Math 283 Spring 2012 Assignment 6 Solutions

Exercise 7.2.

Solution.

An integer written in base 10 is divisible by 5 if and only if the last digit is 0 or 5 . It is divisible by 2 if and only if the last digit is even. The last digit does not determine whether it is divisible by 3 , since 3 is divisible by 3 but 13 is not.

Exercise 7.5.
Solution.
The congruence class of 10^{n} modulo 11 is $(-1)^{n}$, and hence $654321 \equiv-3 \bmod 11$. The first statement follows from the fact that the congruence class of $k l$ is the congruence class of the product of any representatives of the classes of k and l. Hence we can use 1 instead of 10 in forming the product n times. For the subsequent computation,

$$
\begin{aligned}
654321 & \equiv 6(-1)^{5}+5(-1)^{4}+4(-1)^{3}+3(-1)^{2}+2(-1)^{1}+(-1)^{0} \\
& \equiv-6+5-4+3-2+1 \equiv-3 \quad \bmod 11
\end{aligned}
$$

Exercise 7.8.

Solution.

Since $9 \equiv 1 \bmod 8$, we can rewrite $9^{1000} \equiv 1^{1000} \equiv 1 \bmod 8$.
Since $10=2 \cdot 5,10^{1} 000$ is a multiple of $2^{3}=8$, and so the remainder is 0 meaning $10^{1} 000 \equiv 0 \bmod 8$.

Since $11 \equiv 3 \bmod 8$, we have $11^{1000} \equiv\left(3^{2}\right)^{5} 00 \equiv 1^{500} \equiv 1 \bmod 8$.
Exercise 7. 10.

Solution.

We factor $k^{2}-1$ as $(k+1)(k-1)$ and observe since k is odd, both of these are even. Let $k-1=2 m$ for some $m \in \mathbb{Z}$. This means $k^{2}-1=2 m(2 m+2)=4(m(m+1))$. Now, either m is even (in which case 8 divides the product) or m is odd, in which case $m+1$ is even and so 8 divides the product.

Exercise 7.11.

Solution.

(a) This is not an equivalence relation. It satisfies the reflexive and symmetric properties, but not the transitive property: $(2,6) \in R$ and $(6,3) \in R$, but $(2,3) \notin R$.
(b) This is an equivalence relation:

Reflexive property: $x=2^{0} x$.
Symmetric property: if $x=2^{n} y$, then $y=2^{-n} x$.
Transitive property: if $x=2^{n} y$ and $y=2^{m} z$, then $x=2^{n+m} z$.

Exercise 7.12.

Solution.

Reflexive property: x and x belong to the same set A_{i}.
Symmetric property: If x and y belong to A_{i}, then y and x belong to A_{i}.
Transitive property: If x and y belong to A_{i}, and y and z belong to A_{j}, then $i=j$ since y belongs to only one set (since the sets are disjoint). This means that x and z belong to the same set A_{i}.

Exercise 7.15.

Solution.

The error in the "proof" is when it states "Consider x in S. If $(x, y) \in R$, then the symmetric property implies that $(y, x) \in R$. Now the transitive property applied to (x, y) and (y, x) implies that $(x, x) \in R$."

This argument assumes the existence of an element y different from x such that $(x, y) \in R$, however, there need not be such an element.

Exercise 7.17.

Solution.

(a) For $n=1, n^{3}+5 n=6$, which is divisible by 6 . Suppose $m^{3}+5 m$ is divisible by 6 . Then $(m+1)^{3}+5(m+1)=\left(m^{3}+5 m\right)+\left(3 m^{2}+3 m\right)+6$. Notice that $m^{3}+5 m$ is divisible by 6 (inductive hypothesis). Also, $3 m^{2}+3 m=3 m(m+1)$ is divisible by 6 since either m or $m+1$ is even. This means that 6 divides $\left[(m+1)^{3}+5(m+1)\right]$.
(b) Since $5 \equiv-1 \bmod 6$, we have $n^{3}+5 n \equiv n^{3}-n \equiv(n+1) n(n-1) \bmod 6$. Since 3 consecutive integers contain at least one even number and a multiple of 3 , their product is divisible by 6 . Thus $n^{3}+5 n$ is also divisible by 6 .

Exercise 7.18.
Solution.
We factor $2 n^{2}+n$ as $n(2 n+1)$. Since p is prime, this product is a multiple of p if and only if n is a multiple of p or $2 n+1$ is a multiple of p (i.e. $n=\frac{p-1}{2}$).

