The reduction of graph families closed under contraction

Paul A. Catlin

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

Received 16 March 1994; revised 24 January 1995

Abstract

Let \(\mathcal{S} \) be a family of graphs. Suppose there is a nontrivial graph \(H \) such that for any supergraph \(G \) of \(H \), \(G \) is in \(\mathcal{S} \) if and only if the contraction \(G/H \) is in \(\mathcal{S} \). Examples of such an \(\mathcal{S} \): graphs with a spanning closed trail; graphs with at least \(k \) edge-disjoint spanning trees; and \(k \)-edge-connected graphs (\(k \) fixed). We give a reduction method using contractions to find when a given graph is in \(\mathcal{S} \) and to study its structure if it is not in \(\mathcal{S} \). This reduction method generalizes known special cases.

Keywords: Contraction; Spanning tree; Edge-arboricity; Edge-connectivity; Eulerian; Super-eulerian

1. Introduction

We use the notation of Bondy and Murty [1], except that we do not allow graphs to have loops, we regard \(K_1 \) as \(k \)-edge-connected for all \(k \in \mathbb{N} \), and we call a graph trivial if it is edgeless.

Let \(H \) (not necessarily connected) be a subgraph of \(G \). The contraction \(G/H \) is the graph obtained from \(G \) by contracting all edges in \(H \) and by deleting any resulting loops. If \(e \in E(G) \), then we denote \(G/G[e] \) by \(G/e \).

A collection \(\mathcal{S} \) of graphs is called a graph family or a family. When \(G \) and \(H \) are graphs, if \(H \) is a subgraph of \(G \), we denote this by \(H \subseteq G \). Call a family \(\mathcal{S} \) of graphs closed under contraction if

\[
G \in \mathcal{S}, \ e \in E(G) \Rightarrow G/e \in \mathcal{S}.
\]

(1)

Call a family \(\mathcal{C} \) of graphs complete if \(\mathcal{C} \) satisfies these three axioms:

(C1) \(\mathcal{C} \) contains all edgeless graphs;
(C2) \(\mathcal{C} \) is closed under contraction;
(C3) \(H \subseteq G, \ H \in \mathcal{C}, \ G/H \in \mathcal{C} \Rightarrow G \in \mathcal{C} \).

\(^{\dagger}\) Sadly, the author passed away on April 20, 1995.
Call a family \mathcal{F} of graphs free if these three axioms hold:

(F1) \mathcal{F} contains all edgeless graphs;
(F2) $G \in \mathcal{F}, H \subseteq G \Rightarrow H \in \mathcal{F}$;
(F3) For any induced subgraph H of G,

$$H \in \mathcal{F} \quad \text{and} \quad G/H \in \mathcal{F} \Rightarrow G \in \mathcal{F}.$$

For any family \mathcal{I} of graphs, we define the kernel \mathcal{I}^O of \mathcal{I} to be the family

$$\mathcal{I}^O = \{ H \mid \text{for every supergraph } G \text{ of } H, G \in \mathcal{I} \Leftrightarrow G/H \in \mathcal{I} \}. \quad (2)$$

Obviously, \mathcal{I}^O contains all edgeless graphs. If $\mathcal{I}^O = \{\text{edgeless graphs}\}$, then we call \mathcal{I}^O trivial.

Let \mathcal{I} be a family \mathcal{I} with a nontrivial kernel \mathcal{I}^O that is closed under contraction. Is a given graph G (say) in \mathcal{I}? Subgraphs of G in the kernel \mathcal{I}^O can each be contracted, and this can be repeated, until a ‘reduced’ graph G_1 (say) is obtained, having no nontrivial subgraph in \mathcal{I}^O, where (2) implies

$$G \in \mathcal{I} \quad \text{if and only if} \quad G_1 \in \mathcal{I}. \quad (3)$$

By (3), to know if $G \in \mathcal{I}$ it suffices merely to know if the ‘reduced’ graph G_1 is in \mathcal{I}. If \mathcal{I}^O is nontrivial, then this can be easier than determining directly whether $G \in \mathcal{I}$. (We shall prove that this ‘reduced graph’ G_1 is uniquely determined by G and \mathcal{I}^O, if \mathcal{I}^O is closed under contraction; that the family of all such ‘reduced’ graphs, corresponding to a given \mathcal{I}, is free; that if \mathcal{I} or \mathcal{I}^O is closed under contraction, then \mathcal{I}^O is a complete family; that all complete families arise as kernels; and that all free families arise as families of ‘reduced graphs’.)

