2n�1 � 1

Proof. [By Induction] Base case: Let n � 0, then f0 � 0 � f1 � 1. Now, assume that
f0 � f2 � � � � � f2N � f2N�1 � 1 for all N   n. Note that

f2n�1 � 1 � f2n � f2n�1 � 1

f2n�1 � f2n � f2pn�1q�1 � 1

f2n�1 � f2n � f2pn�1q � � � � � f2 � f0looooooooooooomooooooooooooon
By inductive hypothesis

f2n�1 � f2n � f2n�2 � � � � � f2 � f0.
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Brualdi 7.2.

Solution.
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Brualdi 7.3.
Solution.

(a). [By Induction] Note that f1 � 1, f2 � 1 and f3 � 2 satisfying the base cases for
induction. Now, assume that fn is even ðñ N is divisible by 3 for all N   n.

Method 1:
Suppose 3 | n. Then 3 � n� 1 and 3 � n� 2. This means that fn�1 and fn�2 are odd, so

fn � fn�1 � fn�2 is even.
Suppose 3 � n. Then either 3 � n� 1 or 3 � n� 2 but not both. This means either fn�1

or fn�2 is even and the other is odd which implies that fn � fn�1 � fn�2 is odd (since it is
the sum of an odd and even number).

Method 2:
Note that

fn � fn�1 � fn�2

fn � fn�2 � fn�3 � fn�2

fn � 2fn�2 � fn�3 (�)

Now we have 2 � fn ðñ 2 � p2fn�2 � fn�3q ðñ 2 � fn�3. �

(b). [By Induction] Note that f1 � 1, f2 � 1, f3 � 2 and f4 � 3 satisfying the base cases
for induction. Now, assume that fn is divisible by 3 ðñ 4 � N for all N   n.

Method 1:
We will consider the Fibonacci numbers modulo 4 for convenience (not necessary but

it makes the argument easier/shorter). Note that f1 � 1 pmod 3q, f2 � 1 pmod 3q, f3 � 2
pmod 3q and f4 � 0 pmod 3q and the inductive hypothesis is fn � 0 pmod 3q ðñ 4 � N
for all N   n. We now proceed similarly to Method 1 above, but the argument is more
involved/complicated.

Method 2:
Continuing from (�) above we have

fn � 2fn�2 � fn�3 (�)
fn � 2pfn�3 � fn�4q � fn�3

fn � 3fn�3 � fn�4

Note that 3 � fn ðñ 3 � p3fn�2 � fn�4q ðñ 3 � fn�4. �



Brualdi 7.8.

Solution.
Let hn be the number of ways of coloring a 1� n chessboard where each square is red or

blue and no two adjacent squares are colored red. The first square of the coloring must be
either red or blue.

If it is blue, then the number of ways of coloring the other n� 1 squares is hn�1.
If it is red, then the next square must be blue since two reds cannot be adjacent. There

are then hn�2 ways to color the rest.
This means the recurrence relation is hn � hn�1 � hn�2 for n ¥ 2 with h0 � 1 and

h1 � 2. �

Brualdi 7.9.

Solution.
Let hn be the number of ways of coloring a 1 � n chessboard where each square is red,

white or blue and no two adjacent squares are colored red. The first square of the coloring
must be either red, white or blue.

If it is blue, then the number of ways of coloring the other n� 1 squares is hn�1.
If it is white, then it is also hn�1.
If it is red, then the next square must be either blue or white (2 options) and the rest

can be filled in hn�2 ways.
This means the recurrence relation is hn � 2hn�1 � 2hn�2 for n ¥ 2 with h0 � 1 and

h1 � 3. �

Brualdi 7.10.

Solution.
This is equivalent to: “Use the recurrence gn � gn�1 � gn�2 and initial values g0 � 0 and

g1 � 2. Find g13. More generally, find fn.”
Method 1:
I’ll find a function for gn and use it to recover g13 although you can use the recurrence

to do g13 pretty reasonably.
To solve this recurrence, I use exactly the method I showed for fn in class. First, we

write the recurrence as gn � gn�1 � gn�2 � 0 for n ¥ 2. Now, the characteristic equation is
x2 � x� 1 � 0 which (according to the quadratic formula) has solutions

q1 � 1�?
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Utilizing our initial values we find

0 � c1 � c2, 2 � c1
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Note that c2 � �c1, so replacing this into the second equation we find

2 � c1
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This means that g13 � 466.
Method 2:
Note that g0 � 0 � 2f0, g1 � 2 � 2f1 and the recurrence is the same as fn. This

means that gn � 2fn which is easily shown by induction (we’ve done the base cases already).
Assume gN � 2fN for all N   n. Observe,

gn � gn�1 � gn�2 � 2fn�1 � 2fn�2

� 2pfn�1 � fn�2q
� 2fn.

Now we already know f13 � 233, so g13 � 466. Also, we know that

fn � 1?
5

�
1�?

5

2


n
� 1?

5

�
1�?

5

2


n

So, gn � 2fn � 2?
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Brualdi 7.13.

Solution.
(a) gpxq � 1� cx� c2x2 � � � � � cnxn � � � �

�
8̧

n�0

pcxqn
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(b) gpxq � 1� x� x2 � x3 � x4 � � � � � p�1qnxn � � � �
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(d)
gpxq � 1� 1
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x2 � � � � � 1
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(e)
gpxq � 1� 1
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x2 � � � � � p�1qn 1
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Brualdi 7.14.

Solution.
(a) gpxq � �x� x3 � x5 � � � � �4

� �xp1� x2 � x4 � � � � q�4
�
�

x

1� x2


4

(b) gpxq � �1� x3 � x6 � � � � �4
�
�

1

1� x3


4



(c) gpxq � p1qp1� xq �1� x� x2 � � � � �2
� 1� x

p1� xq2

(d) gpxq � px� x3 � x11qpx2 � x4 � x5qp1� x� x2 � � � � q2

� px� x3 � x11qpx2 � x4 � x5q
p1� xq2

(e) gpxq � px10 � x11 � x12 � � � � q4

� x40

p1� xq4
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Brualdi 7.16.

Solution.
Multiple solutions accepted. �

Brualdi 7.17.

Solution.
The generating function is given by

gpxq � p1� x2 � x4 � � � � qp1� x� x2qp1� x3 � x6 � x9 � � � � qp1� xq

� 1
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1� x

� 1

p1� xq2

Recall, Newton’s Binomial Theorem (as well as an early example of generating functions
that I did in class) gives that
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We now want the coefficient of xn so we set k � n and get
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� n � 1. Thus

hn � n� 1. �



Brualdi 7.22.

Solution.
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Brualdi 7.24.

Solution.
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Brualdi 7.26.

Solution.
The exponential generating function for each piece is

Red: 1� x2

2!
� x4

4!
� � � � Red:

ex � e�x

2

Blue: 1� x� x2

2!
� x3

3!
� � � � Blue: ex

Green: 1� x2

2!
� x4

4!
� � � � Green:

ex � e�x
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Orange: 1� x� x2

2!
� x3

3!
� � � � Orange: ex

Thus the exponential generating function

gpeqpxq � e2x
�
ex � e�x
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2

gpeqpxq � e2x � 2ex � 1

4
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Brualdi 7.32.

Solution.
Iterating the recurrence yields

hn � pn� 2qhn�1

� pn� 2qpn� 1qhn�2

� pn� 2qpn� 1q � � � 4 � 3h0
� pn� 2qpn� 1q � � � 3 � 2
� pn� 2q!

�

Brualdi 7.33.

Solution.
Rewrite the recurrence as hn � hn�1 � 9hn�2 � 9hn�3, n ¥ 3 and h0 � 0, h1 � 1 and

h2 � 2. This means the characteristic equation is

x3 � x2 � 9x� 9 � 0

x2px� 1q � 9px� 1q � 0

px� 3qpx� 3qpx� 1q � 0



So the general solution is
hn � c1 � c2 � 3n � c3 � p�3qn

Utilizing our initial values we have the following system of equations

0 � c1 � c2 � c3 (1)

1 � c1 � 3c2 � 3c3 (2)

2 � c1 � 9c2 � 9c3 (3)

Adding -9 times (1) to (3) we get c1 � �1

4
. Adding 3 times (2) to (3) and using our value

for c1 gives us that c2 � 2

3
. Finally substituting into (1) we get that c3 � 1

4
.

This means a general formula is

hn � �1

4
� 2 � 3n�1 � p�3qn

4
.
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Brualdi 7.37.

Solution.
Let hn denote the number of ternary strings of length n that do not contain two consec-

utive 0’s nor two consecutive 1’s. The initial values are h0 � 1 and h1 � 3.
Method 1:
Suppose the string starts with a 2, there are hn�1 ways to finish the rest.
Suppose the string starts with 0 or 1 (2 choices), and the second character is a 2. There

are hn�2 ways to finish this making 2hn�2 strings for this case.
Suppose the string starts with 0 or 1, the second character is 1 or 0 (resp.) (two total

choices), and the third is a 2. There are hn�3 ways to finish this making 2hn�3 strings like
this.

Continue until you have the case where the string is all 0s and 1s. There are two such
strings (two choices and h0 ways to finish them).

