1. Consider $A=\{1,2,3,4,5\}, B=\{4,5,6\}$ and $C=\{1,2\}$ as subsets of $[9]=\{1,2, \ldots, 9\}$.
(a) (2 points) Is $2 \in A ? \underline{Y e s}$
(b) (2 points) Is $2 \in B ? \underline{N^{N o}}$
(c) (3 points) Is $2 \subseteq A ? \underline{\text { No }}$
(d) (3 points) Is $\{2\} \subseteq A ? \underline{\text { Yes }}$
(e) (3 points) Is $\emptyset \in A$? No
(f) (3 points) Is $\emptyset \subseteq A ? \underline{\text { Yes }}$
(g) (4 points) Find $A \cup B$.

Solution: $A \cup B=\{1,2,3,4,5,6\}$
(h) (4 points) Find $A \cap B$.

Solution: $A \cap B=\{4,5\}$
(i) (4 points) Find $B \cap C$.

Solution: $B \cap C=\emptyset$
(j) (4 points) Find $A \backslash C$.

Solution: $A \backslash C=\{3,4,5\}$
(k) (4 points) Find $\mathcal{P}(C)$.

Solution: $\mathcal{P}(C)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$
(l) (4 points) Is $A \subseteq B$? Why or why not.

Solution: No, because $1,2,3 \in A$ but $1,2,3 \notin B$.
(m) (4 points) Is $C \subseteq A$? Why or why not.

Solution: Yes. All of the elements of C are also elements of A.
(n) (6 points) Let $A \triangle B=(A \cup B) \backslash(A \cap B)$. This is called the symmetric difference of A and B. Find $A \triangle B$.

Solution: $A \triangle B=\{1,2,3,6\}$
2. (a) (3 points) Let O be the set of all odd integers. Write, using set notation, the set of all odd integers.

Solution: The set of odd integers is $O=\{2 k+1 \mid k \in \mathbb{Z}\}$.
(b) (8 points) Write, using set notation, two different representations of a set that contains the quotients of any two odd integers.

Solution: Two different representations of this set would be $\left\{\left.\frac{m}{n} \right\rvert\, m, n \in O\right\}$ or $\left\{\left.\frac{2 k+1}{2 j+1} \right\rvert\, j, k \in \mathbb{Z}\right\}$.
(c) (4 points) Is the set from part (b) equal to \mathbb{Q} ? Why or why not.

Solution: The set from part (b) is not equal to \mathbb{Q}. One of the reasons why is because $\frac{1}{2}$ is not an element of the set from part (b).
How do we know? Suppose we could represent $\frac{1}{2}$ as a quotient of two odd numbers, this would mean $\frac{1}{2}=\frac{m}{n}$ where m and n are odd. However, since this reduces to $\frac{1}{2}$, we have that $n=2 m$. But this means that n is even. \downarrow. Thus, $\frac{1}{2}$ cannot be in the set from part (b).
3. (10 points) A fraternity has a rule for new members: each must always tell the truth or always lie. They know who does which. If I meet three of them on the street and they make the following statements, which ones (if any) should I believe? Explain your reasoning.

A says: "All three of us are liars."
B says: "Exactly two of us are liars."
C says:"The other two are liars."

Solution: Notice that A must be a liar, since if we believe him, he contradicts himself. Since he is a liar this means that it must be false that all three of them are liars which means that either B or C are truth tellers (or both).

Now, C claims"The other two are liars". If we believe him, then B is telling the truth, which means C must be a liar.
Now, we can see that B is making a true statement and so he must be a truth teller. Therefore, we should only believe B.
4. (10 points) Show that the logical expression S is equivalent to the logical expression $\sim S \Longrightarrow(R \wedge \sim R)$.

Solution:	S S $\quad \Longleftrightarrow$		$[\sim S$	\Longrightarrow	(R	\wedge	$\sim R$)
	T	T	F	T	T	F	F
	T	T	F	T	F	F	T
	F	T	T	F	T	F	F
	F	T	T	F	F	F	T

5. Provide an argument or counterexample to support the truth value of the following statements.
(a) (5 points) $\exists x \in \mathbb{R}, x^{2}-x=0$.

Solution: True since the value $x=0$ or $x=1$ satisfy the equation.
(b) (5 points) $\forall x \in \mathbb{R}, \sqrt{x^{2}}=x$.

Solution: False, any $x<0$ is a counterexample.
(c) (5 points) $\exists x, y \in \mathbb{R}, x+y+3=8$.

Solution: True since $x=0, y=5$ satisfies the equation.
(d) (5 points) $\forall x, y \in \mathbb{R}, x+y+3=8$

Solution: False since $x=y=0 \in \mathbb{R}$ fails.

