\qquad

Math 378 Spring 2011 Assignment 1 Solutions

Brualdi 3.4. Partition the set $\{1,2, \ldots, 2 n\}$ as $\{1,2\},\{3,4\},\{5,6\}, \ldots,\{2 n-1,2 n\}$. There are $n+1$ integers but only n sets, so we must choose two from the same set.

Brualdi 3.5. Partition the set as $\{1,2,3\},\{4,5,6\}, \ldots,\{3 n-2,3 n-1,3 n\}$. Again, n sets and $n+1$ choices so we must choose two from the same set.

Brualdi 3.6. If $n+1$ distinct integers are chosen from $\{1,2, \ldots, k n\}$, then there are two which differ by at most $k-1$.

Brualdi 3.7. Suppose we have 52 of them such that no difference is divisible by 100 . Then they have distinct remainders when divided by 100. There are 100 possible such remainders. Partition them into 51 sets: $\{0\},\{50\},\{1,99\},\{2,98\},\{3,97\}, \ldots,\{49,51\}$. We must choose two from the same part and their sum is divisible by 100 .

Brualdi 3.10. For each $i \in\{1,2, \ldots, 49\}$, let a_{i} be the total number of hours watched in the first i days. Then $a_{1}, a_{2}, \ldots, a_{4} 9$ are distinct positive integers less than or equal to 77 and $a_{1}+20, a_{2}+20, \ldots, a_{4} 9+20$ are distinct and at most 97 . So we have 98 integers from $\{1,2, \ldots, 97\}$ which means two are equal. In other words, $a_{i}=a_{j}+20$ for some i and j, so the child watches exactly 20 hours on days $j+1, j+2, \ldots, i$.

Brualdi 3.16. It seems the possible number of acquaintances is $\{0,1, \ldots, n-1\}$ (n possibilities). However, if someone knows nobody, then no one knows $n-1$ people and vice-versa, so there are only $n-1$ possibilities. Thus, two people must know the same number.

Brualdi 3.17.

There are 5 points and 4 squares, so two points must go in the same square. The distance between those two points is at most $\sqrt{2}$.

Brualdi 3.18.

There are 10 points and 9 triangles, so two points must go in the same triangle. The distance between those two points is at most $\frac{1}{3}$.

Extra Problem 1. $r(2,2,2,6)=6$. This is because as soon as we use the first, second, or third color, we are done (ie. $K_{6} \rightarrow K_{2}, K_{2}, K_{2}, K_{6}$). Also, $K_{5} \nrightarrow K_{2}, K_{2}, K_{2}, K_{6}$ since all edges could be the fourth color.

Extra Problem 2. Let $a_{1}, a_{2}, \ldots, a_{N}$ be the sequence and the vertices of a K_{N}. We color the edges as follows:

$$
\text { For } i<j, \text { color the edge }\left\{\begin{array}{l}
\text { red, if } a_{i}<a_{j} \\
\text { blue, if } a_{i}>a_{j} .
\end{array}\right.
$$

If $N=r(m, n)$, then there is either a red K_{m} or a blue K_{n}. A red K_{m} gives an increasing subsequence of length m, while a blue K_{n} gives a decreasing subsequence of length n.

Extra Problem 3. There are many ways. Here's one: $6,5,4,3,2,1,12,11,10,9,8,7, \ldots$, $36,35,34,33,32,31$. Also, it's reversal or $6,12,18,24,30,36,5,11,17,23,29,35, \ldots$, $1,7,13,19,25,31$.

Note that for all of these, if you form the sequence $m_{1}, m_{2}, m_{3}, \ldots, m_{36}$ where m_{i} is the length of a longest increasing subsequence with first term a_{i}, then each integer $1,2,3,4,5$, and 6 appears precisely 6 times in the m_{i} sequence.

