Cycle covering of plane triangulations

Hong-Jian Lai
University of West Virginia
Morgantown, WV 26506

Hongyuan Lai
Wayne State University
Detroit, MI 48202

Abstract. Bondy conjectures that if G is a 2-edge-connected simple graph with n vertices, then at most $(2n - 1)/3$ cycles in G will cover G. In this note, we show that if G is a plane triangulation with $n \geq 6$ vertices, then at most $(2n - 3)/3$ cycles in G will cover G.

1. Introduction

We follow the notation of Bondy and Murty [BM], except where noted otherwise. An edge e of a graph G is called a multiple edge if $G - e$ has an edge f having the same ends as e, and in this case we say that e is an extra edge of $G - e$ parallel to the edge f. Graphs may have multiple edges but loops are prohibited. Let G be a graph. For $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the ends of each edge in X and then deleting the resulting loops. A collection C of cycles in G is called a cycle cover (CC) of G, if every edge of G lies in at least one cycle in C. It is obvious that G has a CC if and only if G is 2-edge-connected. For a graph with $\kappa'(G) \geq 2$, define

$$cc(G) = \min \{|C| : C \text{ is a CC of } G\}.$$

In [B], Bondy raised the following conjecture.

Conjecture SCC: If G is a simple 2-edge-connected graph with n vertices, then

$$cc(G) \leq \frac{2n - 1}{3}.$$

If C is a collection of cycles of G and if every edge in G lies in exactly 2 members of C, then C is called a cycle double cover (CDC) of G. The eminent cycle double cover conjecture, due to Seymour [S1] and Szekeres [S2], says that every 2-edge-connected graph admits a CDC. The following conjecture is also posted by Bondy in [B].

Conjecture SCDC: If G is a simple 2-edge-connected graph with n vertices, then G admits a CDC with at most $n - 1$ cycles.
Theorem 1.1. (Bondy and Seyffarth [B]) If G is a simple plane triangulation with \(n \) vertices, then G has a CDC with at most $n - 1$ cycles.

In this paper, we shall show that if G is a simple plane triangulation with $n \geq 6$ vertices, then

$$cc(G) \leq \frac{2n - 3}{3}.$$

We shall prove a multigraph version of Conjecture SCC for plane triangulations. Let G be a graph. Define an equivalence relation on $E(G)$ such that e is related to e' if and only if $e = e'$ or e and e' share the same ends (e and e' are parallel edges). Let $[e]$ denote the equivalence class containing e and $[G]$ the collection of all equivalence classes. Define

$$\mu(G) = \sum_{[e] \in [G]} (|[e]| - 1).$$

Hence a graph G is simple if and only if $\mu(G) = 0$. We define a (multi) graph G to be a plane triangulation if G is a plane graph each of whose faces has degree 2 or 3. In Section 2, we develop some reduction techniques, and in Section 3, we shall show Theorem 1.2 below. Some of the routine and repeated arguments in the proofs are omitted. Interested readers may contact the authors for details.

Theorem 1.2. If G is a plane triangulation of $n \geq 6$ vertices, then

$$cc(G) \leq \frac{2n - 3}{3} + \frac{\mu(G)}{2}. \quad (1)$$

2. Reductions

Let X, Y be two sets. The symmetric difference of X and Y, denoted by $X \triangle Y$, is $X \cup Y - X \cap Y$. If G is a graph and H and J are subgraphs of G, then denote

$$H \triangle J = G \setminus \{E(H) \triangle E(J)\}.$$

If G has 2 subgraphs G' and G'' such that $G = G' \cup G''$ and such that $G' \cap G''$ is a 2-cycle of G, then G is called a C_2-sum of G' and G''.

Lemma 2.1. Let G be a graph with $\kappa'(G) \geq 2$. If G is a C_2-sum of G_1 and G_2, where $\kappa'(G_i) \geq 2$, then

$$cc(G) \leq cc(G_1) + cc(G_2) - 1.$$

Proof: Let $\{e_1, e_2\}$ be the edges of the 2-cycle C commonly shared by G_1 and G_2. For $i \in \{1, 2\}$, let C_i be a CC of G_i. Let C_i^j be a cycle in C_i that contains the edge e_j, $(1 \leq i, j \leq 2)$. If $C_i^1 = C_i^2$, then $C = C_i^1 = C_i^2$, and so $(C_1 - \{C\}) \cup C_2$
is a CC of G and Lemma 2.1 follows. Hence we may assume that $C^1 \neq C^2$ and so
$E(C^1) \cap E(C) = \{e_j\}$. Thus

$$(C_1 - \{C^1_1, C^1_2\}) \cup (C_2 - \{C^2_1, C^2_2\}) \cup \{C^1_1 \Delta C^2_1, C^1_2 \Delta C^2_2\}$$

is a CC of G and so Lemma 2.1 follows again.

Let H be a subgraph of G. The vertices of attachment of H in G, denoted by $A_G(H)$, are the vertices in $V(H)$ that are incident with some edges in $E(G) - E(H)$.

For a graph H, H^+ denotes a graph obtained from H by adding an extra edge parallel to some edge of H.

Lemma 2.2. Suppose that $H = \Gamma_1$ or $H = \Gamma_1^+$ (see Figure 1) with an extra edge e that is parallel to an edge in $E(\Gamma_1) - \{v_1v_2, v_2v_3, v_3v_1\}$, such that H is a subgraph of G with $A_G(H) \subseteq \{v_1, v_2, v_3\}$. Let e_1 be an extra edge parallel to v_1v_2, and e_2 be an extra edge parallel to v_2v_3. Let $V_H = V(H) - \{v_1, v_2, v_3\}$.

(i) If $H = \Gamma_1$, then let $G' = (G - V_H) + e_2$ and we have

$$cc(G) \leq cc(G') + 1.$$ \hspace{1cm} (2)

(ii) If $H = \Gamma_1^+$, then let $G'' = (G - V_H) + \{e_1, e_2\}$ and we have

$$cc(G) \leq cc(G'') + 1.$$ \hspace{1cm} (3)

Proof: We shall show (i) first. Let C be a CC of G', and let $C \in C$ be a cycle containing e_2. Let $C' = C - e_2 + \{v_2v_5, v_5v_4, v_4v_6, v_6v_3\}$, and $F = v_2v_4v_1v_6v_5v_3v_2$. Thus $(C - \{C\}) \cup \{C', F\}$ is a CC of G and so (2) holds.

The proof for (ii) is similar and uses the fact that we can always assume that e_1 and e_2 are in distinct cycles of any CC of G''.

Lemma 2.3. Suppose that $H = \Gamma_i$ or $H = \Gamma_i^+$ (see Figures 1 and 2) with an extra edge e that is parallel to an edge of $E(\Gamma_i) - \{v_1v_2, v_2v_3, v_3v_1\}$, $(2 \leq i \leq 4)$, such that H is a subgraph of G with $A_G(H) \subseteq \{v_1, v_2, v_3\}$. Let e_i be an extra edge parallel to v_1v_3, $(1 \leq i \leq 2)$, and let $V_H = V(H) - \{v_1, v_2, v_3\}$.

(i) If $H = \Gamma_i$, then let $G' = G - V_H$ and we have

$$cc(G) \leq cc(G') + 2.$$ \hspace{1cm} (4)

(ii) Suppose that $H = \Gamma_i^+$. If e is not incident with v_1, then let $G'' = G - V_H + e_1$, and if e is incident with v_1, then let $G'' = G - V_H + e_2$. In either case, we have

$$cc(G) \leq cc(G'') + 2.$$
Proof: We consider the following cases.

Case 1: \(i = 2\).

Let \(C\) be a CC of \(G'\) and let \(C\) be a cycle in \(C\) that contains \(v_1v_3\). Let \(C' = C - v_1v_3 + \{v_1v_6, v_6v_4, v_4v_5, v_5v_3\}\;\text{and}\;F_1 = v_1v_3v_6v_5v_1\;\text{and}\;F_2 = v_1v_2v_5v_4v_1\). Then \((C - \{C\}) \cup \{C', F_1, F_2\}\) is a CC of \(G\) and so (4) holds.

The proof for (5) is similar and uses the fact that we can assume that \(e_1\) and \(v_1v_3\) are in distinct cycles of any CC of \(G''\).

Case 2: \(i = 3\).

Let \(C\) be a CC of \(G'\) and let \(C_1, C_2\) be cycles in \(C\) that contain \(v_1v_3\) and \(v_2v_3\), respectively. (It may happen that \(C_1 = C_2\). Let \(C_1' = C_1 - \{v_1v_3\} + \{v_1v_4, v_4v_6, v_6v_3\}\), \(C_2' = C_2 - \{v_2v_3\} + \{v_2v_5, v_5v_7, v_7v_3\}\). (if \(C_1 = C_2\), then \(C_1' = C_2'\) is obtained by replacing \(v_1v_3\), \(v_2v_3\) by the above two paths, respectively), and let \(F_1 = v_1v_3v_2v_7v_6v_5v_1\) and \(F_2 = v_1v_2v_5v_4v_6v_1\). Thus \((C - \{C_1, C_2\}) \cup \{C_1', C_2', F_1, F_2\}\) is a CC of \(G\), and so (4) holds.

Suppose that \(H = \Gamma_3^+\) and \(e\) is not incident with \(v_1\). Let \(C'\) be a CC for \(G''\) and let \(C_1, C_2\) be defined as above and let \(C_e\) be the cycle in \(C\) containing \(e\).

If \(E(C_2) \neq \{e_1, v_2v_3\}\), then \(C_e \neq C_2\). Since \(e\) is not incident with \(v_1\), there is a \((v_2, v_3)\)-path \(P\) in \(\Gamma_3\) containing \(e\) such that the internal vertices of \(P\) are in \(V_H\). Thus we can define \(C_e'\) to be \(C_e - e_1\) plus the \((v_2, v_3)\)-path \(P\), and define \(C_1', C_2', F_1, F_2\) as above. It follows that \((C - \{C_1, C_2, C_e\}) \cup \{C_1', C_2', C_e', F_1, F_2\}\) is a CC of \(G\) and so (5) holds.

Thus we assume that \(E(C_2) = E(C_e) = \{e_1, v_2v_3\}\). Without loss of generality, we assume that \(e\) is not parallel to \(v_5v_7\). Let \(F_3 = v_1v_4v_6v_5v_7v_2v_5v_1\), \(F_4 = v_1v_4v_5v_6v_7v_2v_3v_1\), \(C''_1 = C_1 - \{v_1v_3\} + \{v_1v_6, v_6v_3\}\), and let \(F_5\) be any cycle containing both \(v_5v_7\) and \(e\). Thus \((C - \{C_2, C_1\}) \cup \{C''_1, F_3, F_4, F_5\}\) is a CC of \(G\), and so (5) holds.

The case when \(e\) is incident with \(v_1\) can be shown similarly.

Case 3: \(i = 4\).

Let \(C\) be a CC of \(G'\) and let \(C_1, C_2\) be cycles in \(C\) containing \(v_1v_3\) and \(v_2v_3\), respectively. (Possibly \(C_1 = C_2\). Let \(C_1' = C_1 - \{v_1v_3\} + \{v_1v_4, v_4v_6, v_6v_3\}\) and \(C_2' = C_2 - \{v_2v_3\} + \{v_2v_5, v_5v_6, v_6v_7, v_7v_3\}\), and let \(F_1 = v_1v_3v_2v_8v_7v_5v_6v_1\) and \(F_2 = v_1v_2v_7v_6v_4v_5v_1\). Then \((C - \{C_1, C_2\}) \cup \{C_1', C_2', F_1, F_2\}\) is a CC of \(G\) and so (4) holds.

The proof when \(H = \Gamma_4^+\) is similar to that for the Case of \(i = 3\).

Lemma 2.4. Suppose that \(H = \Gamma_5\) or \(H = \Gamma_3^+\) (see Figure 3) with an extra edge \(e\) that is parallel to an edge \(E(\Gamma_5) - \{v_1v_2, v_2v_3, v_3v_1\}\) such that \(H\) is a subgraph of \(G\) with \(A_G(H) \subseteq \{v_1, v_2, v_3\}\). Let \(V_H = V(H) - \{v_1, v_2, v_3\}\) and let \(G' = G - V_H\). Then

\[cc(G) \leq cc(G') + 3.\]
Proof: Let C be a CC of G' and let C_1, C_2, C_3 be cycles in C containing $v_1 v_3$, $v_2 v_3$ and $v_1 v_2$, respectively.

