Math 283 Spring 2012 Assignment 6 Solutions

Exercise 7.2.

Solution.

An integer written in base 10 is divisible by 5 if and only if the last digit is 0 or 5. It is divisible by 2 if and only if the last digit is even. The last digit does not determine whether it is divisible by 3, since 3 is divisible by 3 but 13 is not.

Exercise 7.5.

Solution.

The congruence class of 10^n modulo 11 is $(-1)^n$, and hence $654321 \equiv -3 \mod 11$. The first statement follows from the fact that the congruence class of kl is the congruence class of the product of any representatives of the classes of k and l. Hence we can use 1 instead of 10 in forming the product n times. For the subsequent computation,

$$654321 \equiv 6(-1)^5 + 5(-1)^4 + 4(-1)^3 + 3(-1)^2 + 2(-1)^1 + (-1)^0$$

$$\equiv -6 + 5 - 4 + 3 - 2 + 1 \equiv -3 \mod 11.$$

Exercise 7.8.

Solution.

Since $9 \equiv 1 \mod 8$, we can rewrite $9^{1000} \equiv 1^{1000} \equiv 1 \mod 8$.

Since $10 = 2 \cdot 5$, $10^1 000$ is a multiple of $2^3 = 8$, and so the remainder is 0 meaning $10^1 000 \equiv 0 \mod 8$.

Since $11 \equiv 3 \mod 8$, we have $11^{1000} \equiv (3^2)^5 \ 00 \equiv 1^{500} \equiv 1 \mod 8$.

Exercise 7.10.

Solution.

We factor $k^2 - 1$ as (k+1)(k-1) and observe since k is odd, both of these are even. Let k - 1 = 2m for some $m \in \mathbb{Z}$. This means $k^2 - 1 = 2m(2m+2) = 4(m(m+1))$. Now, either m is even (in which case 8 divides the product) or m is odd, in which case m + 1 is even and so 8 divides the product.

Exercise 7.11.

Solution.

(a) This is not an equivalence relation. It satisfies the reflexive and symmetric properties, but not the transitive property: $(2, 6) \in R$ and $(6, 3) \in R$, but $(2, 3) \notin R$.

(b) This is an equivalence relation: **Reflexive property:** $x = 2^{0}x$. **Symmetric property:** if $x = 2^{n}y$, then $y = 2^{-n}x$. **Transitive property:** if $x = 2^{n}y$ and $y = 2^{m}z$, then $x = 2^{n+m}z$.

Exercise 7.12.

Solution.

Reflexive property: x and x belong to the same set A_i .

Symmetric property: If x and y belong to A_i , then y and x belong to A_i .

Transitive property: If x and y belong to A_i , and y and z belong to A_j , then i = j since y belongs to only one set (since the sets are disjoint). This means that x and z belong to the same set A_i .

Exercise 7.15.

Solution.

The error in the "proof" is when it states "Consider x in S. If $(x, y) \in R$, then the symmetric property implies that $(y, x) \in R$. Now the transitive property applied to (x, y) and (y, x) implies that $(x, x) \in R$."

This argument assumes the existence of an element y different from x such that $(x, y) \in R$, however, there need not be such an element.

Exercise 7.17.

Solution.

(a) For n = 1, $n^3 + 5n = 6$, which is divisible by 6. Suppose $m^3 + 5m$ is divisible by 6. Then $(m+1)^3 + 5(m+1) = (m^3 + 5m) + (3m^2 + 3m) + 6$. Notice that $m^3 + 5m$ is divisible by 6 (inductive hypothesis). Also, $3m^2 + 3m = 3m(m+1)$ is divisible by 6 since either m or m + 1 is even. This means that 6 divides $[(m+1)^3 + 5(m+1)]$.

(b) Since $5 \equiv -1 \mod 6$, we have $n^3 + 5n \equiv n^3 - n \equiv (n+1)n(n-1) \mod 6$. Since 3 consecutive integers contain at least one even number and a multiple of 3, their product is divisible by 6. Thus $n^3 + 5n$ is also divisible by 6.

Exercise 7.18.

Solution.

We factor $2n^2 + n$ as n(2n + 1). Since p is prime, this product is a multiple of p if and only if n is a multiple of p or 2n + 1 is a multiple of p (i.e. $n = \frac{p-1}{2}$).

