
Math 378 Spring 2011
Assignment 4
Solutions

Brualdi 6.2.

Solution.
The properties are

P1 : is divisible by 4.

P2 : is divisible by 6.

P3 : is divisible by 7.

P4 : is divisible by 10.

Preparing to use inclusion-exclusion, we observe that

|A1 ∩ A2| =
⌊

10000

12

⌋
= 833

|A1| =
⌊

10000

4

⌋
= 2500 |A1 ∩ A3| =

⌊
10000

28

⌋
= 357 |A1 ∩ A2 ∩ A3| =

⌊
1000

84

⌋
= 119

|A2| =
⌊

10000

6

⌋
= 1666 |A1 ∩ A4| =

⌊
10000

20

⌋
= 500 |A1 ∩ A2 ∩ A4| =

⌊
1000

60

⌋
= 166

|A3| =
⌊

10000

7

⌋
= 1428 |A2 ∩ A3| =

⌊
10000

42

⌋
= 238 |A1 ∩ A3 ∩ A4| =

⌊
1000

140

⌋
= 71

|A4| =
⌊

10000

10

⌋
= 1000 |A2 ∩ A4| =

⌊
10000

30

⌋
= 333 |A2 ∩ A3 ∩ A4| =

⌊
1000

210

⌋
= 47

|A3 ∩ A4| =
⌊

10000

70

⌋
= 142

|A1 ∩ A2 ∩ A3 ∩ A4| =
⌊

10000

420

⌋
= 23

Thus, by inclusion-exclusion, the number of values between 1 and 10,000 inclusive∣∣A1 ∩ A2 ∩ A3 ∩ A4

∣∣ = 10000− (2500 + 1666 + 1428 + 1000) + (833 + 357 + 500 + 238 + 333 + 142)

− (119 + 166 + 71 + 47) + 23

= 5429.

�



Brualdi 6.3.

Solution.
The properties are

P1 : is a perfect square.

P2 : is a perfect cube.

Preparing for inclusion-exclusion, we observe that

|A1| =
⌊√

10000
⌋

= 100 |A1 ∩ A2| =
⌊

6
√

10000
⌋

= 4

|A2| =
⌊

3
√

10000
⌋

= 21

Thus, by inclusion exclusion, we have∣∣A1 ∩ A2

∣∣ = 10000− (100 + 21) + 4 = 9883.

�

Brualdi 6.7.

Solution.
The properties are

P1 : x1 ≥ 9.

P2 : x2 ≥ 9.

P3 : x3 ≥ 9.

P4 : x4 ≥ 9.

Preparing for inclusion-exclusion we note that |A1| = |A2| = |A3| = |A4|. Also, |A1| repre-
sents the number of nonnegative integer solutions of x′ + x2 + x3 + x4 = 5. This number
is
(
8
5

)
= 56. Additionally, no more than one property can hold for a given solution to

x1 + x2 + x3 + x4 = 14 in nonnegative integers.
Thus, by inclusion-exclusion, we have

∣∣A1 ∩ A2 ∩ A3 ∩ A4

∣∣ =

(
17

14

)
− 4 ·

(
8

5

)
= 680− 4 · 56 = 456.
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Brualdi 6.9.

Solution.
To account for the lower bounds we realize that this is equivalent to the number of

nonnegative integer solutions to y1 + y2 + y3 + y4 = 13 where y1 ≤ 5, y2 ≤ 7, y3 ≤ 4, y4 ≤ 4.
The properties are

P1 : y1 ≥ 6.

P2 : y2 ≥ 8.

P3 : y3 ≥ 5.

P4 : y4 ≥ 5.

Preparing for inclusion exclusion, we observe that

|A1 ∩ A2| = 0

|A1| =
(

10

7

)
|A1 ∩ A3| =

(
5

2

)
|A2| =

(
8

5

)
|A1 ∩ A4| =

(
5

2

)
|Ai ∩ Aj ∩ Ak| = 0

|A3| =
(

11

8

)
|A2 ∩ A3| =

(
3

0

)
|A1 ∩ A2 ∩ A3 ∩ A4| = 0

|A4| =
(

11

8

)
|A2 ∩ A4| =

(
3

0

)
|A3 ∩ A4| =

(
6

3

)
Thus, by inclusion-exclusion, we have(

16

13

)
−
((

10

7

)
+

(
8

5

)
+ 2 ·

(
11

8

))
+

(
2 ·
(

5

2

)
+ 2 ·

(
3

0

)
+

(
6

3

))
= 96.

�

Brualdi 6.10.