Exercise 7.20.
Solution.
Since $k \equiv 1 \bmod k-1$, we have $k^{n}-1 \equiv 1^{n}-1 \equiv 0 \bmod k-1$.

Exercise 7.23.
Solution.
The congruence class of 10^{n} modulo 11 is $(-1)^{n}$, since $10 \equiv-1 \bmod 11$. If n is a palindrome with $2 l$ digits, then $n=\sum_{i=0}^{2 l-1} a_{i} 10^{i}$ with $a_{i}=a_{2 l-1-i}$. Since $i+2 l-1-i$ is odd, the parity of i is opposite to the parity or $2 l-1-i$. Therefore, $10^{i}+10^{2 l-1-i} \equiv 0 \bmod 11$. Since $a_{i}=a_{2 l-1-i}$, grouping these pairs gives us that

$$
n=\sum_{i=0}^{l-1} a_{i}\left(10^{i}+10^{2 l-1-i}\right) \equiv \sum_{i=0}^{i-1} a_{i} \cdot 0 \equiv 0 \quad \bmod 11 .
$$

The proof that every integer whose base k representation is a palindrome of even length is divisible by $k+1$ is the same as the above, just replace " 10 " with " k " and " 11 " with " $k+1$ ".

Exercise 7.24.

Solution.
The function $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ defined by $f(x)=x^{2}$ is injective only when $n \leq 2$. If $n>2$, then -1 and 1 are different classes, but $f(-1)=f(1)$.

Exercise 7.28.

Solution.

(a) Each power of 10 is 10 times the previous power, which is congruent to 3 times the previous power when reduced modulo 7 . We therefore have $10 \equiv 3 \bmod 7,10^{2} \equiv 2 \bmod 7$, $10^{3} \equiv-1 \bmod 7,10^{4} \equiv-3 \bmod 7$, and $10^{5} \equiv-2 \bmod 7$.

Using the decimal representation, we obtain

$$
535801 \equiv 5(-2)+3(-3)+5(-1)+8(2)+0(3)+1(1)=-7 \equiv 0 \quad \bmod 7
$$

Exercise 7.33.

Solution.

Out of 1500 soldiers, the number x of soldiers that remain satisfies $x \equiv 1 \bmod 5, x \equiv 3$ $\bmod 7$, and $x \equiv 3 \bmod 11$. Applying the procedure for proving the Chinese Remainder Theorem described in class gives us that:

i	a_{i}	n_{i}	N_{i}	$N_{i} \bmod n_{i}$	y_{i}
1	1	5	77	2	3
2	3	7	55	-1	-1
3	3	11	35	2	6

Then we compute

$$
(1)(77)(3)+(3)(55)(-1)+(3)(35)(6)=231-165+630=696 .
$$

Thus, the set of solutions is the set of integers that are equivalent to $696 \bmod 385$, in other words congruent to 311 mod 385 . Since only a few soldiers deserted, the number remaining should be the largest integer less than 1500 that is congruent to $311 \bmod 385$. Since $311+3 \cdot 385=1466$, we conclude that 34 soldiers deserted.

Exercise 7.34.

Solution.

Since 7,8 and 9 are pairwise relatively prime, we can apply the Chinese Remainder Theorem. We find that

$$
x=\sum a_{i} N_{i} y_{i}=288-3 \cdot 64+5 \cdot 280=1499 \equiv-13 \bmod 504
$$

Thus the number -13 is the desired solution.

Exercise 7.35.

Solution.

The Chinese Remainder Theorem requires relatively prime moduli, which 6 and 8 are not. However, since $x \equiv 3 \bmod 6$ if and only if both $x \equiv 1 \bmod 2$ and $x \equiv 0 \bmod 3$, replacing $x \equiv 3 \bmod 6$ with these two congruences does not change the solutions. Now 2 and 8 are not relatively prime, but $x \equiv 5 \bmod 8$ requires x to be odd, so we can remove $x \equiv 1 \bmod 2$ as a condition. Thus the solutions to the original problem are equivalent to the solutions for $x \equiv 0 \bmod 3, x \equiv 4 \bmod 7, x \equiv 5 \bmod 8$.

The solutions are congruent to $165 \bmod 168$. Interestingly, if instead of $x \equiv 3 \bmod 6$, we had $x \equiv 4 \bmod 6$, there would be no solutions (since this would require $x \equiv 0 \bmod 2$, but $x \equiv 5 \bmod 8 \Longrightarrow x \equiv 1 \bmod 2$).