Exercise 7.20.

Solution.

Since $k \equiv 1 \mod k - 1$, we have $k^n - 1 \equiv 1^n - 1 \equiv 0 \mod k - 1$.

Exercise 7.23.

Solution.

The congruence class of 10^n modulo 11 is $(-1)^n$, since $10 \equiv -1 \mod 11$. If n is a palindrome with 2l digits, then $n = \sum_{i=0}^{2l-1} a_i 10^i$ with $a_i = a_{2l-1-i}$. Since i + 2l - 1 - i is odd, the parity of i is opposite to the parity or 2l - 1 - i. Therefore, $10^i + 10^{2l-1-i} \equiv 0 \mod 11$. Since $a_i = a_{2l-1-i}$, grouping these pairs gives us that

$$n = \sum_{i=0}^{l-1} a_i (10^i + 10^{2l-1-i}) \equiv \sum_{i=0}^{i-1} a_i \cdot 0 \equiv 0 \mod 11.$$

The proof that every integer whose base k representation is a palindrome of even length is divisible by k + 1 is the same as the above, just replace "10" with "k" and "11" with "k + 1".

Exercise 7.24.

Solution.

The function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $f(x) = x^2$ is injective only when $n \leq 2$. If n > 2, then -1 and 1 are different classes, but f(-1) = f(1).

Exercise 7.28.

Solution.

(a) Each power of 10 is 10 times the previous power, which is congruent to 3 times the previous power when reduced modulo 7. We therefore have $10 \equiv 3 \mod 7$, $10^2 \equiv 2 \mod 7$, $10^3 \equiv -1 \mod 7$, $10^4 \equiv -3 \mod 7$, and $10^5 \equiv -2 \mod 7$.

Using the decimal representation, we obtain

$$535801 \equiv 5(-2) + 3(-3) + 5(-1) + 8(2) + 0(3) + 1(1) = -7 \equiv 0 \mod 7.$$

Exercise 7.33.

Solution.

Out of 1500 soldiers, the number x of soldiers that remain satisfies $x \equiv 1 \mod 5, x \equiv 3 \mod 7$, and $x \equiv 3 \mod 11$. Applying the procedure for proving the Chinese Remainder Theorem described in class gives us that:

i	a_i	n_i	N_i	$N_i \mod n_i$	y_i
1	1	5	77	2	3
2	3	7	55	-1	-1
3	3	11	35	2	6

Then we compute

$$(1)(77)(3) + (3)(55)(-1) + (3)(35)(6) = 231 - 165 + 630 = 696.$$

Thus, the set of solutions is the set of integers that are equivalent to 696 mod 385, in other words congruent to 311 mod 385. Since only a few soldiers deserted, the number remaining should be the largest integer less than 1500 that is congruent to 311 mod 385. Since $311 + 3 \cdot 385 = 1466$, we conclude that 34 soldiers deserted.

Exercise 7.34.

Solution.

Since 7, 8 and 9 are pairwise relatively prime, we can apply the Chinese Remainder Theorem. We find that

$$x = \sum a_i N_i y_i = 288 - 3 \cdot 64 + 5 \cdot 280 = 1499 \equiv -13 \mod 504.$$

Thus the number -13 is the desired solution.

Exercise 7.35.

Solution.

The Chinese Remainder Theorem requires relatively prime moduli, which 6 and 8 are not. However, since $x \equiv 3 \mod 6$ if and only if both $x \equiv 1 \mod 2$ and $x \equiv 0 \mod 3$, replacing $x \equiv 3 \mod 6$ with these two congruences does not change the solutions. Now 2 and 8 are not relatively prime, but $x \equiv 5 \mod 8$ requires x to be odd, so we can remove $x \equiv 1 \mod 2$ as a condition. Thus the solutions to the original problem are equivalent to the solutions for $x \equiv 0 \mod 3$, $x \equiv 4 \mod 7$, $x \equiv 5 \mod 8$.

The solutions are congruent to 165 mod 168. Interestingly, if instead of $x \equiv 3 \mod 6$, we had $x \equiv 4 \mod 6$, there would be no solutions (since this would require $x \equiv 0 \mod 2$, but $x \equiv 5 \mod 8 \implies x \equiv 1 \mod 2$).