Assume first that $H = \Gamma_5$. Then let $C'_1 = C_1 - \{v_1 v_3\} + \{v_1 v_4, v_4 v_6, v_6 v_3\}$, $C'_2 = C_2 - \{v_2 v_3\} + \{v_2 v_8, v_8 v_7, v_7 v_9, v_9 v_3\}$, and $C'_3 = C_3 - \{v_1 v_2\} + \{v_1 v_5, v_5 v_2\}$, and let $F_1 = v_1 v_4 v_5 v_6 v_7 v_2 v_3 v_1$, $F_2 = v_1 v_6 v_9 v_7 v_5 v_8 v_2 v_1$, and let F_3 be any cycle in G containing $v_3 v_7$. Thus $C - \{C_1, C_2, C_3\} \cup \{C'_1, C'_2, C'_3, F_1, F_2, F_3\}$ is a CC of G and so (6) holds.

Now we assume that H has one multiple edge e. Without loss of generality, we may assume that e is not parallel to $v_3 v_7$. Thus one can choose F_3 above so that $e, v_3 v_7 \in E(F_3)$ and so (6) holds also.

Lemma 2.5. Suppose that $H = \{\Gamma (6), \Gamma (6)^+\}$ (see Figure 3) such that H is a subgraph of G with $A_G(H) \subseteq \{w_1, w_2, w_3\}$. Let e be an extra edge not in $E(G)$ that is parallel to $w_1 w_2$. If $H = \Gamma (6)$, then let $G' = G - \{w_4, w_5, w_6\}$, and if $H = \Gamma (6)^+$ (without loss of generality, we assume that the multiple edge in H is parallel to one of $\{w_1 w_4, w_4 w_5, w_5 w_6, w_2 w_4, w_2 w_5, w_2 w_6\}$), then let $G' = G - \{w_4, w_5, w_6\} + e$. In any case, we have

$$cc(G) \leq cc(G') + 2.$$

Proof: Let $F_1 = w_1 w_4 w_2 w_5 w_3 w_1$ and $F_2 = w_2 w_6 w_5 w_3 w_4 w_2$. Let C be a CC of G' and let C_1 be a cycle in C containing $w_1 w_3$. Assume first that $H = \Gamma (6)$. Define $C'_1 = C_1 - w_1 w_3 + w_1 w_4 w_5 w_6 w_3$. Then $(C - \{C_1\}) \cup \{C'_1, F_1, F_2\}$ is a CC of G, and so (7) must hold.

Then we assume that $H = \Gamma (6)^+$. Since e is parallel to $w_1 w_2$ in G', we may assume that e does not lie in C_1. Let $C_e \subseteq C$ be a cycle containing e. Let C'_e be obtained from C_e by replacing e by a (w_1, w_2) path in H that covers the multiple edge. Hence $(C - \{C_1, C_e\}) \cup \{C'_1, C'_e, F_1, F_2\}$ is a CC of G, and so (7) holds also.

Lemma 2.6. Let H be a subgraph of G.

(i) Suppose that $H = \Gamma_6$ (see Figure 4) or $H = \Gamma_6^+$ with an extra edge e parallel to an edge of $E(\Gamma_6 - \{x_1 x_2, x_2 x_3, x_3 x_4, x_4 x_1\})$ and with $A_G(H) \subseteq \{x_1, x_2, x_3, x_4\}$. If $H = \Gamma_6$, then define $G_1 = G - \{x_5, x_6\}$; and if $H = \Gamma_6^+$, then define $G_1 = G - \{x_5, x_6\} + e'$, where $e' \notin E(G)$ is an extra edge parallel to $x_2 x_4$. We have

$$cc(G) \leq cc(G_1) + 1.$$

(ii) Suppose that $H = L_6$ or $H = L_6^+$ (see Figure 4) with an extra edge e that is parallel to an edge of $E(\Gamma_6 - \{x_1 x_2, x_2 x_3, x_3 x_1\})$ and with $A_G(H) \subseteq \{x_1, x_2, x_3, x_4\}$ and $e' \notin E(G)$ be an extra edge. If $H = L_6$, then let $G_2 = G - \{x_5, x_6\} + x_2 x_4$; and if $H = L_6^+$, then let $G_2 = G - \{x_5, x_6\} + x_2 x_4 + e'$,
where \(e' \) is parallel to \(x_4 x_5 \) if \(e \) is parallel to \(x_3 x_6 \) or \(x_4 x_6 \); or where \(e' \) is parallel to \(x_2 x_4 \) if \(e \) is parallel to \(x_2 x_6 \) or \(x_2 x_5 \); or where \(e' \) is parallel to \(x_1 x_4 \) if \(e \) is parallel to \(x_1 x_5 \) or \(x_1 x_6 \). In any case, we have

\[
cc(G) \leq cc(G_2) + 1. \tag{9}
\]

(iii) Let \(L \in \{ L^L_6, L^u_6, L^{uu}_6 \} \) (see Figure 6) and let \(e' \notin E(G) \) be an extra edge parallel to \(x_2 x_4 \). If \(H = L \) or \(H = L^+ \) with an extra edge \(e \) that is parallel to an edge of \(E(H - \{ x_1, x_2, x_3, x_4, x_5, x_6 \}) \) and with \(A_C(H) \subseteq \{ x_1, x_2, x_3, x_4 \} \), then defining \(G_3 = G - \{ x_5, x_6, x_7, x_8 \} + e' \), we have

\[
cc(G) \leq cc(G_3) + 2. \tag{10}
\]

(iv) Let \(L^L_6 = L^u_6 - x_8 \). If \(H = L^u_7 \) or \(H = L^{uu}_7 \) with an extra edge \(e \) parallel to an edge in \(E(H - \{ x_1, x_2, x_3, x_4, x_5, x_6 \}) \) and with \(A_C(H) \subseteq \{ x_1, x_2, x_3, x_4 \} \), then defining \(G_5 = G - \{ x_5, x_6, x_7 \} \), we have

\[
cc(G) \leq cc(G_5) + 2. \tag{11}
\]