For any family \mathcal{F} of graphs, define

$$\mathcal{F}^R = \{ G \mid G \text{ has no nontrivial subgraph in } \mathcal{F} \} \quad (4)$$

and

$$\mathcal{F}^C = \{ G \mid G \text{ has no nontrivial contraction in } \mathcal{F} \}.$$

(This family \mathcal{F}^R is a family of ‘reduced’ graphs corresponding to \mathcal{F}, when \mathcal{F} is a kernel. The family \mathcal{F}^C is the dual concept.) We shall also show that if \mathcal{C} and \mathcal{F} are families of graphs such that $\mathcal{C}^R = \mathcal{F}$ and $\mathcal{F}^C = \mathcal{C}$, then \mathcal{C} is a complete family and \mathcal{F} is a free family. Furthermore, all complete and free families arise this way.

2. Examples: complete families and kernels

Define the family \mathcal{PL} of supereulerian graphs: $G \in \mathcal{PL}$ whenever G has a spanning closed trail, and K_1 is regarded as being in \mathcal{PL}. Thus, if $G \in \mathcal{PL}$ then G is the spanning supergraph of an eulerian graph, and K_1 is regarded as eulerian. Clearly, \mathcal{PL} is closed under contraction. A graph G is called collapsible if for every even
subset X of $V(G)$, G has a spanning connected subgraph H with X as its set of odd-degree vertices (see [2,3]). By Theorem 3 of [2] and its corollary, the family \mathcal{CL} of graphs whose components are collapsible is a complete family, and $\mathcal{CL} \subseteq \mathcal{PL}^O$. We conjecture that $\mathcal{CL} = \mathcal{PL}^O$.

For any natural number k, let $\mathcal{G}(k)$ be the family of graphs with the property that for any $2k$ vertices $s_1, t_1, s_2, t_2, \ldots, s_k, t_k \in V(G)$ (not necessarily distinct) there are pairwise disjoint (s_i, t_i)-paths P_i $(1 \leq i \leq k)$. The family $\mathcal{G}(k)$ is easily shown to be complete, and its members are called weakly k-linked. Seymour [7] and Thomassen [8] have characterized $\mathcal{G}(2)$.

Lai [4] (and Theorem 4 of [5]) proved that if \mathcal{F} is a complete family and if \mathcal{G}_k is the family of graphs at most k edges short of being in \mathcal{F}, then $\mathcal{G}_k^O = \mathcal{G}$.

3. Complete families and kernels

In the results of this section, \mathcal{F}, \mathcal{I} and \mathcal{C} will be various graph families, and \mathcal{G} will often be complete. For the special case $\mathcal{F} = \mathcal{PL}$ and $\mathcal{G} = \mathcal{CL}$, some results below were first done in [2]: Theorem 4, Corollary 2 of Theorem 4, and Lemma 4 of [2] are generalized below to Theorem 3.7, Corollary 3.8, and Lemma 3.9, respectively.

Lemma 3.1. Let \mathcal{F} be a graph family. If

$$\mathcal{F} \text{ contains all edgeless graphs,}$$

then $\mathcal{F}^O \subseteq \mathcal{F}$.

Proof. Let \mathcal{F} be a family satisfying (5) and suppose $G' \in \mathcal{F}^O$. By (2),

$$G \in \mathcal{F} \iff G\!\setminus\!G' \in \mathcal{F}$$

holds for every supergraph G of G'. Set $G = G'$ in (6) and use (5) to get $G' \in \mathcal{F}$. Hence, $\mathcal{F}^O \subseteq \mathcal{F}$. \qedsymbol

Lemma 3.2. If \mathcal{F} is a graph family then $(\mathcal{F}^O)^O = \mathcal{F}^O$; also, all edgeless graph are in \mathcal{F} if and only if $\mathcal{F}^O \subseteq \mathcal{F}$.

Proof. Let \mathcal{F} be a graph family. Now, all edgeless graphs are in \mathcal{F}^O, and so $\mathcal{F}^O \subseteq \mathcal{F}$ implies that \mathcal{F} contains all edgeless graphs. Set $\mathcal{F} = \mathcal{F}$ in Lemma 3.1 to get the last part of Lemma 3.2. Set $\mathcal{F}^O = \mathcal{F}$ in Lemma 3.1 to get $(\mathcal{F}^O)^O \subseteq \mathcal{F}^O$. It remains to prove

$$\mathcal{F}^O \subseteq (\mathcal{F}^O)^O.$$

Let $H \in \mathcal{F}^O$, let G' be a supergraph of H, and let G be an arbitrary supergraph of G'. Hence,

$$G\!\setminus\!G' = (G\!\setminus\!H)/(G'\!\setminus\!H),$$

(8)
and since \(H \in \mathcal{F}^0 \), (2) implies

\[
G/H \in \mathcal{F} \iff G \in \mathcal{F}.
\]

(9)

If \(G' \in \mathcal{F}^0 \), then by (2),

\[
G \in \mathcal{F} \iff G/G' \in \mathcal{F},
\]

(10)

and by (8)–(10),

\[
G/H \in \mathcal{F} \iff G/G' \in \mathcal{F} \iff (G/H)/(G'/H) \in \mathcal{F}.
\]

(11)

Since \(G/H \) can be any supergraph of \(G'/H \), (11) implies \(G'/H \in \mathcal{F}^0 \).

