COMBINATORICS, GRAPH THEORY, AND ALGORITHMS

Volume I

Proceedings of the Eighth Quadrennial International Conference on Graph Theory, Combinatorics, Algorithms, and Applications

Western Michigan University

Edited by
Y. Alavi, D. R. Lick, and A. Schwenk

NEW ISSUES PRESS
WESTERN MICHIGAN UNIVERSITY
Kalamazoo, Michigan
1999
Even subgraphs of a graph

Hong-Jian Lai
Department of Mathematics
West Virginia University, Morgantown, WV 26506

Zhi-Hong Chen
Department of Mathematics and Computer Science
Butler University, Indianapolis, IN 46208

Abstract

In [Discrete Math. 101 (1992) 33 - 37], Fleischner proved that if \(G \) is a 2-edge-connected graph, then \(G \) has an even subgraph \(H \) with \(\delta(H) \geq 2 \) such that \(H \) contains all vertices of \(G \) with degree at least 3. In [J. Combinatorial Theory, Ser. B 35 (1983) 297 - 308], Bermond Jackson and Jaeger showed that every 2-edge-connected graph \(G \) has an even subgraph \(H \) with \(|E(H)| \geq \frac{2}{3}|E(G)| \). In this note, we shall show that if \(G \) is a 2-edge-connected graph, then each of the following holds:

(i) \(G \) has an even subgraph \(H \) such that \(H \) contains all vertices of degree at least 3 in \(G \) and such that \(H \) contains a given pair of adjacent edges in \(G \).

(ii) \(G \) has an even subgraph \(H \) such that \(H \) contains all vertices of degree at least 3 in \(G \) and such that \(|E(H)| \geq \frac{2}{3}|E(G)| \).

Graphs in this note are finite and undirected, and may have multiple edges and loops. For a graph \(G \), we denote \(O(G) \) the set of vertices of odd degree in \(G \). A graph \(G \) is even if \(O(G) = \emptyset \). Let \(e \) be an edge in \(G \). The contraction \(G/e \) is the graph obtained by identifying the two ends of \(e \) and by deleting the resulting edge.

For each integer \(i \geq 1 \), denote

\[
D_i(G) = \{ v \in V(G) : \delta_G(v) = i \} \quad \text{and} \quad D^*_i(G) = \bigcup_{j \geq i} D_j(G).
\]

Using the Splitting Lemma (Lemma III.26 of [5], see also [6]) and the Petersen 1-factor theorem, Fleischner in [4] proved the following
Theorem 1 (Fleischner, [4]) Let G be a nontrivial graph without cut edges. Then G has an even subgraph H such that $\delta(H) \geq 2$ and such that $V(G) - D_2(G) \subseteq V(H)$.

In [1], Bermond, Jackson and Jaeger proved the following:

Theorem 2 (Bermond, Jackson, and Jaeger, [1]) Every 2-edge-connected graph G has an even subgraph H with $|E(H)| \geq \frac{2}{3}|E(G)|$.

The main purpose of this note is to present some extensions of these two theorems by showing the following Theorem 3. Our method is a modification of the arguments in both [1] and [4].

Theorem 3 Let G be a 2-edge-connected graph. Then each of the following holds:

(i) G has an even subgraph H such that H contains all vertices of degree at least 3 in G and such that H contains a given pair of adjacent edges in G.

(ii) G has an even subgraph H such that H contains all vertices of degree at least 3 in G and such that $|E(H)| \geq \frac{2}{3}|E(G)|$.

The following Theorem 4 is needed. The proof for Theorem 3 follows from Lemmas 5 and 6 below.

Theorem 4 (Edmonds, [3]) Let G be a 2-edge-connected 3-regular graph. Then there is an integer $k \geq 1$ and a family of perfect matchings (M_1, \ldots, M_{3k}) such that each edge $e \in E(G)$ is in exactly k of the M_i's.

Let $v \in V(G)$. Define

$$E_G(v) = \{e \in E(G) : e \text{ is incident with } v \text{ in } G\}.$$

Lemma 5 Let G be a 2-edge-connected graph. For any $v \in V(G)$ and for any two edges $e_1, e_2 \in E_G(v)$, G has an even subgraph H satisfying each of the following properties:

(i) $\delta(H) \geq 2$,

(ii) $D_2^*(G) \subseteq V(H)$, and

(iii) $\{e_1, e_2\} \subseteq E(H)$.

Proof We argue by contradiction. Let G be a counterexample
such that

\[\sum_{v \in D_2(G)} d_G(v) \text{ is minimized}, \quad (1) \]

and subject to (1),

\[|E(G)| \text{ is minimized.} \quad (2) \]

We have the following observations.

Claim 1. \(\Delta(G) \leq 3 \) and so \(d_G(u) \leq 3 \).

- Suppose that \(u \in D_4^*(G) \). Let \(N_G(u) = \{u_1, \ldots, u_m\} \) where \(e_i = uu_i, 1 \leq i \leq 2 \). Let \(G' \) be the graph obtained from \(G \) by spli
ting \(u \) into two vertices \(u' \) and \(u'' \) such that \(u' \) is exactly adjacent to \(u_1, u_2 \) and \(u'' \), and such that \(u'' \) is exactly adjacent to \(u', u_3, \ldots u_m \). Note that if \(G' \) has a cut edge, then since \(G \) is 2-edge-connected, the cut edge in \(G' \) must be the new edge \(u'u'' \).

Case A1: \(u'u'' \) is a cut edge of \(G' \).

Let \(G'_1 \) and \(G'_2 \) be the two components of \(G' - u'u'' \) such that \(\{e_1, e_2\} \subseteq E(G'_1) \). Since \(G \) is 2-edge-connected, \(G'_1 \) and \(G'_2 \) are also 2-edge-connected. By (1) and (2), \(G'_1 \) has an even subgraph \(H_1 \) with \(\delta(H_1) \geq 2 \) and \(D_3^*(G'_1) \subseteq V(H_1) \), and \(\{e_1, e_2\} \subseteq E(H_1) \). Similarly, \(G'_2 \) also contains an even subgraph \(H_2 \) such that \(\delta(H_2) \geq 2 \) and \(D_3^*(G'_2) \subseteq V(H_2) \). Therefore \(H = G[E(H_1) \cup E(H_2)] \) is an even subgraph in \(G \) satisfying Lemma 5, contrary to the assumption that \(G \) is a counterexample.

Case A2: \(G' \) is 2-edge-connected.

By (1), \(G' \) has an even subgraph \(H' \) with \(\delta(H') \geq 2 \) and with \(D_3^*(G') \subseteq V(H') \) such that \(\{e_1, e_2\} \subseteq E(H') \).

Let \(H = H' \) if \(u'u'' \notin E(H') \) and \(H = H' \setminus \{u'u''\} \) if \(u'u'' \in E(H') \).

Then \(H \) will be the desired even subgraph in \(G \), contrary to the assumption that \(G \) is a counterexample. This proves Claim 1.

Since \(G \) is 2-edge-connected, by Claim 1, we have \(2 \leq \Delta(G) \leq 3 \).

If \(G \) is 2-regular, then the theorem holds trivially. If \(G \) is a 3-regular, then let \(e_3 \) be the only edge in \(E_G(u) - \{e_1, e_2\} \). Since \(G \) is 2-edge-connected 3-regular graph, by Theorem 4, there is a perfect matching \(M \) of \(G \) such that \(e_3 \in M \). It follows the \(H = G - M \) is the desired even subgraph. A contradiction again.

Next we only need to consider that case that \(\Delta(G) = 3 \) and \(D_2(G) \neq \emptyset \). Suppose that \(G \) has a vertex \(w \in D_2(G) \).
Assume first that \(w \neq u \) and that \(E_G(w) = \{ e', e'' \} \). We may assume that \(e'' \notin \{ e_1, e_2 \} \), since \(w \neq u \). Then by (2), \(G/e'' \) has an even subgraph \(H'' \) with \(\delta(H'') \geq 2 \) and with \(D_3^*(G/e'') \subseteq V(H'') \) such that \(\{ e_1, e_2 \} \subseteq E(H'') \).

Let \(H = G[E(H'')] \) if \(e' \notin E(H'') \) and \(H = G[E(H'') \cup \{ e'' \}] \) if \(e' \in E(H') \). Then since \(w \in D_2(G) \), \(H \) will be the desired even subgraph in \(G \), contrary to the assumption that \(G \) is a counterexample.

Assume then \(w = u \in D_2(G) \). If \(G \) is spanned by an edge \(e_1 \), then the theorem holds trivially. Assume that is not the case, and so there is an edge \(e \in E(G) \setminus E_G(u) \) such that \(e \) and \(e_1 \) are adjacent in \(G \). By (2), \(G/e_1 \) has an even subgraph \(H_1 \) with \(\delta(H_1) \geq 2 \) and with \(D_3^*(G/e_1) \subseteq V(H_1) \) such that \(\{ e, e_2 \} \subseteq E(H_1) \). Thus by \(u \in D_2(G) \), \(G[E(H_1) \cup \{ e_1 \}] \) is a desired even subgraph, contrary to the assumption that \(G \) is a counterexample. This proves Lemma 5. \(\square \)

A graph \(G \) is a weighted graph if \(G \) is associated with a non-negative integer valued function \(w : E(G) \rightarrow \mathbb{Z}^+ \cup \{ 0 \} \), \(w \) is called the weight function). If \(X \subseteq E(G) \), then \(w(X) = \sum_{e \in X} w(e) \). If \(H \) is a subgraph, then \(w(H) = w(E(H)) \).

Lemma 6 Let \(G \) be a weighted graph with \(\kappa'(G) \geq 2 \) and with weight function \(w \). Then \(G \) has an even subgraph \(H \) with \(\delta(H) \geq 2 \) and with \(D_3^*(G) \subseteq V(H) \) such that \(w(H) \geq \frac{2}{3}w(G) \).

Proof As in the proof of Lemma 5, we argue by contradiction and assume that \(G \) is a counterexample such that

\[\sum_{u \in D_2(G)} d_G(v) \text{ is minimized,} \]
\[\text{and subject to (3),} \]
\[|E(G)| \text{ is minimized.} \]

If \(D_2(G) \neq \emptyset \), then let \(v \in D_2(G) \) and let \(E_G(v) = \{ e_1, e_2 \} \). Let \(G' \) denote the weighted graph obtained from \(G - v \) by adding a new edge \(e \) joining the two neighbors of \(v \) in \(G \), and by assigning the weight \(w(e) = w(e_1) + w(e_2) \). By (4), \(G' \) has an even subgraph \(H' \) with

\[D_3^*(G') \subseteq V(H') \text{ and } w(H') \geq \frac{2}{3}w(G'). \]
Note that $D^*_3(G') = D^*_3(G)$ and $w(G') = w(G)$. It follows that

$$H = \begin{cases}
G[E(H')] & \text{if } e \notin E(H') \\
G[E(H' - e) \cup \{e_1, e_2\}] & \text{otherwise}
\end{cases}$$

is the desired even subgraph. Hence we may assume that $\delta(G) \geq 3$.

Suppose that $u \in D^*_3(G)$. Let $N_G(u) = \{u_1, \cdots, u_m\}$ with $m \geq 4$. Let $e_i = uu_i$, $1 \leq i \leq 2$. Let G'' be the graph obtained from G by splitting u into two vertices u' and u'' such that u' is exactly adjacent to u_1, u_2 and u'', and such that u'' is exactly adjacent to $u', u_3, \cdots u_m$. Note that G'' may have $u'u''$ as an only cut edge since G is 2-edge-connected. If this is the case, then interchange u_2 and u_3 can assume that the new graph G'' is 2-edge-connected. Let e denote the new edge joining u' and u''. Then one can view $E(G'') = E(G) \cup \{e\}$. Extend the domain of w by defining $w(e) = 0$. Then G'' with the extended w is a weighted graph. By (3), G'' has an even subgraph H'' such that

$$D^*_3(G'') \subseteq V(H'') \text{ and } w(H'') \geq \frac{2}{3}w(G'').$$

Note that $D^*_3(G) - \{u\} \subseteq D^*_3(G'')$ and $w(G) = w(G'')$. It follows that

$$H = \begin{cases}
G[E(H')] & \text{if } e \notin E(H') \\
G[E(H'/e)] & \text{otherwise}
\end{cases}$$

is the desired even subgraph. Hence we may assume that $\delta(G) = 3$, and so G is 3-regular.

When G is 3-regular, Lemma 6 follows from Theorem 4. In fact, by Theorem 4, for some integer $k \geq 1$, G has a family of perfect matchings (M_1, \cdots, M_{3k}) such that each edge $e \in E(G)$ is in exactly k of the M_i's.

Assume that $w(M_1) \leq w(M_2) \leq \cdots \leq w(M_{3k})$. Then $3kw(M_1) \leq \sum_{i=1}^{3k} w(M_i) = kw(E(G))$, and so $w(M_1) \leq \frac{1}{3}w(E(G))$. It follows that $H = G - M_1$ is an even subgraph with $\delta(H) \geq 2, D^*_3(G) \subseteq V(H)$ and $w(H) \geq \frac{2}{3}w(E(G))$. The proof of Lemma 6 is complete. □

Proof of Theorem 3: Theorem 3(i) follows from Lemma 5 and Theorem 3(ii) follows from Lemma 6 with $w(e) = 1$. □
References

