Math 283 Spring 2012
Assignment 4 Solutions

D’Angelo & West 3.22.

Solution.

We use induction on n.

When n = 1, the two sides are equal. When n = 2, the statement is the ordinary triangle
inequality (Proposition 1.3).

For the induction step, suppose that the inequality holds when n = k; this is the induction
hypothesis. We prove that if £ > 2, then the inequality also holds when n = k + 1, using
the ordinary triangle inequality and the induction hypothesis applied to the first & numbers.
We compute
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D’Angelo & West 3.26.

Solution.
We use induction on n.
Basis step: a; =1 =13 —1+1.
Induction step: Given that a;, = k% — k 4 1, we have

apr1=ap +3k(k+1) =k —k+1+3k*+3k=(k+1)° —k=(k+1)° - (k+1) + 1.

[
D’Angelo & West 3.33.
Solution.
The number of closed subintervals with integer endpoints contained in the interval [1,n]

n(n+1)

(including one-point intervals) is . This is because there are n — i subintervals of

length ¢, for 1 < i < n — 1.Thus the total count is the sum of the integers from 1 (when
i=n—1)ton (when i =0). |



D’Angelo & West 3.35.

Solution. .

When n = 1, the formula reduces to 1, which is Z q', To prove the formula for a positive
i=1
integer n = k assuming it holds when n = k — 1, we have
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D’Angelo & West 3.37.
Solution.
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D’Angelo & West 3.39.

Solution.
Let a,, be the number of dots in the hexagonal array S,, with n rings. We use summation

formulas for the first m integers and the first m squares to compute a, and Zak. As

k=0
illustrated, a; = 1. Beyond that, ring i adds 6(¢ — 1) dots, so a, = 1+ > ,6(i — 1) =
1+63""i=1+3n(n—1) for n > 1. Furthermore,

. o nn+1) _nn+1)(2n+1)
> ap=>) (1-3k+3k)=n-3 +3 .

After some algebraic effort, this simplifies to n®. The answer n? can be explained directly
by viewing 5,, as the “front” of a cubical array of dots viewed from the vertex of 3 sides as

illustrated below. [ |
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D’Angelo & West 3.435.

Solution.
With z =1,y = 1, we have

S =1-f(1)+1-f(1)
S =f1)+fQ1)
0= f(1).
For the second statement, we use induction on n.
Basis step: For n = 1, we have f(z!) = f(z) + zf(1) = f(z) = 12°f(z) = na"" f(z).

Induction step: For n > 1, we use the induction hypothesis for n — 1 to compute

fa") = flz-a"h)
=af(a"™) + 2" f(2)
=a2(n— 1" 2f(x) + 2" f(x)
= (n—1)a" " fa) + 2" f(2)

= na" ' f(2).

D’Angelo & West 3.46.

Solution.

For n = 1, the condition is # + 2 < 22. When z is positive, this is equivalent to x > 2.
Thus, the condition x > 2 is necessary. We can now either proceed by induction or do a
direct proof. Both are shown below.

Method #1: [Induction on n|. Basis step (n=1): done above.

Inductive step: Suppose that 2! > 2™ + 2. Since x > 2, we have z? > z. Thus

2" = (2" > w2z +2) = 2" 4 2? > " o

Method #2: (Direct proof for all n € N). Since z > 2, we have 1/z"! < 1, and
thus 1 + 1/2"1 < 2 < x. Since x > 0, we can multiply both sides by z" to obtain
" 4 x < ™t [ |

D’Angelo & West 3.53.

Solution.

Basis step: When n = 0, f is a constant function, and we are given ¢ = f(0), so f is
defined by f(z) = c.

Induction step: Suppose that n > 1. Given a polynomial f such that f(n) = ¢, let g
be the polynomial defined by g(z) = f(x) — ¢. Since g(n) = 0, Theorem 3.24 gives us that



g(x) = (x — n)h(x), where h is a polynomial of degree n — 1. If we can determine h, then
we can determine f by f(z) = (x — n)h(x) + c.

Notice that since h is of degree n — 1 we are almost where we can use the inductive
hypothesis, however, we need to be able to compute the values h(0), h(1),..., h(n — 1) first

to satisfy the conditions of the inductive hypothesis. Since h(x) = ﬁ when x # n, then
r—n
we have h(i) = f@ — S fori = 1,...,n—1. Since we know these values of f, we can obtain

i—n
the values of h(0),...,h(n —1). This means the inductive hypothesis holds and so we can
determine f. [



