1. Consider the statement "If n is a prime and $n>2$, then n is odd" where $n \in \mathbb{N}$.
(a) (8 points) Write the negation of the statement. Is the negation of the statement true or false? Provide a counterexample or some short explanation.

Solution: " n is prime and $n>2$ and n is even."
This statement is false since any even $n>2$ has a factor of 2 and so is not prime. Another possibility is that if any prime larger than 2 can be written as $2 n$ for some integer n (ie. is not even), then it would have a factor of 2 (contradicting the fact that it was prime).
(b) (8 points) Write the contrapositive of the statement. Is the contrapositive of the statement true or false? Provide a counterexample or some short explanation.

Solution: "If n is even, then n is not prime or $n \leq 2$."
This statement is true. Note that for all even $n \in \mathbb{N}$, either $n=2$ or $n>2$. For $n=2$, the statement holds (since $n \leq 2$). For even $n>2$, since n is even, $n=2 k$ for some integer k. This means n has a factor of 2 which means n is not prime.
2. (12 points) Prove that the square of any odd integer j can be written in the form $8 k+1$ for some $k \in \mathbb{Z}$. In other words: "If j is an odd integer, there exists an integer k such that $j^{2}=8 k+1$."

Solution: Let j be an odd integer. This means there exists a value $x \in \mathbb{Z}$ such that $j=2 x+1$. Consider j^{2}.

$$
j^{2}=(2 x+1)^{2}=4 x^{2}+4 x+1=4 x(x+1)+1 .
$$

Note that x is either even or odd. Thus, $x(x+1) / 2=k$ is an integer and so we can write $j^{2}=8 k+1$ where $k \in \mathbb{Z}$.
3. (8 points) Let n be an integer. Use contraposition to prove that if n is not even, then $n+1$ is not odd.

Solution: The contrapositive statement is "if $n+1$ is odd, then n is even." Let $n+1$ be odd. This means that $n+1=2 k+1$ for some $k \in \mathbb{Z}$. Subtracting 1 from both sides, we have $n=2 k$ which, since $k \in \mathbb{Z}$, shows n is even.
4. Express each of the following sums using summation notation.
(a) (4 points) $4+5+6+7$

Solution: One possibility is $\sum_{i=4}^{7} i$.
(b) (5 points) $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{20}$

Solution: One possibility is $\sum_{i=1}^{10} \frac{1}{2 i}$.
(c) $(5$ points $) 5+9+13+17+21+\cdots+49$

Solution: One possibility is $\sum_{i=0}^{11}(4 i+5)$. Another is $\sum_{i=1}^{12}(4 i+1)$.
5. (10 points) Prove that for $t \in \mathbb{N}$,

$$
\left(\frac{t(t+1)}{2}\right)^{2}+(t+1)^{3}=\left(\frac{(t+1)[(t+1)+1]}{2}\right)^{2}
$$

(Hint: Do not use induction.)

Solution: Notice that

$$
\begin{aligned}
\left(\frac{t(t+1)}{2}\right)^{2}+(t+1)^{3} & =\left(\frac{(t+1)^{2}}{2}\right)\left[t^{2}+4(t+1)\right] \\
& =\left(\frac{(t+1)^{2}}{2}\right)\left[t^{2}+4 t+4\right] \\
& =\left({\left.\frac{(t+1)^{2}}{2}\right)[t+2]^{2}}^{2}\right) \\
& =\left(\frac{(t+1)^{2}}{2}\right)[(t+1)+1]^{2} \\
& =\left(\frac{(t+1)[(t+1)+1]}{2}\right)^{2}
\end{aligned}
$$

6. (10 points) Prove that $\sum_{i=1}^{n}(2 i-1)=n^{2}$ for all $n \in \mathbb{N}$.

Solution: There are 3 different methods for this:
Method \#1: [By Induction] Base Case: Notice that $\sum_{i=1}^{1}(2 i-1)=1=1^{2}$.
Inductive Step: Assume $\sum_{i=1}^{n-1}(2 i-1)=(n-1)^{2}$. Consider $\sum_{i=1}^{n}(2 i-1)$.

$$
\begin{aligned}
\sum_{i=1}^{n}(2 i-1) & =\sum_{i=1}^{n-1}(2 i-1)+(2 n-1) \\
& =(n-1)^{2}+(2 n-1) \\
& =n^{2}-2 n+1+(2 n-1) \\
& =n^{2}
\end{aligned}
$$

Thus, the inductive step holds and so $\sum_{i=1}^{n}(2 i-1)=n^{2}$ for all $n \in \mathbb{N}$.
Method \#2: Let $S=\sum_{i=1}^{n}(2 i-1)$. We list two copies of the sum, one above the other

$$
\begin{array}{cccccccc}
1 & + & 3 & + & 5 & + & \cdots & + \\
(2 n-1) & + & (2(n-1)-1) & + & (2(n-2)-1) & + & \cdots & + \\
(2 n-1)
\end{array}
$$

This shows that

$$
\begin{aligned}
2 S & =\underbrace{2 n+\cdots+2 n}_{n \text { terms }} \\
2 S & =n(2 n) \\
2 S & =2 n^{2} \\
S & =n^{2} .
\end{aligned}
$$

Method \#3: Consider $2 n^{2}$ points in a grid with $2 n$ rows and n columns. Counted by columns, there are $2 n^{2}$ points. We can also group the points into two disjoint subsets with columns of sizes $1,3,5, \ldots, 2 n-1$.