Conversely, if \(G' \notin \mathcal{F}^0 \), then for some supergraph \(G \) of \(G' \),

\[
G \in \mathcal{F} \nleftrightarrow G/G' \in \mathcal{F},
\]

(12)

and so by (9), (12), and (8),

\[
G/H \in \mathcal{F} \nleftrightarrow (G/H)/(G'/H) \in \mathcal{F}.
\]

(13)

Therefore, (2) implies that \(G'/H \notin \mathcal{F}^0 \).

By the last two paragraphs,

\[
G' \in \mathcal{F}^0 \iff G'/H \in \mathcal{F}^0,
\]

when \(G' \) is an arbitrary supergraph of \(H \). Hence, \(H \in (\mathcal{F}^0)^0 \), whence (2) implies (7). \(\square \)

Theorem 3.3. For any graph family \(\mathcal{F} \), if \(\mathcal{F} \) or \(\mathcal{F}^0 \) is closed under contraction, then \(\mathcal{F}^0 \) is complete.

Proof. Let \(\mathcal{F} \) be a graph family.

First we show that \(\mathcal{C} = \mathcal{F}^0 \) satisfies (C1) and (C3). By Lemma 3.2, \((\mathcal{F}^0)^0 = \mathcal{F}^0\). This and Lemma 3.2 imply that \(\mathcal{F}^0 \) satisfies (C1). Also, \((\mathcal{F}^0)^0 = \mathcal{F}^0\) implies that \(\mathcal{C} = \mathcal{F}^0 \) satisfies (C3): for if \(H \in \mathcal{F}^0 \) and \(H \subseteq G \) then \(H \in (\mathcal{F}^0)^0 \) and so (2) gives \(G/H \in \mathcal{F}^0 \Rightarrow G \in \mathcal{F}^0 \).

By hypothesis, either \(\mathcal{F} \) or \(\mathcal{F}^0 \) is closed under contraction. In the latter case \(\mathcal{F}^0 \) satisfies (C2), and so \(\mathcal{F}^0 \) is complete.

It only remains to suppose that \(\mathcal{F} \) is closed under contraction and to prove that \(\mathcal{F}^0 \) is closed under contraction. Let \(G \in \mathcal{F}^0 \). For all supergraphs \(G' \) of \(G \), (2) implies

\[
G' \in \mathcal{F} \iff G'/G \in \mathcal{F},
\]

(14)

For any edge \(e \in E(G) \), we have

\[
(G'/e)/(G/e) = G'/G.
\]

(15)
To prove that \(\mathcal{F}^O \) is closed under contraction, it suffices to prove \(G/e \in \mathcal{F}^O \), i.e., by (2), that
\[
G/e \in \mathcal{F} \Leftrightarrow (G/e)/(G/e) \in \mathcal{F}
\] (16)
for all supergraphs \(G/e \) of \(G/e \). Let \(G' \) be any supergraph of \(G \).
Suppose that \(G' \in \mathcal{F} \). Since \(\mathcal{F} \) is closed under contraction,
\[
G'/e \in \mathcal{F}
\] (17)
and
\[
G'/G \in \mathcal{F}.
\] (18)
By (18) and (15),
\[
(G'/e)/(G/e) \in \mathcal{F}.
\] (19)
Suppose that \(G' \notin \mathcal{F} \). By (14), we have \(G'/G \notin \mathcal{F} \), and so by (15),
\[
(G'/e)/(G/e) \notin \mathcal{F}.
\] (20)
By (20) and since \(\mathcal{F} \) is closed under contraction,
\[
G'/e \notin \mathcal{F}.
\] (21)
When \(G' \in \mathcal{F} \), both (17) and (19) hold, but if \(G' \notin \mathcal{F} \), then both (21) and (20) hold. Therefore, (16) holds, as claimed. □

Theorem 3.4. For any family \(\mathcal{C} \) of graphs that is closed under contraction, these are equivalent:
(a) \(\mathcal{C} \) is the kernel of some graph family closed under contraction;
(b) \(\mathcal{C} \) is a complete family;
(c) \(\mathcal{C} = \mathcal{C}^O \).