Solution.
Note that this is the same as finding the number of nonnegative integer solutions of

a1 + a2 + · · · + ak = r where ai ≤ ni. Let Pi be that ai ≥ ni + 1. The existence of an r
combination means r ≤ n1 + n2 + · · ·+ nk. If a solution satisfies all k properties,

a1 + a2 + · · ·+ ak ≥ (n1 + 1) + (n2 + 1) + · · ·+ (nk + 1)

= n1 + n2 + · · ·+ nk + k

> r.

Thus, the number of solutions satisfying all k properties is 0 =⇒ A1∩A2∩· · ·∩Ak = ∅. �



Brualdi 6.12.

Solution.
Choose the 4 elements to move:

(
8
4

)
ways. Then derange those elements: D4 ways. This

makes

(
8

4

)
D4 ways total. �

Brualdi 6.14.

Solution.

By the above argument,

(
n

k

)
Dn−k. �

Brualdi 6.15.

Solution.
(a) D7.
(b) The only thing not allowed is that no gentleman receives his own hat, so 7!−D7.
(c) As in (b), except we also must eliminate when only one receives his own hat, so

7!−D7 −
(

7

1

)
D6. �

Brualdi 6.16.

Solution.
The left hand side counts the number of permutations of {1, 2, . . . , n} in the obvious way.
The right hand side counts the number of permutations of {1, 2, . . . , n} by looking at how

many numbers are in the same position as their value. Summing over all possible numbers
of positions gives the total number of permutations of {1, 2, . . . , n}. �

Brualdi 6.21.

Solution. (By Induction)
Note that D1 = 0 and D2 = 1 satisfying our base cases for induction. Now assume that

Dn is even ⇐⇒ n is odd for k < n.
Method 1:
Consider Dk+1 = k(Dk−2 + Dk−1).
If k + 1 is odd, then k is even so Dk+1 is even.
If k + 1 is even, then k is odd. By our inductive hypothesis, Dk−2 is odd and Dk−1 is

even. This means the sum Dk−2 + Dk−1 is odd. Also, we know that an odd number times
an odd number is odd, so Dk+1 is odd.



Method 2:

Note that
n!

(n− 1)!
is even ⇐⇒ n is even and

n!

k!
for 0 ≤ k < n− 1 is always even (since

n and n− 1 are factors and one must be even). Since

Dn = n!− n!

1
+

n!

2!
− n!

3!
+ · · ·+ (−1)n−1

n!

(n− 1)!
+ (−1)n

We know that all the values are even except possibly the last two. If n is odd, then we have
precisely two odd numbers in the sum, so Dn is even. If n is even, then everything is even
except ±1, so Dn is odd.

Method 3:
Consider Dn = nDn−1 + (−1)n. �

Brualdi 6.29.

Solution.
It is easiest to think of this as giving out tickets: put the people in a line and give out

tickets labeled with the stop number. This is exactly a 10-permutation using the numbers
1 through 6. We are interested when the permutation has at least one of each value. The
properties for inclusion-exclusion would be:

P1 : No one gets out at stop 1.

P2 : No one gets out at stop 2.

P3 : No one gets out at stop 3.

P4 : No one gets out at stop 4.

P5 : No one gets out at stop 5.

P6 : No one gets out at stop 6.

Setting the properties this way shows that the set intersections in inclusion-exclusion will be
symmetric (ie. no one getting out at stops 1 and 2 will be the same number as stops 3 and
5). Inclusion-exclusion is as follows:

|Ai| = 510

|Ai ∩ Aj| = 410

|Ai ∩ Aj ∩ Ak| = 310

|Ai ∩ Aj ∩ Ak ∩ Al| = 210

|Ai ∩ Aj ∩ Ak ∩ Al ∩ Am| = 110

|A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6| = 0

∣∣A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6

∣∣ = 610 −
(

6

1

)
510 +

(
6

2

)
410 −

(
6

3

)
310 +

(
6

4

)
210 −

(
6

5

)
110.

�



Extra Problem #1.
Solution.

(a). Number the girls 1 through 8 and assume they face in a counterclockwise direction.
The forbidden arrangements have one or more of 1 looking at 2, 2 looking at 3, . . . , or 8
looking at 1. Consider the following properties:

P12 : The rearrangement has 1 looking at 2.

P23 : The rearrangement has 2 looking at 3.

...

P81 : The rearrangement has 8 looking at 1.

There is an easy and a hard way to think about the rest:
Hard Way: Since the animal seats are distinct, there are 7! · 8 = 8! arrangements total.

Note that |A12| is equivalent to the number of arrangements of
{

12 , 3, 4, 5, 6, 7, 8
}

, so 8 · 6!.

This is because we look at a circular permutation of these 7 objects (6!) but the starting
point matters, so there are 8 of each. This is similar for all |Aij|.

