\qquad

Math 283 Spring 2012 Assignment 5

To Hand In:

D'Angelo \& West Ch. 4: 2, 18, 20 (a and b), 21, 37, 40, 42, 43, 45, 46, 47, 49

Not To Hand In:

D'Angelo \& West Ch. 4: 1, 4-12, 13, 20 (c), 23, 24, 29, 33, 36, 39, 50, 51

Extra Problems

1. Determine which cubic polynomials from \mathbb{R} to \mathbb{R} are injective.
(Hint: This is easy if calculus is allowed (but it's not!). To avoid calculus, first use geometric arguments to reduce the problem to the case $x^{3}+r x$.)
(Hint 2: I wrote an article in Mathematics Teacher, v101 n 6 p408-11 (Feb 2008) that may help. It is available in the Evansdale Library.)
2. (a) Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(m, n)=2 m+n$. Is the function f an injection? Is the function f a surjection? Prove it.
(b) Let $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $g(m, n)=6 m+3 n$. Is the function g an injection? Is the function g a surjection? Prove it.
3. Prove that if A is countably infinite and B is finite, then $A \backslash B$ is countably infinite.
(Hint: Since $A \backslash B \subseteq A$, this means $A \backslash B$ is countable. Now assume $A \backslash B$ is finite and show that this leads to a contradiction.)
4. Prove that every subset of a countable set is countable.
(Hint: Let S be a countable set and assume that $A \subseteq S$. There are two cases: A is finite or A is infinite. If A is infinite, let $f: S \rightarrow \mathbb{N}$ be a bijection and define $g: A \rightarrow f(A)$ by $g(x)=f(x)$ for each $x \in A$.)