The recurrence we have found is hn � hn�1 � 2hn�2 � 2hn�3 � � � � � 2h0 which seems to
be a disaster, however, note that

hn � hn�1 � 2hn�2 � 2hn�3 � � � � � 2h0

�hn�1 � �hn�2 � 2hn�3 � � � � � 2h0

hn � hn�1 � hn�1 � hn�2

hn � 2hn�1 � hn�2

We now see the characteristic equation is x2�2x�1 � 0 ùñ px�1q2 � 0 and the quadratic
formula gives 1�?

2 and 1�?
2 as the roots. Thus we have the general solution is
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Utilizing our initial conditions we find the following system of equations

1 � c1 � c2 (4)

3 � c1

�
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(5)

Solving this system we find that c1 � 1�?2
2

and c2 � 1�?2
2

. Therefore our formula is
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Method 2:
Let an denote the ternary strings of length n ending in a 0 (similarly an will also denotes

the ternary strings ending in a 1 since there are the same number of them). Let bn denote
the ternary strings of length n ending in a 2. The initial values are h0 � 0 and a1 � 1, a2 �
2, b1 � 1 and b2 � 3.
If a string is length n� 1 and ends in a 0, it will generate two strings of length n, one ending
in 2, the other in 1.
If a string is length n� 1 and ends in a 1, it will generate two strings of length n, one ending
in 2, the other in 0.
If a string is length n� 1 and ends in a 2, it will generate three strings of length n, one each
ending in 0, 1 and 2.

The initial values are h0 � 0 and a1 � 1, a2 � 2, b1 � 1 and b2 � 3.

n End in 0 (an) End in 1 (an) End in 2 (bn) hn
1 1 1 1 3

Contrib. of 0’s 0 1 1
Contrib. of 1’s 1 0 1
Contrib. of 2’s 1 1 1

2 2 2 3 7

Contrib. of 0’s 0 2 2
Contrib. of 1’s 2 0 2
Contrib. of 2’s 3 3 3

3 5 5 7 17

Contrib. of 0’s 0 5 5
Contrib. of 1’s 5 0 5
Contrib. of 2’s 7 7 7

4 12 12 17 41

Contrib. of 0’s 0 12 12
Contrib. of 1’s 12 0 12
Contrib. of 2’s 17 17 17

5 29 29 41 99



There are a few things made clear by these arguments. First, we have a recurrence for
an and bn as follows:

an � an�1 � bn�1

bn � 2an�1 � bn�1

Notice that hn � 2an � bn since this is the disjoint sum of the strings ending in 0, 1 and 2
respectively. Surprisingly (perhaps) hn�1 � 2an�1 � bn�1 � bn. Now, let’s find a recurrence
for hn.

hn � 2an � bn

� 2pan�1 � bn�1q � bn

� p2an�1 � bn�1q � bn�1 � bn

� 2bn � bn�1

� 2hn�1 � hn�2.

Solving the recurrence is the same as in Method 1. �

Brualdi 7.39.

Solution.
Let hn be the number of ways to perfectly cover a 1 � n board with monominoes and

dominoes in such a way that no two dominoes are consecutive. The initial conditions are
h0 � 1 and h1 � 1. Any covering of a 1 � n board must start with either a monomino or a
domino.

Suppose it starts with a monomino, then there are hn�1 ways to finish the remaining
1� n� 1 board.

Now, suppose it starts with a domino, then the next square must be covered by a
monomino since there cannot be two consecutive dominoes. This means there are hn�3

ways to finish covering the 1� n� 3 board that is left.
This means the recurrence is hn � hn�1 � hn�3 with h0 � 1, h1 � 1 and h2 � 2.
In case you were wondering why we don’t want to solve this, the solution is on the next

page. �



This is the solution to the recurrence in the last problem (Brualdi 7.39).
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Brualdi 7.52.

Solution.
(b) Iterating the recurrence yields

hn � 5hn�1 � 5n

� 5p5hn�2 � 5nq � 5n

� 52hn�2 � 5n�1 � 5n

� 52p5hn�3 � 5nq � 5n�1 � 5n

� 53hn�3 � 5n�2 � 5n�1 � 5n

� 5nh0 � 52n�1 � 52n�2 � � � � � 5n�1 � 5n

� 3 � 5n � 5np1� 5� 52 � � � � � 5n�1q
� 3 � 5n � 5n � 5n � 1

4

� 1

4
5np5n � 11q
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Extra Problem #1.

Solution.
To find the generating function for the nonnegative integral solutions to 3e1�7e2�3e3�

5e4 � n, we reformat this as f1� f2� f3� f4 � n where f1 is a multiple of 3, f2 is a multiple
of 7, f3 is a multiple of 3 and f4 is a multiple of 5. Thus we have that the generating function
is

gpxq � p1� x3 � x6 � � � � qp1� x7 � x14 � � � � qp1� x3 � x6 � � � � qp1� x5 � x10 � � � � q

�
�

1

1� x3


2
1

1� x7
1

1� x5
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