Let’s think about the possible two way intersections. Consider |A12 ∩ A34|. This is the

number of arrangements of
{

12 , 34 , 5, 6, 7, 8
}

so a similar argument gives 8 · 5!. If we

consider |A12 ∩ A23|, we have the number of arrangements of
{

123 , 4, 5, 6, 7, 8
}

or 8 · 5!

also.
Now for three way intersections. The types of possibilities are as follows:

Consider |A12 ∩ A34 ∩ A56|. This is the number of arrangements of
{

12 , 34 , 56 , 7, 8
}

.

This is 8·4!. Consider |A12 ∩ A23 ∩ 45|. This is the number of arrangements of
{

123 , 45 , 6, 7, 8
}

which is 8·4!. Consider |A12 ∩ A23 ∩ A34|. This is the number of arrangements of
{

1234 , 5, 6, 7, 8
}

which is 8 · 4!.
Continue ad nauseam. OR
Easy Way: The “easier” way to think about this is that for each property satisfied,

we reduce the number of objects in the circular permutation by one. Thus we have that if
we want the number of permutations satisfying k properties, we find the number of circular
permutations of 8−k objects, ( (8−k−1)! ways) and then account for the 8 different starting
positions when finding the arrangements. This doesn’t work for k = 8, but to satisfy all 8
properties there is only one circular permutation, but starting position matters so there are
8 arrangements.



Either way we have (by inclusion-exclusion),

= 8!−
(

8

1

)
8 · 6! +

(
8

2

)
8 · 5!−

(
8

3

)
8 · 4! +

(
8

4

)
8 · 3!−

(
8

5

)
8 · 2! +

(
8

6

)
8 · 1!

−
(

8

7

)
8 · 0! +

(
8

8

)
8 · 1

= 8
[
7!−

(
8

1

)
6! +

(
8

2

)
5!−

(
8

3

)
4! +

(
8

4

)
3!−

(
8

5

)
2! +

(
8

6

)
1!−

(
8

7

)
0! +

(
8

8

)
1
]

(?)

Note the similarity between these and Qn (in particular Q7 and Q8). �

(b). If all the seats are identical, we divide (?) by 8 so we get:

Number of rearrangements = 7!−
(

8

1

)
6! +

(
8

2

)
5!−

(
8

3

)
4!

+

(
8

4

)
3!−

(
8

5

)
2! +

(
8

6

)
1!−

(
8

7

)
0! +

(
8

8

)
1.

�

(c). If the girls are facing in a line, this is exactly Q8 as discussed in class. �

(d). Qn. �



Extra Problem #2.
Solution.

(a). This is a 6 × 6 board. We can regard the non-attacking rooks as permutations of
{1, . . . , 6} where the ith position indicates the row of the rook in column i for i = 1, . . . , 6.
The forbidden spots relate to the following properties:

P11 : There is a 1 in position 1 of the permutation. (ie. a rook is placed at (1,1)).

P12 : There is a 1 in position 2 of the permutation. (ie. a rook is placed at (1,2)).

P23 : There is a 2 in position 3 of the permutation.

P24 : There is a 2 in position 4 of the permutation.

P35 : There is a 3 in position 5 of the permutation.

P36 : There is a 3 in position 6 of the permutation.

Further, note that for i, k,m distinct, j = 1, 2, l = 3, 4, n = 5, 6:

|Aij| = 5!

|Aij ∩ Akl| = 4!

|Aij ∩ Akl ∩ Amn| = 3!

By inclusion-exclusion, we have

Number of ways to place the rooks = 6!− 6 · 5! +

(3
2)·22︷︸︸︷
12 ·4!−

23︷︸︸︷
8 ·3!

= 240.

�

(b). This is an 8× 8 board and we want permutations where 1 is not in position 1, 2 is not
be in position 2,. . ., 8 is not be in position 8. This is precisely D8. �

(c). The probability of (b) happening is
D8

8!
=

14833

40320
= .367881944.

Interestingly, lim
x→∞

Dn

n!
=

1

e
= .36787944117 . . . �

Extra Problem #3.

Solution.
Inclusion-exclusion states that we would take the pairwise intersections and subtract the

three way intersections. This means that would like to maximize the pairwise intersections
while minimizing the three way intersections. Let the figures be C1, C2 and T . The maximum



number of intersections for these types of figures (since C1 ∩C2 is not allowed to be∞ since
the circles are distinguishable) is given below.

max(|C1 ∩ C2|) = 2

max(|Ci ∩ T |) = 6, for i = 1, 2.

If we can realize these maxima while keeping |C1 ∩ C2 ∩ T | = 0, then we have clearly found
the maximum number of points belonging to at least two of these figures which would be
6 + 6 + 2 = 14. This can be done as in the picture below.

�


