Math 378 Spring 2011 Assignment 3 Solutions

Brualdi 5.7.

Solution.
Take $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$ and set $x=2, y=1$. Also, $\sum_{k=0}^{n} r^{k}=(r+1)^{n}$.

Brualdi 5.8.

Solution.
Setting $y=3$ and $x=-1$ in the binomial theorem to get $2^{n}=(3-1)^{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 3^{n-k}$.

Brualdi 5.9.

Solution.

Setting $x=1$ and $y=-10$ in the binomial theorem gives $(-9)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-10)^{k}=$ $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 10^{k}$.

Brualdi 5.11.

Solution.

Both sides count the number of k-subsets containing at least one of x, y, and z (ie. subsets of size k that have non-empty intersection with $\{x, y, z\})$ of an n-set containing x, y, and z.

The LHS counts all the k-subsets and removes the number without x, y, z.
For the RHS, $\binom{n-1}{k-1}$ counts the number of k-subsets containing $x ;\binom{n-2}{k-1}$ is the number of k-subsets not containing x, but containing $y ;\binom{n-2}{k-1}$ is the number of k-subsets containing neither x nor y, but containing z.

Brualdi 5.12.

Solution.
If n is odd, then the terms $(-1)^{k}\binom{n}{k}^{2}$ and $(-1)^{n-k}\binom{n}{n-k}^{2}$ cancel, so the sum is 0 .
If n is even, let $n=2 m$. Following the hint, if we expand the LHS by the binomial theorem, we have:

$$
\begin{aligned}
\left(1-x^{2}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k}\left(-x^{2}\right)^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{2 k}
\end{aligned}
$$

and so we can find the coefficient of x^{n} by setting $2 k=n=2 m \Longrightarrow k=m$ which gives a coefficient of $(-1)^{m}\binom{2 m}{m}$.

If we expand both factors on the RHS by the binomial theorem, and then take their product, we have:

$$
(1+x)^{n}(1-x)^{n}=\left[\sum_{k=0}^{n}\binom{n}{k} x^{n}\right]\left[\sum_{j=0}^{n}\binom{n}{k}(-1)^{j} x^{j}\right]
$$

This gives a coefficient of x^{n} whenever $k+j=n$, so the coefficient of x^{n} is

$$
\begin{aligned}
& \underbrace{\binom{n}{n}(-1)^{0}\binom{n}{0}}_{k=n, j=0}+\underbrace{\binom{n}{n-1}(-1)^{1}\binom{n}{1}}_{k=n-1, j=1}+\cdots+\underbrace{\binom{n}{1}(-1)^{n-1}\binom{n}{n-1}}_{k=1, j=n-1}+\underbrace{\binom{n}{0}(-1)^{n}\binom{n}{n}}_{k=0, j=n} \\
&=(-1)^{0}\binom{n}{0}^{2}+(-1)^{1}\binom{n}{1}^{2}+\cdots+(-1)^{n}\binom{n}{n}^{2} \\
&=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} .
\end{aligned}
$$

Brualdi 5.13.

Solution.
First, the boring derivation.

$$
\begin{aligned}
\binom{n}{k}+3\binom{n}{k-1}+3\binom{n}{k-2}+\binom{n}{k-3} & =\left[\binom{n}{k}+\binom{n}{k-1}\right]+2\left[\binom{n}{k-1}+\binom{n}{k-2}\right] \\
& +\left[\binom{n}{k-2}+\binom{n}{k-2}\right] \\
& =\binom{n+1}{k}+2\binom{n+1}{k-1}+\binom{n+1}{k-2} \\
& =\left[\binom{n+1}{k}+\binom{n+1}{k-1}\right]+\left[\binom{n+1}{k-1}+\binom{n+1}{k-2}\right] \\
& =\binom{n+2}{k}+\binom{n+2}{k-1} \\
& =\binom{n+3}{k} .
\end{aligned}
$$

Now for a more exciting combinatorial argument showing the second of the following two equivalences:

$$
\begin{gather*}
\binom{n}{k}+3\binom{n}{k-1}+3\binom{n}{k-2}+\binom{n}{k-3}=\binom{n+3}{k} \\
\binom{3}{0}\binom{n}{k}+\binom{3}{1}\binom{n}{k-1}+\binom{3}{2}\binom{n}{k-2}+\binom{3}{3}\binom{n}{k-3}=\binom{n+3}{k} \tag{1}
\end{gather*}
$$

The RHS represents the number of k-subsets of a set of size $n+3$.
The LHS counts the number of ways of choosing a k-subset of a set of size $n+3$ with consideration of 3 special elements x, y, and z. Rewriting it in the form of (1) makes the argument easy to see.

Brualdi 5.15.

Solution.

Method 1: Using the committee with chairperson idea, $\binom{n}{k} k=n\binom{n-1}{k-1}$, we have

$$
\begin{aligned}
-\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} k & =-\sum_{k=1}^{n}(-1)^{k} n\binom{n-1}{k-1} \\
& =-n \sum_{j=0}^{n-1}\binom{n-1}{j}(-1)^{j} \\
& =0
\end{aligned}
$$

We have the last equality because the sum is alternating signs of a row of Pascal's Triangle.
Method 2: We use the binomial theorem as follows:

$$
\begin{aligned}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
\frac{d}{d x}\left[(1+x)^{n}\right] & =\frac{d}{d x}\left[\sum_{k=0}^{n}\binom{n}{k} x^{k}\right] \\
n(1+x)^{n} & =\sum_{k=1}^{n} k\binom{n}{k} x^{k-1} \\
x=-1 \Longrightarrow 0 & =\sum_{k=1}^{n} k\binom{n}{k}(-1)^{k-1} .
\end{aligned}
$$

Brualdi 5.18.

Solution.

Method 1: Using the committee with chairperson idea, $\frac{1}{k+1}\binom{n}{k}=\frac{1}{n+1}\binom{n+1}{k+1}$, we have

$$
\begin{aligned}
\sum_{k=0}^{n}(-1)^{k} \frac{1}{k+1}\binom{n}{k} & =\sum_{k=0}^{n}(-1)^{k} \frac{1}{n+1}\binom{n+1}{k+1} \\
& =\frac{1}{n+1} \sum_{j=1}^{n+1}(-1)^{j-1}\binom{n+1}{j} .
\end{aligned}
$$

The sum would be 0 if we started at $j=0$. We are missing one term, so we have

$$
\begin{aligned}
\frac{1}{n+1} \sum_{j=1}^{n+1}(-1)^{j-1}\binom{n+1}{j} & =\frac{1}{n+1}\binom{n+1}{0} \\
& =\frac{1}{n+1}
\end{aligned}
$$

There is another method of solution (possibly easier) which is as follows:

Method 2: Using the binomial theorem, we have

$$
\begin{aligned}
(1+x)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
\int_{0}^{t}(1+x)^{n} d t & =\int_{0}^{t} \sum_{k=0}^{n}\binom{n}{k} x^{k} d t \\
{\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{t} } & =\left[\sum_{k=0}^{n}\binom{n}{k} x^{k+1} \frac{1}{k+1}\right]_{0}^{t} \\
\frac{(1+t)^{n+1}}{n+1}-\frac{1}{n+1} & =\sum_{k=0}^{n}\binom{n}{k} t^{k+1} \frac{1}{k+1} \\
t=-1 \Longrightarrow-\frac{1}{n+1} & =\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k+1}\binom{n}{k} \\
\frac{1}{n+1} & =\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}\binom{n}{k}
\end{aligned}
$$

Brualdi 5.19.

Solution.

$$
\begin{aligned}
\sum_{m=1}^{n} m^{2}=\sum_{m=1}^{n}\left[2\binom{m}{2}+\binom{m}{1}\right] & =2 \sum_{m=1}^{n}\binom{m}{2}+\sum_{m=1}^{n}\binom{m}{1} \\
& =2\binom{n+1}{3}+\binom{n+1}{2} \\
& =2 \cdot \frac{(n+1) n(n-1)}{6}+\frac{(n+1) n}{2} \\
& =\frac{n(n+1)}{6}[2(n-1)+3]=\frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

Brualdi 5.25.

Solution.

Both sides count the number of n-subsets of an $\left(m_{1}+m_{2}\right)$-set. Equation (5.16) is the case where $m_{1}=m_{2}=n$.

Brualdi 5.33.

Solution.
The inductive partitioning of an n-set X into $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ chains gives us a systematic way of creating symmetric chain decompositions (this was the second proof of Sperner's Theorem). The decomposition for $X=\{1,2,3,4\}$ is given in the book, so we use the algorithm to produce the $\binom{5}{2}=10$ chains for $X=\{1,2,3,4,5\}$.

$$
\begin{aligned}
\emptyset \subset\{1\} \subset\{1,2\} & \subset\{1,2,3\} \subset\{1,2,3,4\} \subset\{1,2,3,4,5\} \\
\{5\} \subset\{1,5\} & \subset\{1,2,5\} \subset\{1,2,3,5\} \\
\{4\} \subset\{1,4\} & \subset\{1,2,4\} \subset\{1,2,4,5\} \\
\{4,5\} & \subset\{1,4,5\} \\
\{2\} \subset\{2,3\} & \subset\{2,3,4\} \subset\{2,3,4,5\} \\
\{2,5\} & \subset\{2,3,5\} \\
\{2,4\} & \subset\{2,4,5\} \\
\{3\} \subset\{1,3\} & \subset\{1,3,4\} \subset\{1,3,4,5\} \\
\{3,5\} & \subset\{1,3,5\} \\
\{3,4\} & \subset\{3,4,5\}
\end{aligned}
$$

Brualdi 5.40.

Solution.

The coefficient of $x_{1}^{3} x_{2}^{3} x_{3} x_{4}^{2}$ is given by the term $\binom{9}{3,3,1,2} x_{1}^{3}\left(-x_{2}\right)^{3}\left(2 x_{3}\right)\left(-2 x_{4}\right)^{2}$ so the coefficient is $-8\binom{9}{3,3,1,2}$.

Extra Problem \#1.

Solution.
The fraction (percentage) of level 5 that is used is $\frac{28}{\binom{8}{5}}=\frac{28}{56}=\frac{1}{2}$ and the fraction (percentage) of level 3 is $\frac{30}{\binom{8}{3}}=\frac{30}{56}$, which means $\sum_{k=0}^{n} \frac{a_{k}}{\binom{n}{k}}>1$. By LYM, this is impossible.

Extra Problem \#2.

Solution.

The number of chains of each length is given in the following chart:

Length	Number
13	$\binom{12}{0}$
11	$\binom{12}{1}-\binom{12}{0}$
9	$\binom{12}{2}-\binom{12}{1}$
7	$\binom{12}{3}-\binom{12}{2}$
5	$\binom{12}{4}-\binom{12}{3}$
3	$\binom{12}{5}-\binom{12}{4}$
1	$\binom{12}{6}-\binom{12}{5}$
Even	0

