Math 283 Spring 2012 Assignment 4 Solutions

D'Angelo $\underbrace{3}$ West 3.22.

Solution.

We use induction on n.
When $n=1$, the two sides are equal. When $n=2$, the statement is the ordinary triangle inequality (Proposition 1.3).

For the induction step, suppose that the inequality holds when $n=k$; this is the induction hypothesis. We prove that if $k \geq 2$, then the inequality also holds when $n=k+1$, using the ordinary triangle inequality and the induction hypothesis applied to the first k numbers. We compute

$$
\left|\sum_{i=1}^{k+1} a_{i}\right|=\left|a_{k+1}+\sum_{i=1}^{k} a_{i}\right| \leq\left|a_{k+1}\right|+\left|\sum_{i=1}^{k} a_{i}\right| \leq\left|a_{k+1}\right|+\sum_{i=1}^{k+1}\left|a_{i}\right|=\sum_{i=1}^{k+1}\left|a_{i}\right| .
$$

D'Angelo ${ }^{63}$ West 3.26.

Solution.

We use induction on n.
Basis step: $a_{1}=1=1^{3}-1+1$.
Induction step: Given that $a_{k}=k^{3}-k+1$, we have

$$
a_{k+1}=a_{k}+3 k(k+1)=k^{3}-k+1+3 k^{2}+3 k=(k+1)^{3}-k=(k+1)^{3}-(k+1)+1 .
$$

D'Angelo ${ }^{6}$ West 3.33.

Solution.

The number of closed subintervals with integer endpoints contained in the interval $[1, n]$ (including one-point intervals) is $\frac{n(n+1)}{2}$. This is because there are $n-i$ subintervals of length i, for $1 \leq i \leq n-1$.Thus the total count is the sum of the integers from 1 (when $i=n-1$) to n (when $i=0$).

D'Angelo © West 3.35.

Solution.

When $n=1$, the formula reduces to 1 , which is $\sum_{i=1}^{0} q^{i}$, To prove the formula for a positive integer $n=k$ assuming it holds when $n=k-1$, we have

$$
\sum_{i=0}^{k} q^{i}=q^{k}+\sum_{i=0}^{k-1} q^{i}=q^{k}+\frac{q^{k}-1}{q-1}=\frac{q^{k+1}-q^{k}+q^{k}-1}{q-1}=\frac{q^{k+1}-1}{q-1}
$$

D'Angelo ${ }^{6}$ West 3.37.

Solution.

Based on $\# 35$, we have $\sum_{i=1}^{n} n^{i}=\sum_{i=0}^{n} n^{i}-1=\frac{n^{n+1}-1}{n-1}-1=\frac{n^{n+1}-n}{n-1}$.
D'Angelo © West 3.39.

Solution.

Let a_{n} be the number of dots in the hexagonal array S_{n} with n rings. We use summation formulas for the first m integers and the first m squares to compute a_{n} and $\sum_{k=0}^{n} a_{k}$. As illustrated, $a_{1}=1$. Beyond that, ring i adds $6(i-1)$ dots, so $a_{n}=1+\sum_{i=2}^{n} 6(i-1)=$ $1+6 \sum_{i=1}^{n-1} i=1+3 n(n-1)$ for $n \geq 1$. Furthermore,

$$
\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(1-3 k+3 k^{2}\right)=n-3 \frac{n(n+1)}{2}+3 \frac{n(n+1)(2 n+1)}{6} .
$$

After some algebraic effort, this simplifies to n^{3}. The answer n^{3} can be explained directly by viewing S_{n} as the "front" of a cubical array of dots viewed from the vertex of 3 sides as illustrated below.

D'Angelo © West 3.43.

Solution.

With $x=1, y=1$, we have

$$
\begin{aligned}
f(1 \cdot 1) & =1 \cdot f(1)+1 \cdot f(1) \\
f(1) & =f(1)+f(1) \\
0 & =f(1) .
\end{aligned}
$$

For the second statement, we use induction on n.
Basis step: For $n=1$, we have $f\left(x^{1}\right)=f(x)+x f(1)=f(x)=1 x^{0} f(x)=n x^{n-1} f(x)$. Induction step: For $n>1$, we use the induction hypothesis for $n-1$ to compute

$$
\begin{aligned}
f\left(x^{n}\right) & =f\left(x \cdot x^{n-1}\right) \\
& =x f\left(x^{n-1}\right)+x^{n-1} f(x) \\
& =x(n-1) x^{n-2} f(x)+x^{n-1} f(x) \\
& =(n-1) x^{n-1} f(x)+x^{n-1} f(x) \\
& =n x^{n-1} f(x) .
\end{aligned}
$$

D'Angelo 63 West 3.46.
Solution.
For $n=1$, the condition is $x+x<x^{2}$. When x is positive, this is equivalent to $x>2$. Thus, the condition $x>2$ is necessary. We can now either proceed by induction or do a direct proof. Both are shown below.

Method \#1: [Induction on n]. Basis step ($\mathrm{n}=1$): done above.
Inductive step: Suppose that $x^{n+1}>x^{n}+x$. Since $x>2$, we have $x^{2}>x$. Thus

$$
x^{n+2}=x\left(x^{n+1}\right)>x\left(x^{n}+x\right)=x^{n+1}+x^{2}>x^{n+1}+x .
$$

Method \#2: (Direct proof for all $n \in \mathbb{N}$). Since $x>2$, we have $1 / x^{n-1} \leq 1$, and thus $1+1 / x^{n-1} \leq 2<x$. Since $x>0$, we can multiply both sides by x^{n} to obtain $x^{n}+x<x^{n+1}$.

D'Angelo \mathfrak{E}^{2} West 3.53.
Solution.
Basis step: When $n=0, f$ is a constant function, and we are given $c=f(0)$, so f is defined by $f(x)=c$.

Induction step: Suppose that $n \geq 1$. Given a polynomial f such that $f(n)=c$, let g be the polynomial defined by $g(x)=f(x)-c$. Since $g(n)=0$, Theorem 3.24 gives us that
$g(x)=(x-n) h(x)$, where h is a polynomial of degree $n-1$. If we can determine h, then we can determine f by $f(x)=(x-n) h(x)+c$.

Notice that since h is of degree $n-1$ we are almost where we can use the inductive hypothesis, however, we need to be able to compute the values $h(0), h(1), \ldots, h(n-1)$ first to satisfy the conditions of the inductive hypothesis. Since $h(x)=\frac{g(x)}{x-n}$ when $x \neq n$, then we have $h(i)=\frac{f(i)-c}{i-n}$ for $i=1, \ldots, n-1$. Since we know these values of f, we can obtain the values of $h(0), \ldots, h(n-1)$. This means the inductive hypothesis holds and so we can determine f.

