
Math 283 Spring 2012
Assignment 4 Solutions

D’Angelo & West 3.22.

Solution.
We use induction on n.
When n = 1, the two sides are equal. When n = 2, the statement is the ordinary triangle

inequality (Proposition 1.3).
For the induction step, suppose that the inequality holds when n = k; this is the induction

hypothesis. We prove that if k ≥ 2, then the inequality also holds when n = k + 1, using
the ordinary triangle inequality and the induction hypothesis applied to the first k numbers.
We compute∣∣∣∣∣
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D’Angelo & West 3.26.

Solution.
We use induction on n.
Basis step: a1 = 1 = 13 − 1 + 1.
Induction step: Given that ak = k3 − k + 1, we have

ak+1 = ak + 3k(k + 1) = k3 − k + 1 + 3k2 + 3k = (k + 1)3 − k = (k + 1)3 − (k + 1) + 1.
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D’Angelo & West 3.33.

Solution.
The number of closed subintervals with integer endpoints contained in the interval [1, n]

(including one-point intervals) is
n(n + 1)

2
. This is because there are n − i subintervals of

length i, for 1 ≤ i ≤ n − 1.Thus the total count is the sum of the integers from 1 (when
i = n− 1) to n (when i = 0). �



D’Angelo & West 3.35.

Solution.

When n = 1, the formula reduces to 1, which is
0∑

i=1

qi, To prove the formula for a positive

integer n = k assuming it holds when n = k − 1, we have
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D’Angelo & West 3.37.

Solution.

Based on #35, we have
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D’Angelo & West 3.39.

Solution.
Let an be the number of dots in the hexagonal array Sn with n rings. We use summation

formulas for the first m integers and the first m squares to compute an and
n∑

k=0

ak. As

illustrated, a1 = 1. Beyond that, ring i adds 6(i − 1) dots, so an = 1 +
∑n

i=2 6(i − 1) =
1 + 6

∑n−1
i=1 i = 1 + 3n(n− 1) for n ≥ 1. Furthermore,

n∑
k=1

ak =
n∑

k=1

(1− 3k + 3k2) = n− 3
n(n + 1)

2
+ 3

n(n + 1)(2n + 1)

6
.

After some algebraic effort, this simplifies to n3. The answer n3 can be explained directly
by viewing Sn as the “front” of a cubical array of dots viewed from the vertex of 3 sides as
illustrated below. �



D’Angelo & West 3.43.

Solution.
With x = 1, y = 1, we have

f(1 · 1) = 1 · f(1) + 1 · f(1)

f(1) = f(1) + f(1)

0 = f(1).

For the second statement, we use induction on n.
Basis step: For n = 1, we have f(x1) = f(x) + xf(1) = f(x) = 1x0f(x) = nxn−1f(x).
Induction step: For n > 1, we use the induction hypothesis for n− 1 to compute

f(xn) = f(x · xn−1)

= xf(xn−1) + xn−1f(x)

= x(n− 1)xn−2f(x) + xn−1f(x)

= (n− 1)xn−1f(x) + xn−1f(x)

= nxn−1f(x).

�

D’Angelo & West 3.46.

Solution.
For n = 1, the condition is x + x < x2. When x is positive, this is equivalent to x > 2.

Thus, the condition x > 2 is necessary. We can now either proceed by induction or do a
direct proof. Both are shown below.

Method #1: [Induction on n]. Basis step (n=1): done above.
Inductive step: Suppose that xn+1 > xn + x. Since x > 2, we have x2 > x. Thus

xn+2 = x(xn+1) > x(xn + x) = xn+1 + x2 > xn+1 + x.

Method #2: (Direct proof for all n ∈ N). Since x > 2, we have 1/xn−1 ≤ 1, and
thus 1 + 1/xn−1 ≤ 2 < x. Since x > 0, we can multiply both sides by xn to obtain
xn + x < xn+1. �

D’Angelo & West 3.53.

Solution.
Basis step: When n = 0, f is a constant function, and we are given c = f(0), so f is

defined by f(x) = c.
Induction step: Suppose that n ≥ 1. Given a polynomial f such that f(n) = c, let g

be the polynomial defined by g(x) = f(x) − c. Since g(n) = 0, Theorem 3.24 gives us that



g(x) = (x − n)h(x), where h is a polynomial of degree n − 1. If we can determine h, then
we can determine f by f(x) = (x− n)h(x) + c.

Notice that since h is of degree n − 1 we are almost where we can use the inductive
hypothesis, however, we need to be able to compute the values h(0), h(1), . . . , h(n− 1) first

to satisfy the conditions of the inductive hypothesis. Since h(x) =
g(x)

x− n
when x 6= n, then

we have h(i) =
f(i)− c

i− n
for i = 1, . . . , n− 1. Since we know these values of f , we can obtain

the values of h(0), . . . , h(n − 1). This means the inductive hypothesis holds and so we can
determine f . �


