- 1. Consider $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6\}$ and $C = \{1, 2\}$ as subsets of $[9] = \{1, 2, \dots, 9\}$.
 - (a) (2 points) Is $2 \in A$? <u>Yes</u>
 - (b) (2 points) Is $2 \in B$? No
 - (c) (3 points) Is $2 \subseteq A$? No
 - (d) (3 points) Is $\{2\} \subseteq A$? <u>Yes</u>
 - (e) (3 points) Is $\emptyset \in A$? No
 - (f) (3 points) Is $\emptyset \subseteq A$? <u>Yes</u>
 - (g) (4 points) Find $A \cup B$.

Solution: $A \cup B = \{1, 2, 3, 4, 5, 6\}$

(h) (4 points) Find $A \cap B$.

Solution: $A \cap B = \{4, 5\}$

(i) (4 points) Find $B \cap C$.

Solution: $B \cap C = \emptyset$

(j) (4 points) Find $A \setminus C$.

Solution: $A \setminus C = \{3, 4, 5\}$

(k) (4 points) Find $\mathcal{P}(C)$.

Solution: $\mathcal{P}(C) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

(l) (4 points) Is $A \subseteq B$? Why or why not.

Solution: No, because $1, 2, 3 \in A$ but $1, 2, 3 \notin B$.

(m) (4 points) Is $C \subseteq A$? Why or why not.

Solution: Yes. All of the elements of C are also elements of A.

(n) (6 points) Let $A \triangle B = (A \cup B) \setminus (A \cap B)$. This is called the *symmetric difference* of A and B. Find $A \triangle B$.

Solution: $A \triangle B = \{1, 2, 3, 6\}$

2. (a) (3 points) Let O be the set of all odd integers. Write, using set notation, the set of all odd integers.

Solution: The set of odd integers is $O = \{2k + 1 \mid k \in \mathbb{Z}\}.$

(b) (8 points) Write, using set notation, **two different representations** of a set that contains the quotients of any two odd integers.

Solution: Two different representations of this set would be $\left\{\frac{m}{n} \mid m, n \in O\right\}$ or $\left\{\frac{2k+1}{2j+1} \mid j, k \in \mathbb{Z}\right\}$.

(c) (4 points) Is the set from part (b) equal to \mathbb{Q} ? Why or why not.

Solution: The set from part (b) is not equal to \mathbb{Q} . One of the reasons why is because $\frac{1}{2}$ is not an element of the set from part (b). How do we know? Suppose we could represent $\frac{1}{2}$ as a quotient of two odd numbers, this would mean $\frac{1}{2} = \frac{m}{n}$ where m and n are odd. However, since this reduces to $\frac{1}{2}$, we have that n = 2m. But this means that n is even. $\frac{1}{2}$. Thus, $\frac{1}{2}$ cannot be in the set from part (b).

3. (10 points) A fraternity has a rule for new members: each must always tell the truth or always lie. They know who does which. If I meet three of them on the street and they make the following statements, which ones (if any) should I believe? Explain your reasoning.

A says: "All three of us are liars."

B says: "Exactly two of us are liars."

C says: "The other two are liars."

Solution: Notice that A must be a liar, since if we believe him, he contradicts himself. Since he is a liar this means that it must be false that all three of them are liars which means that either B or C are truth tellers (or both).

Now, C claims "The other two are liars". If we believe him, then B is telling the truth, which means C must be a liar.

Now, we can see that B is making a true statement and so he must be a truth teller. Therefore, we should only believe B. 4. (10 points) Show that the logical expression S is equivalent to the logical expression $\sim S \implies (R \land \sim R).$

		\frown					
	S	$\langle \leftrightarrow \rangle$	$\sim S$	\Rightarrow	(R	\wedge	$\sim R$)
	Т	\mathbf{T}	F	Т	Т	F	F
Solution:	Т	\mathbf{T}	F	Т	F	\mathbf{F}	Т
	F	\mathbf{T}	Т	F	Т	\mathbf{F}	F
	F	$ \setminus \mathbf{T} $	Т	\mathbf{F}	F	\mathbf{F}	Т

- 5. Provide an argument or counterexample to support the truth value of the following statements.
 - (a) (5 points) $\exists x \in \mathbb{R}, x^2 x = 0.$

Solution: True since the value x = 0 or x = 1 satisfy the equation.

(b) (5 points) $\forall x \in \mathbb{R}, \sqrt{x^2} = x.$

Solution: False, any x < 0 is a counterexample.

(c) (5 points) $\exists x, y \in \mathbb{R}, x + y + 3 = 8.$

Solution: True since x = 0, y = 5 satisfies the equation.

(d) (5 points) $\forall x, y \in \mathbb{R}, x + y + 3 = 8$

Solution: False since $x = y = 0 \in \mathbb{R}$ fails.