Math 283 Spring 2012 Assignment 1 Solutions

D'Angelo & West 1.1.

Solution.

The number of chairs (c) is at least (\geq) four times the number of tables (t), so $c \geq 4t$.

D'Angelo & West 1.10.

Solution.

The economy can absorb 100% PhD's, but 125% are being produced, so the unemployment would be $\frac{100}{125} = \frac{1}{5}$.

D'Angelo & West 1.13.

Solution.

Let $A = \{2k - 1 : k \in \mathbb{Z}\}$ and $B = \{2k + 1 : k \in \mathbb{Z}\}$. Let $n = 2k - 1 \in A$ for some integer k. Notice that

 $A\subseteq B$

 $B \subseteq A$

$$n = 2k - 1$$

= (2k - 2) + 2 - 1
= 2(k - 1) + 1.

Since $k - 1 \in \mathbb{Z}$, we have $n \in B$. Thus, $A \subseteq B$. Similarly, we let $m = 2j + 1 \in B$ for some integer j. Notice that

$$m = 2j + 1$$

= (2j + 2) - 2 + 1
= 2(j + 1) - 1.

Since $j + 1 \in \mathbb{Z}$, we have $m \in A$. Thus, $B \subseteq A$. Therefore, A = B.

D'Angelo & West 1.14.

Solution.

If a < b < c < d, then $[a, b] \cup [c, d]$ consists of all numbers in the closed interval [a, d] except those between b and c. Thus $[a, b] \cup [c, d] = [a, d] \setminus (b - c)$.

$$= (2j+2) -$$

= 2(j+1) -

1

D'Angelo & West 1.15.

Solution.

If A = B, then both differences are empty.

Method #1: Now, assume that $A \setminus B = B \setminus A$. Let $x \in A \setminus B$, this means $x \in A$ and $x \notin B$. However, $x \notin B$ means that $x \notin B \setminus A$. This means for equality to hold $A \setminus B$ and $B \setminus A$ must be empty.

<u>Method</u> #2: Consider the statement $A \setminus B = B \setminus A$. Set difference means that $A \setminus B$ contains no elements from B and that $B \setminus A$ contains no elements from A. Since they are equal, this must mean that they contain elements from neither A nor B and so each set difference must be empty.

D'Angelo & West 1.16.

Solution.

 $5 \rightarrow 41 \rightarrow 32 \rightarrow 221 \rightarrow 311 \rightarrow 32$, reaching a cycle of length 3. $6 \rightarrow 51 \rightarrow 42 \rightarrow 321 \rightarrow 321$, reaching a fixed point.

D'Angelo & West 1.18.

Solution.

If x is a real number such that it exceeds its reciprocal by 1, then x = 1 + 1/x. Since x cannot be 0, we can multiply by x, without changing the solutions, and obtain $x^2 - x - 1 = 0$. The solutions of this equation are $\frac{1 \pm \sqrt{5}}{2}$.

D'Angelo & West 1.23.

Solution.

This clock will be correct every 61 minutes, except between 12:12 and 1:01 between which there are only 49 minutes.

D'Angelo & West 1.24.

Solution.

There is no missing dollar, the correct accounting is $3 \cdot 9 - 2 = 25$, not $3 \cdot 9 + 2 \neq 30$.

D'Angelo & West 1.32.

Solution.

Let $S = \{x \in \mathbb{R} : x^2 - 2x - 3 < 0\}$ and $T = \{x \in \mathbb{R} : -1 < x < 3\}.$

Method #1: If $x \in T$, then x + 1 > 0 and x - 3 < 0. Hence (x + 1)(x - 3) < 0, which is the same as $x^2 - 2x - 3 < 0$. Thus $T \subseteq S$.

If $x \in S$, this means $x^2 - 2x - 3 < 0$, so (x+1)(x-3) < 0. The product of two numbers is negative only when exactly one of them is negative. This means x < 3 and x > -1. Thus -1 < x < 3 is the requirement and hence $S \subseteq T$.

Therefore, since $S \subseteq T$ and $T \subseteq S$, we have S = T.

<u>Method</u> #2: Since $x^2 - 2x - 3 = (x - 3)(x + 1)$ and the product of two numbers is negative precisely when exactly one of them is negative, S is the set of real numbers x such that exactly one of x - 3 and x + 1 is negative. Since x - 3 < x + 1, the negative one must be x - 3, and the condition is equivalent to x - 3 < 0 and x + 1 > 0. This becomes x < 3 and x > -1, which is the condition defining the set T.

Extra Problem 1.

Solution.

Many answers are possible.

(a) $A = \{x \in \mathbb{N} : 0 < x < 4\} = \{x \in \mathbb{Z} : 1 \le x \le 3\}$ (b) $B = \{x \in \mathbb{Z} : 0 \le x \le 3\}$ (c) $C = \{x \in \mathbb{R} : (x+2)(x-1) = 0\} = \{x \in \mathbb{N} : x - 3 < 0\}$

Extra Problem 2.

Solution.

- (a) |A| = 5(b) |B| = 11(c) |C| = 2
- (d) |D| = 1

 $T \subseteq S$

 $S\subseteq T$