(v) Let \(L^u_6 = L^u_6 - \{ x_5, x_6 \} \) and let \(L^{uu}_6 = L^u_6 - \{ x_7, x_8 \} \). Suppose that \(H \in \{ L^L_6, L^u_6 \} \) or \(H \in \{ L^L_6, L^{uu}_6 \} \) with an extra edge \(e \) parallel to an edge in \(E(H - \{ x_1, x_2, x_3, x_4, x_5, x_6 \}) \) and with \(A_C(H) \subseteq \{ x_1, x_2, x_3, x_4 \} \). If \(H \in \{ L^L_6, L^u_6 \} \), then let \(G_5 = (G - \{ x_5, x_6, x_7, x_8 \})/\{ x_2 x_4 \} \), and if \(H \in \{ L^{uu}_6, L^{uu}_6 \} \), then let \(G_5 = (G - \{ x_5, x_6, x_7, x_8 \})/\{ x_2 x_4 \} \), where \(e' \notin E(G) \) is an extra edge parallel to \(x_2 x_3 \). In any case, we have

\[
cc(G) \leq cc(G_5) + 2. \tag{12}
\]

Proof: We shall show (i) first. Suppose that \(H = \Gamma_6 \) and that \(C \) is a CC of \(G_1 \) and let \(C_1 \) and \(C_2 \) be cycles in \(C \) such that \(x_1 x_4 \in E(C_1) \) and \(x_3 x_4 \in E(C_2) \). Let \(C'_1 = C_1 - x_1 x_4 + x_1 x_5 x_4 \), \(C'_2 = C_2 - x_3 x_4 + x_3 x_5 x_4 \), and let \(F = x_1 x_5 x_2 x_6 x_3 x_4 x_1 \). Then \((C - \{ C_1, C_2 \}) \cup \{ C'_1, C'_2, F \} \) is a CC of \(G \) and so (8) holds.

Suppose that \(H = \Gamma_6^+ \). By the case when \(H = \Gamma_6 \), we may assume that \(e \) is parallel to one of \(\{ x_2 x_5, x_3 x_4, x_2 x_6, x_6 x_4 \} \) and so we can replace \(e' \) by a \((x_2, x_4)\)-path that passes the multiple edge \(e \).

To show (ii) of Lemma 2.6, we assume that \(H = L_6 \) and let \(C \) be a CC of \(G_1 \). Let \(C_1, C_2, C_3 \in C \) be cycles containing \(x_1 x_2, x_2 x_4 \) and \(x_2 x_3 \), respectively. Since no cycle can contain \(x_1 x_2, x_2 x_4, x_2 x_3 \) simultaneously, we may assume that either \(C_1 \neq C_2 \) or \(C_2 \neq C_3 \).

If \(C_1 \neq C_2 \), then let \(C'_1 = C_1 - x_1 x_2 + x_1 x_6 x_2 \) and let \(C'_2 = C_2 - x_2 x_4 + x_2 x_5 x_6 x_4 \). Let \(F = x_1 x_2 x_3 x_6 x_5 x_1 \). Replace \(x_2 x_4 \) by \(x_2 x_6 x_4 \) in any cycle in
\[C = \{C_1, C_2\} \] containing \(x_2 x_4 \) and still denote the resulting collection by \(C = \{C_1, C_2\} \), for convenience. Thus \((C - \{C_1, C_2\}) \cup \{C_1', C_2', C'\} \) is a CC of \(G \) and so (9) must hold.

If \(C_2 \neq C_3 \), then let \(C'_2 = C_2 - x_2 x_4 + x_2 x_6 x_4 \) and let \(C'_3 = C_3 - x_2 x_3 + x_2 x_5 x_6 x_3 \), and let \(F' = x_1 x_5 x_2 x_3 x_6 x_1 \). Thus \((C - \{C_2, C_3\}) \cup \{C'_2, C'_3\} \) is a CC of \(G \). Hence (9) must hold again.

When \(H = L_5^+ \), we can replace \(e' \) in the cycle containing \(e' \) by a path in \(H \) containing the multiple edge and so (9) holds again.

To show (iii), let \(C \) be a CC of \(G \) and let \(C_e, C_0, C_3, C_4 \in C \) be cycles that contain \(e', x_2 x_4, x_3 x_4 \), and \(x_4 x_1 \) respectively.

Assume that \(H = L_5^0 \) or \(L_5^+ \). Since \(\{e'\} = \{e', x_2 x_4\} \), we may assume that \(C_4 \neq C_0 \) and \(C_3 \neq C_e \). Let \(F_1 = x_1 x_7 x_8 x_2 x_5 x_6 x_3 x_4 x_1 \) and let \(C'_0 = C_0 - x_2 x_4 + x_2 x_5 x_6 x_4 \), \(C'_3 = C_3 - x_3 x_4 + x_3 x_5 x_4 \), \(C'_e = C_e - e' + x_2 x_7 x_8 x_4 \) and \(C'_4 = C_4 - x_4 x_1 + x_4 x_7 x_1 \), and let \(F_2 \) be a cycle containing \(x_2 x_4 \) and the multiple edge (if it exists). Thus \((C - \{C_0, C_3, C_4, C_e\}) \cup \{C'_0, C'_3, C'_4, C'_e, F_1, F_2\} \) is a CC of \(G \) and so (10) holds also.

The proof for the case when \(H \in \{L_8', L_8^+, L_8^-, L_8^{++}\} \) is similar to that for \(H \in \{L_6^0, L_6^+\} \) and the proof for (iv) is similar to that for (iii). Thus they are omitted.

We shall show (v) for \(H \in \{L_8^0, L_8^+\} \). The proof for \(H \in \{L_6', L_6^+\} \) is similar. Let \(v \) denote the vertex in \(G_5 \) to which \(x_2 x_4 \) is contracted. Let \(C \) be a CC of \(G' \) and let \(C_e, C_3 \) be cycles in \(C \) containing \(e' \) and \(v x_3 \), respectively. (If \(H = L_8^0 \), then just take \(C_3 \)).

If \(C_e = C_3 \), then let \(F' = x_1 x_2 x_3 x_6 x_4 x_1, F'' = x_2 x_5 x_3 x_6 x_4 x_2 \) and let \(F''' \) be a cycle that contains the multiple edge \(e \). Thus \((C - \{C_3\}) \cup \{F', F'', F'''\} \) is a CC of \(G \) and so (12) holds.

Thus we assume that \(C_e \neq C_3 \). Let \(C'_e = G(E(C_3) - v x_3) \). Thus either \(C'_3 + x_2 x_3 \) or \(C'_e + x_3 x_4 \) is a cycle in \(G \). Note that any cycle in \(C - \{C_e, C_3\} \) can easily be adjusted to cycles in \(G \) (still denoted by \(C - \{C_e, C_3\} \), for convenience).

Let \(F_1 = x_1 x_2 x_5 x_6 x_3 x_4 x_1, F_2 = x_2 x_3 x_6 x_4 x_2 \), and let \(C'_e \) be obtained from \(C_e \) by replacing \(e' \) by an \((x_2 x_3) \)-path containing \(e \). If \(C'_3 + x_2 x_3 \) is a cycle in \(G \), then let \(C''_3 = C'_3 + x_2 x_6 x_5 x_4 x_3 \); and if \(C'_3 + x_3 x_4 \) is a cycle in \(G \), then let \(C''_3 = C'_3 + x_4 x_2 x_6 x_5 x_3 \). Thus in any case, \((C - \{C_3, C_e\}) \cup \{C''_3, C'_e, F_1, F_2\} \) is a CC of \(G \), and so (12) holds.

Let \(C \) be a cycle of a plane graph \(G \). Define \(IntC \) to be the vertices of \(G \) inside (exclusively) \(C \). Define \(ExtC \) similarly. The cycle \(C \) is trivial if \(IntC = \emptyset \); and is acyclic if the underlying simple graph of \(G[IntC] \) is acyclic.

A \(k \)-face of a plane graph \(G \) is a face of degree \(k \). Define \(L(n) \) as the graph in Figure 5.

Lemma 2.7. Let \(G \) be a plane triangulation with \(\mu(G) = 1 \) and with \(n = |V(G)| \geq 3 \). If the exterior face of \(G \) is a 2-cycle \(C \), and if \(C \) is acyclic, then
$G \cong L(n)$.

Proof: Let v_1, v_2 be the two vertices in $V(C)$ and let e_1, e_2 be the two edges in $E(C)$. Since $\mu(G) \leq 1$, and G is a plane triangulation, e_1 must lie in a 3-face C_1 inside C. Let v_3 be the vertex in $V(C_1) - \{v_1, v_2\}$. If v_3 has degree at least 4, then since G is a triangulation, v_3 and two of its neighbors other than v_1, v_2 would form a 3-cycle inside C, contrary to the assumption that C is acyclic. If v_3 has degree 2, then we have $n = 3$ and $G = L(3)$. Hence v_3 has degree 3, and so $G - v_3$ is also a plane triangulation with C as a acyclic exterior face. Thus by induction, $G - v_3 = L(n - 1)$ and so $G = L(n)$.

Lemma 2.8. Let G be a simple plane triangulation. If the exterior face of G is a 3-cycle C and if C is acyclic, then either G contains a subgraph $H \in \{L_6, \Gamma_6\}$ (using the notation in Figure 4) with $A_G(H) \subseteq \{x_1, x_2, x_3, x_4\}$ or $G = \Gamma(n)$, where $n = V(G)$.

Proof: Let $C = v_1v_2v_3v_1$. Since G is a plane triangulation, v_2v_3 lies in a 3-face $C_1 = v_2v_3vv_2$ with $v \in Int C$. Let $v_2 = u_1, u_2, \ldots, u_m = v_3$ be the neighbors of v in G such that they are ordered clockwise by the planar imbedding of G.

Since G is a simple plane triangulation, $v_2v_2v_2v_2v_3v_1$, ..., must be 3-faces. Since C is acyclic, either $m = 3$, or $4 \leq m \leq 5$ and $v_3 = v_1$.

If $m = 5$ and $v_3 = v_1$, then G contains a subgraph $H = \Gamma_5$ with $x_1 = v_1, x_2 = v_2, x_3 = v, x_4 = v_3$. If $m = 4$ and $v_3 = v_1$, then, since $v_1v_2v_3v_2v_2v_2v_2$ are now 3-faces, $G = \Gamma(5)$. Hence we may assume that $m = 3$. If $x_2 = v_1$, then $G = \Gamma(4)$. Thus we assume that $x_2 \neq v_1$, and so $G - v$ is also a plane triangulation with C as the exterior face. By induction, Lemma 2.8 holds.

Lemma 2.9. Suppose that G is a plane graph, and that G has a nontrivial 2-cycle C with $V(C) = \{v_1, v_2\}$ and $E(C) = \{e_1, e_2\}$. Let $H = G - Ext C$.

(i) If $H = L(3)^+$ such that the extra edge e is parallel to v_1v_3, then letting $G' = G/v_3v_2$, we have $cc(G) \leq cc(G')$.

(ii) If $H = L(4)$, then letting $G' = G - Int C$, we have $cc(G) \leq cc(G') + 1$.

(iii) If $H = L(4)^+$ such that the extra edge e is not parallel to any of $\{e_1, e_2\}$, then letting e' be an extra edge parallel to e_1 and let $G' = G - Int C + e'$, we have $cc(G) \leq cc(G') + 1$.

(iv) If H is isomorphic to $\Gamma(5)^+$, such that the exterior face of H is C, then letting $G' = G - Int C$, we have $cc(G) \leq cc(G') + 2$.

Proof: (i) of Lemma 2.9 is trivial. We now show (ii). Let C be a CC of G' and let C_1 be a cycle in C containing e_1. Define $C_1' = C_1 + \{v_1v_3, v_3v_4, v_4v_2\}$ and $F = G[\{e_1, v_1v_4, v_4v_3, v_3v_2\}]$. Thus $C \cup \{C_1\}$ is a CC of G and so (ii) of Lemma 2.9 holds.

Now we show (iii). Let C be a CC of G'. Note that $[e_1] = \{e_1, e_2, e'\}$ in G' this time. We may assume that e_1 and e' are in distinct cycles C_1 and C_e.

10
respectively. Define C'_i and F as above. Since e is not parallel to e_1, there is a (v_1, v_2)-path P in $H - \{e_1, e_2\}$ containing e. Define $C'_e = C_e - e' + P$. Thus $C - (C_1, C_2) \cup \{C'_1, C'_e, F\}$ is a CC of G.

