Math 283 Spring 2012 Assignment 1 Solutions

D'Angelo \& West 1.1.

Solution.

The number of chairs (c) is at least (\geq) four times the number of tables (t), so $c \geq 4 t$.

D'Angelo \& West 1.10.

Solution.

The economy can absorb $100 \% \mathrm{PhD}$'s, but 125% are being produced, so the unemployment would be $\frac{100}{125}=\frac{1}{5}$.

D'Angelo \& West 1.13.

Solution.
Let $A=\{2 k-1: k \in \mathbb{Z}\}$ and $B=\{2 k+1: k \in \mathbb{Z}\}$. Let $n=2 k-1 \in A$ for some integer k. Notice that

$$
\begin{aligned}
n & =2 k-1 \\
& =(2 k-2)+2-1 \\
& =2(k-1)+1 .
\end{aligned}
$$

Since $k-1 \in \mathbb{Z}$, we have $n \in B$. Thus, $A \subseteq B$.
Similarly, we let $m=2 j+1 \in B$ for some integer j. Notice that
$B \subseteq A$

$$
\begin{aligned}
m & =2 j+1 \\
& =(2 j+2)-2+1 \\
& =2(j+1)-1 .
\end{aligned}
$$

Since $j+1 \in \mathbb{Z}$, we have $m \in A$. Thus, $B \subseteq A$.
Therefore, $A=B$.

D'Angelo \& West 1.14.

Solution.

If $a<b<c<d$, then $[a, b] \cup[c, d]$ consists of all numbers in the closed interval $[a, d]$ except those between b and c. Thus $[a, b] \cup[c, d]=[a, d] \backslash(b-c)$.

D'Angelo \& West 1.15.

Solution.

If $A=B$, then both differences are empty.
Method \#1: Now, assume that $A \backslash B=B \backslash A$. Let $x \in A \backslash B$, this means $x \in A$ and $x \notin B$. However, $x \notin B$ means that $x \notin B \backslash A$. This means for equality to hold $A \backslash B$ and $B \backslash A$ must be empty.

Method \#2: Consider the statement $A \backslash B=B \backslash A$. Set difference means that $A \backslash B$ contains no elements from B and that $B \backslash A$ contains no elements from A. Since they are equal, this must mean that they contain elements from neither A nor B and so each set difference must be empty.

D'Angelo \& West 1.16.

Solution.

$5 \rightarrow 41 \rightarrow 32 \rightarrow 221 \rightarrow 311 \rightarrow 32$, reaching a cycle of length 3 .
$6 \rightarrow 51 \rightarrow 42 \rightarrow 321 \rightarrow 321$, reaching a fixed point.

D'Angelo \& West 1.18.

Solution.
If x is a real number such that it exceeds its reciprocal by 1 , then $x=1+1 / x$. Since x cannot be 0 , we can multiply by x, without changing the solutions, and obtain $x^{2}-x-1=0$. The solutions of this equation are $\frac{1 \pm \sqrt{5}}{2}$.

D'Angelo \& West 1.23.

Solution.

This clock will be correct every 61 minutes, except between $12: 12$ and $1: 01$ between which there are only 49 minutes.

D'Angelo \& West 1.24.

Solution.

There is no missing dollar, the correct accounting is $3 \cdot 9-2=25$, not $3 \cdot 9+2 \neq 30$.

D'Angelo \& West 1.32.

Solution.

Let $S=\left\{x \in \mathbb{R}: x^{2}-2 x-3<0\right\}$ and $T=\{x \in \mathbb{R}:-1<x<3\}$.
$T \subseteq S$
Method \#1: If $x \in T$, then $x+1>0$ and $x-3<0$. Hence $(x+1)(x-3)<0$, which is the same as $x^{2}-2 x-3<0$. Thus $T \subseteq S$.

If $x \in S$, this means $x^{2}-2 x-3<0$, so $(x+1)(x-3)<0$. The product of two numbers $S \subseteq T$ is negative only when exactly one of them is negative. This means $x<3$ and $x>-1$. Thus $-1<x<3$ is the requirement and hence $S \subseteq T$.

Therefore, since $S \subseteq T$ and $T \subseteq S$, we have $S=T$.
Method \#2: Since $x^{2}-2 x-3=(x-3)(x+1)$ and the product of two numbers is negative precisely when exactly one of them is negative, S is the set of real numbers x such that exactly one of $x-3$ and $x+1$ is negative. Since $x-3<x+1$, the negative one must be $x-3$, and the condition is equivalent to $x-3<0$ and $x+1>0$. This becomes $x<3$ and $x>-1$, which is the condition defining the set T.

Extra Problem 1.

Solution.
Many answers are possible.
(a) $A=\{x \in \mathbb{N}: 0<x<4\}=\{x \in \mathbb{Z}: 1 \leq x \leq 3\}$
(b) $B=\{x \in \mathbb{Z}: 0 \leq x \leq 3\}$
(c) $C=\{x \in \mathbb{R}:(x+2)(x-1)=0\}=\{x \in \mathbb{N}: x-3<0\}$

Extra Problem 2.

Solution.

(a) $|A|=5$
(b) $|B|=11$
(c) $|C|=2$
(d) $|D|=1$