Now we show (iv). Let C be a CC of G' and let C_i be a cycle in C containing e_i, $(1 \leq i \leq 2)$. Note that no matter where e_1, e_2 lie in H, $H - \{e_1, e_2\}$ always has a spanning cycle and so $H - \{e_1, e_2\}$ has two internally disjoint (v_1, v_2)-paths P_1 and P_2. Let $C_i = C_i - e_i + P_i$, $(1 \leq i \leq 2)$. (When $C_1 = C_2 = C$, let $C'_i = P_1 \cup P_2$.) Thus it is easy to see that the edges in $H - E(P_1) \cup E(P_2)$ can be covered by two cycles in H and so (iv) follows.

Define plane graphs $\Gamma^4, \Gamma^5, \Gamma^6$ as the graphs in Figure 6.

Lemma 2.10. Let G be a plane triangulation with $\mu(G) \leq 1$ and with $4 \leq |V(G)| \leq 5$. If the exterior face of G is a 3-face, then G is isomorphic to one graph in $\{\Gamma(4), \Gamma(5), \Gamma(4)^+, \Gamma(5)^+, \Gamma^4, \Gamma^5\}$.

Proof: The proof is straightforward.

For each i, $(1 \leq i \leq 5)$, define Γ'_i to be the simple plane triangulation obtained from Γ_i by adding a new vertex v_0 in the exterior face of Γ_i and by joining v_0 to each of v_1, v_2, v_3 with a new edge, respectively.

Lemma 2.11. If G is isomorphic to one of the graphs below,

$$\{\Gamma_i, \Gamma'_i, \Gamma_i^+, (\Gamma'_i)^+, (1 \leq i \leq 5), \Gamma(6), \Gamma(6)^+, L(6), L(6)^+, \Gamma_6, \Gamma_6^+\},$$

then

$$cc(G) \leq \frac{2|V(G)| - 3}{3} + \frac{\mu(G)}{2}.$$

Proof: The proof is routine and so is omitted.

3. The Proof of Theorem 1.2

We argue by contradiction and assume that

$$G$$ is a counterexample to Theorem 1.2

such that

$$|V(G)| + \mu(G)$$ is as small as possible,

and subject to (14),

$$|E(G)|$$ is minimized.

(15)

If G has two 2-faces, then we pick two distinct edges, e, e' (say), from each of these 2-faces. Thus $\mu(G) = \mu(G - \{e, e'\}) + 2$ and so by (14) and (15), G is not a counterexample, contrary to (13). Hence we assume that

$$G$$ has at most one 2-face.
Since G is a plane triangulation, and by (14), we have
\[\kappa(G) \geq 2 \text{ and } \delta(G) \geq 3. \]
(17)

Lemma 3.1. If C is a nontrivial 2-face of G, then C is the exterior face of G.

Proof: Suppose that G has a nontrivial 2-cycle C that is not the exterior face of G. Suppose also that C is so chosen that there is no nontrivial 2-cycle properly contained in the interior of C.

Case 1: $|\text{Int}C| = 1$.

By (16) and (17), $G[\text{Int}C \cup V(C)] = L(3)^+$. Define G' as in (i) of Lemma 2.9. If $|V(G')| \geq 6$, then by (14) we have
\[cc(G) \leq cc(G') \leq \frac{2(n-1)-3}{3} + \frac{\mu(G) + 1}{2}, \]
and so G is not a counterexample, a contradiction.

Hence by $|V(G)| \geq 6, |V(G')| = 5$. It follows by Lemma 2.10 and by (17) that G' is either spanned by $\Gamma(5)$ with $\mu(G') = 3$ or spanned by Γ^5 with $\mu(G') = 4$. Thus $cc(G) \leq cc(G') \leq 4$, by (i) of Lemma 2.9, a contradiction.

Case 2: $|\text{Int}C| = 2$.

By (16), $G[\text{Int}C \cup V(C)] = L(4)$ or $L(4)^+$. Define G' as in (ii) or (iii) of Lemma 2.9. If $|V(G')| \geq 6$, then by arguing as above, one can derive a contradiction. Hence we assume that $|V(G')| \leq 5$, and so by Lemma 2.10 and by the fact that G' must have a 2-face, G' is isomorphic to one of $\{\Gamma(4)^+, \Gamma(5)^+, \Gamma^4, \Gamma^5\}$. Since $cc(\Gamma(4)^+) = cc(\Gamma^4) = 2$ and $cc(\Gamma(5)^+) = cc(\Gamma^5) = 3$, and since $\mu(G') \leq 1$, it follows by (ii) and (iii) of Lemma 2.9 that G satisfies (1), contrary to (13).

Case 3: $|\text{Int}C| \geq 3$.

We may similarly assume that $|\text{Ext}C| \geq 3$. If both $|\text{Int}C| = |\text{Ext}C| = 3$, then $G[\text{Int}C \cup V(C)] \cong \Gamma(5)^+$ and so by Lemma 2.10 and by (iv) of Lemma 2.9, $cc(G) \leq 3 + 2 = 5$, contrary to (13). Thus we assume that $|\text{Ext}C| \geq 4$. Let $H = G[\text{Int}C \cup V(C)]$. If $|V(H)| \geq 6$, then by Lemma 2.1, by (14), and noting that
\[\mu(H) + \mu(G - \text{Int}C) = \mu(G) + 1, \]
we have
\[cc(G) \leq cc(G - \text{Int}C) + cc(H) - 1 \leq \frac{2n-3}{3} + \frac{\mu(G)}{2}. \]
(18)

Hence we assume that $|V(H)| \leq 5$. Since H has an exterior 2-face, it is then easy to see by Lemma 2.9 that G satisfies (1), contrary to (13).
Lemma 3.2. \(\mu(G) \leq 1. \)

Proof: Suppose that \(\mu(G) \geq 2. \) Then by (16) and Lemma 3.1, \(G \) must have parallel edges \(e_1, e_1' \) and parallel edges \(e_2, e_2' \) with \([e_1] \neq [e_2] \) such that, for each \(i, G'[\{e_i, e_i'\}] \) is a trivial 2-cycle of \(G. \) Note that \(G' = G - \{e_1, e_2\} \) is a plane triangulation. By (17) and since \([e_1] \neq [e_2], \) \(G \) has a cycle containing both \(e_1' \) and \(e_2'. \) Note that \(\mu(G') = \mu(G) - 2. \) By (15),

\[
cc(G) \leq cc(G') + 1 \leq \frac{2n - 3}{3} + \frac{\mu(G) - 2}{2} + 1,
\]

contrary to (13).

Lemma 3.3. Each of the following subgraphs is forbidden in \(G: \)

(i) \(H \in \{L(3)^+, L(4), L(4)^+\} \) with \(A_G(H) \subseteq \{v_1, v_2\}. \)

(ii) \(H = \Gamma_i \) or \(\Gamma_i^+ \) with \(A_G(H) \subseteq \{v_1, v_2, v_3\}, (1 \leq i \leq 5). \)

(iii) \(H \in \{L, L^+\} \) where \(L \in \{\Gamma_6, L_6, L_6'', L_8', L_8'', L_8'''\} \) with \(A_G(H) \subseteq \{x_1, x_2, x_3, x_4\}. \)

(iv) \(H = \Gamma(6) \) or \(\Gamma(6)^+ \) with \(A_G(H) \subseteq \{v_1, v_2, v_3\}. \)

Proof: Assume that \(H = \Gamma_1 \) and let \(G' \) be defined as in Lemma 2.2. If \(|V(G')| = 3, \) then \(G = \Gamma_1 \) or \(\Gamma_1^+ \) and so (1) holds for \(G. \) If \(|V(G')| \geq 6, \) then by (14) and by Lemma 2.2,

\[
cc(G) \leq cc(G') + 1 \leq \frac{2(n - 3) - 3}{3} + \frac{\mu(G)}{2} + 1,
\]

and so \(G \) is not a counterexample, a contradiction. Thus by \(|V(G)| \geq 6, \) we have \(4 \leq |V(G')| \leq 5. \) Thus by Lemma 2.10, one can easily check that \(G \) is not a counterexample, contrary to (13).

The proofs for the other cases are similar, by using reduction lemmas in section 2.

Proof of Theorem 1.2: Since \(G \) is a plane triangulation, the exterior face of \(G \) is either a 2-face or a 3-face. Since \(|V(G)| \geq 6, \) \(G \) must have a nontrivial 3-cycle. If every nontrivial 3-cycle of \(G \) is acyclic, then in particular, the exterior 3-face or the 3-face obtained by deleting an edge from the exterior 2-face is also acyclic. Thus by Lemma 2.7 and Lemma 2.8, \(G \) must contain either \(\Gamma_6, L_6 \) or \(\Gamma(6), \) contrary to Lemma 3.3. Hence \(G \) has a cyclic 3-cycle. Let \(C_0 \) be a cyclic 3-cycle of \(G \) such that

\[
|IntC_0| \text{ is minimized.} \tag{19}
\]

By (19), any 3-cycle contained in \(G[\text{Int}C_0] \) is either trivial or acyclic. By Lemmas 2.8 and 3.3, if \(Z \) is a nontrivial 3-cycle in \(G[\text{Int}C_0], \) then

\[
|\text{Int}Z| \leq 2. \tag{20}
\]
Let $M = G[\text{Int}C_6 \cup V(C_0)]$. Let $C = u_1 u_2 u_3 u_1$ be a trivial 3-cycle in M such that $|V(C) \cap V(C_0)| = 0$. Since G is a plane triangulation with $\mu(G) \leq 1$, M has a 3-cycle containing $u_i u_{i+1}, (i \equiv 1, 2, 3 \pmod{3})$. Let C_i be a 3-cycle in M containing $u_i u_{i+1}$ such that $E(C) \cap E(G[\text{Int}C_i \cup V(C_i)]) = \{u_i u_{i+1}\}$ and such that

$$|\text{Int}C_i| \text{ is maximized.}$$

(21)

Case 1: For $i \neq j$, $E(C_i) \cap E(C_j) = \emptyset$.

Let $C_1 = u_1 u_2 u_4 u_1$, $C_2 = u_2 u_3 u_5 u_2$, and $C_3 = u_1 u_3 u_6 u_1$. Thus u_4, u_5, u_6 are distinct.

Suppose first that $|\text{Int}C_i| = 0, (1 \leq i \leq 3)$. Define

$$G_a = (G - \{u_1 u_6, u_3 u_5, u_2 u_4\}) / E(C),$$

(22)

and let u denote the vertex in G_a to which C is contracted. By (21), no new multiple edge will be produced by the contraction, and so

$$\mu(G_a) \leq \mu(G).$$

(23)

Since G is a plane triangulation and since the boundaries of other faces not incident with $V(C)$ are unchanged, G_a is also a plane triangulation. We shall show

$$cc(G) \leq cc(G_a) + 1.$$

(24)

Let C be a CC of G_a, and let $C_j \in C$ such that $uu_j \in V(C_j), (4 \leq j \leq 6)$. For any cycle L in G_a, L can be extended to a cycle L' in G, by using edges in $E(C)$, if necessary.

It is easy to see that we can extend C_4, C_5, C_6 to C_4', C_5', C_6' so that any specified edge in $E(C)$ can be covered twice by C_4', C_5', C_6'.

In fact, without loss of generality, we may assume that $[u_1 u_2] = 2$. Define $L_j = G[E(C_j) - \{uu_4, uu_5, uu_6\}]$. When C_4, C_5, C_6 are distinct, L_j is a path in G joining u_j to a vertex $u_j' \in V(C), (4 \leq j \leq 6)$. If $C_4 = C_5$, then define C_4', C_6' as follows:

- if $u_4' = u_1$, then $C_4' = L_4 + u_4 u_2 u_1 u_3 u_5$ and $C_6' = L_6 + u_6 u_3 u_2 u_1$;
- if $u_4' = u_2$, then $C_4' = L_4 + u_4 u_1 u_2 u_3 u_5$ and $C_6' = L_6 + u_6 u_3 u_1 u_2$;
- if $u_4' = u_3$, then $C_4' = L_4 + u_4 u_2 u_1 u_3 u_5$ and $C_6' = L_6 + u_6 u_1 u_2 u_3$.

When C_4, C_5, C_6 are all distinct, define C_4', C_5', C_6' as follows:

- if $u_5' = u_1$, then $C_5' = L_5 + u_5 u_3 u_2 u_1$;
- if $u_5' = u_2$, then $C_5' = L_5 + u_5 u_3 u_1 u_2$;
- if $u_5' = u_3$, then $C_5' = L_5 + u_5 u_2 u_1 u_3$;
- if $u_6' = u_1$, then $C_6' = L_6 + u_6 u_3 u_2 u_1$;
- if $u_6' = u_2$, then $C_6' = L_6 + u_6 u_1 u_2 u_3$;
- if $u_6' = u_3$, then $C_6' = L_6 + u_6 u_1 u_2 u_3$;
and choose C_4' so that the remaining edge in $E(C)$, if there is any, is covered by C_4'.

Let $F_1 = u_1 u_4 u_2 u_5 u_3 u_6 u_1$. Then $\{L' : L \in C\} \cup \{F\}$ is a CC of G and so (23) holds.

If $|V(G_a)| \geq 6$, then by (14), (22) and (23),

$$cc(G) \leq cc(G_a) + 1 \leq \frac{2(n-2) - 3}{3} + \frac{\mu(G)}{2} + 1,$$

contrary to (13).

If $|V(G_a)| \leq 5$, then since $|V(C) \cap V(C_0)| = 0$ and since u is a vertex of degree at least 3 in G_a, it follows by Lemma 2.10 that $G \in \{\Gamma_1, \Gamma_1^+, \Gamma_1', (\Gamma_1')^+\}$ and so by Lemma 2.11, G is not a counterexample, either.

By (20), we need to consider the cases when exactly k of the C_i's are nontrivial, where $1 \leq k \leq 3$. The proofs for these subcases are similar to that when $k = 0$ and so are omitted.

Case 2: For some $i \neq j$, $E(C_i) \cap E(C_j) \neq \emptyset$.

If $E(C_i) \cap E(C_j) \neq \emptyset$, for every $i \neq j$, then $u_4 = u_5 = u_6$, contrary to Lemma 3.1 or to the assumption that $n \geq 6$. Hence we assume that

$$E(C_3) \cap (E(C_1) \cup E(C_2)) = \emptyset \text{ and } u_4 = u_5. \quad (25)$$

(2A) $Int C_1 \neq \emptyset$ and $Int C_2 \neq \emptyset$ or $|Int C_3| \geq 1$ and $Int C_1 = Int C_2 = \emptyset$. Then $G[\text{Int } C_1 \cup \text{Int } C_2 \cup \{u_1, u_2, u_3, u_4\}]$ contains a subgraph isomorphic to one of $\{\Gamma_6, \Gamma_6^+, L_6^+, L_6^{++}\}$, contrary to Lemma 3.3. Thus we assume that

$$Int C_1 = \emptyset. \quad (26)$$

(2B) $|Int C_1| = 0$ and $|Int C_2| > 0$. Then G has a forbidden subgraph H isomorphic to one of $\{L_6^+, L_6^{++}\}$. This case can be excluded by applying (v) of Lemma 2.6.

(2C) $Int C_1 = Int C_2 = Int C_3 = \emptyset$ and $u_4 \in Int C_0$.

Since G is a triangulation, there are u_7 and u_8 in $V(G)$, such that $C_4 = u_1 u_7 u_4 u_1$ and $C_5 = u_3 u_8 u_4 u_3$ are 3-cycles satisfying (21). Applying the previous argument to the 3-cycles C_4 and C_5, we conclude that $Int C_4 = Int C_5 = \emptyset$. Let $H = G[\{u_1, u_2, u_3, u_4\}]$ and let $G_b = (G - \{u_1, u_6, u_7 u_4, u_8 u_3\}) / E(H)$. Imitating the proof for (24), we can similarly show first that

$$\mu(G_b) \leq \mu(G) \text{ and } cc(G) \leq cc(G_b) + 2, \quad (27)$$

and then that G is not a counterexample, contrary to (13).

(2D) $Int C_1 = Int C_2 = Int C_3 = \emptyset$ and $u_4 \notin Int C_0$.

15
Thus \(u_4 \in V(C_0) \). It follows from Case 1 and Cases (2A) - (2C) that for any trivial 3-cycle \(C' = z_1z_2z_3z_1 \) in \(G[\text{Int}C_0] \), there must be \(z_4, z_5 \in V(C_0) \) such that \(z_4z_2z_1z_4, z_4z_2z_3z_4 \) and \(z_1z_3z_5z_1 \) are trivial 3-faces in \(M \), with \(z_i = u_i \) (1 \(\leq i \leq 4 \)) and \(z_5 = u_6 \). Note that \(C'' = z_1z_5z_4z_1 \) must be a trivial 3-face since otherwise \(G \) contains a \(L_6 \), contrary to Lemma 3.3. Call \(G[\{z_1, z_2, z_3, z_4, z_5\}] \) an associated \(\Gamma(5) \) with edge \(z_4z_5 \in E(C_0) \). For each edge in \(E(C_0) \), there is at most one associated \(\Gamma(5) \) with the given edge. Delete \(z_1, z_2 \) from the associated \(\Gamma(5) \) with \(z_4z_5 \), and do the same for other associated \(\Gamma(5) \)'s with other edges in \(E(C_0) \), (if there are any). Then the resulting graph is again a triangulation in which \(C_0 \) is an acyclic 3-cycle, and so by Lemmas 7 and 8, either \(M \) contains a trivial 3-cycle that satisfies Case 1 or one of Cases (2A) - (2C), or \(G \) contains \(L_6 \) or \(\Gamma(6) \), or \(M - E(C_0) \) is isomorphic to the graph \(L_{11} \) in Figure 8.

Thus we may assume that \(M - E(C_0) \cong L_{11} \). Let \(G_c = G - \{z_8, z_9, z_{10}\} \). Then it is easy to see that

\[
cc(G) \leq cc(G_c) + 2.
\] (28)

Thus by (14) and since \(|V(G_c)| \geq 7\), \(G \) must satisfy (1), contrary to (13).

Since every case leads to a contradiction, Theorem 1.2 is proved.

References

Figure 1: The graphs Γ_1 and Γ_2

Figure 2: The graphs Γ_3 and Γ_4
Figure 3: The graphs Γ_5 and $\Gamma(n)$

Figure 4: The graphs Γ_6 and L_6
$L(n)$

Figure 5: The graph $L(n)$
Figure 6: Graphs L'_8, L''_8 and L'''_8
Figure 7: Graphs $\Gamma^4, \Gamma^5, \Gamma^6$

Figure 8: Graph L_{11}