Proof. (a) ⇒ (b): By Theorem 3.3.
(b) ⇒ (c): By (b), \(\mathcal{C} \) is a complete family, and so (C1) and Lemma 3.1 give \(\mathcal{C}^O \subseteq \mathcal{C} \). Now suppose that \(H \in \mathcal{C} \), and let \(G \) satisfy \(H \subseteq G \). Since \(\mathcal{C} \) is complete, \(G/H \in \mathcal{C} \Leftrightarrow G \in \mathcal{C} \), because axiom (C2) implies ‘\(\leftarrow \)’ and axiom (C3) implies ‘\(\Rightarrow \)’. Hence, \(H \in \mathcal{C}^O \), and (c) follows.
(c) ⇒ (a): If (c) holds, then \(\mathcal{C} \) is the kernel of itself. □

Hong-Jian Lai (personal communication) has shown that part (a) of Theorem 3.4 can be replaced by ‘\(\mathcal{C} \) is the kernel of some graph family that is both closed under contraction and not complete’.

Let \(\mathcal{F} \) be the family of all connected graphs of odd order. Then \(\mathcal{F} = \mathcal{F}^O \), and since \(\mathcal{F} \) is not closed under contraction, neither is \(\mathcal{F}^O \). Therefore, the kernel \(\mathcal{F}^O \) is
not complete. Hence, in Theorems 3.3 and 3.4, we need the hypothesis of closure under contraction.

By (a) ⇔ (c) of Theorem 3.4, any kernel \(\mathcal{C} \) of a graph family closed under contraction satisfies (C2), and hence contains multigraphs of order 2. For practical purposes, to test whether a graph family \(\mathcal{F} \) (closed under contraction) has a nontrivial kernel \(\mathcal{F}^0 \), simply look for an order 2 multigraph \(H \) in \(\mathcal{F}^0 \) of (2). This is generally easy to check.

A family \(\mathcal{F} \) of graphs is called closed under edge-addition if for any graph \(G \) and edge \(e \in E(G) \), \(G - e \in \mathcal{F} \) implies \(G \in \mathcal{F} \).

Theorem 3.5. In any complete family, the subfamily of connected graphs is closed under edge-addition.

Proof. Let \(\mathcal{C} \) be the subfamily of connected graphs in a complete family, let \(G \) be a graph and let \(e \in E(G) \). Suppose \(G - e \in \mathcal{C} \). By (b) ⇒ (c) of Theorem 3.4, \(G - e \in \mathcal{C}^0 \), and so \(G \in \mathcal{C} \Leftrightarrow G/(G - e) \in \mathcal{C} \). Since \(G - e \) is connected and \(\mathcal{C} \) is complete, \(G/(G - e) = K_1 \in \mathcal{C} \). Hence \(G \in \mathcal{C} \). \(\square \)

Lemma 3.6. If \(\mathcal{C} \) is complete and \(G \in \mathcal{C} \), then \(G \cup K_1 \in \mathcal{C} \).

Proof. Apply (C3) with \(H \subseteq G \) of (C3) replaced by \(G \subseteq G \cup K_1 \). Then \(G/H \) of (C3) is an edgeless graph, and by (C1) it is in \(\mathcal{C} \). \(\square \)

Theorem 3.7. Let \(\mathcal{C} \) be a complete family of graphs. Let \(H \) be a graph containing subgraphs \(H_1 \) and \(H_2 \), and satisfying

\[
H_1 \cup H_2 = H.
\]

If \(H_1, H_2 \in \mathcal{C} \), then \(H \in \mathcal{C} \).

Proof. Let \(H \) be a graph with subgraphs \(H_1 \) and \(H_2 \) satisfying (22). Suppose that \(\mathcal{C} \) is a complete graph family, and suppose \(H_1, H_2 \in \mathcal{C} \).

The graph \(H/H_1 \) can be obtained from \(H_2 \) by a sequence of edge-additions, additions of isolated vertices, and contractions (contract newly added edges, to identify certain vertices of \(H_2 \) in \(H \)). Since \(H_2 \in \mathcal{C} \) and since \(\mathcal{C} \) is complete, \(H/H_1 \in \mathcal{C} \), by (C2), by Theorem 3.5, and by Lemma 3.6.

Since \(\mathcal{C} \) is complete, (b) ⇒ (c) of Theorem 3.4 implies \(H_1 \in \mathcal{C} = \mathcal{C}^0 \). Hence \(H \in \mathcal{C} \), because (2) implies

\[
H \in \mathcal{C} \Leftrightarrow H/H_1 \in \mathcal{C} \]. \(\square \)

Corollary 3.8. Let \(\mathcal{C} \) be a complete family and let \(G \) be a graph. Let \(E'' \) be a minimal edge set such that every component of \(G - E'' \) is in \(\mathcal{C} \). Let \(E' \) be the edges of \(G \) that lie in no subgraph of \(G \) in \(\mathcal{C} \). Then \(E'' = E' \) and the set of maximal subgraphs of \(G \) in \(\mathcal{C} \) is unique.
Proof. If $e \in E(G) - E''$ then $e \notin E'$, and so $E' \subseteq E''$. By contradiction, suppose that there is an edge $xy \in E'' - E'$. Let H_x and H_y denote the components of $G - E''$ containing x and y, respectively. Thus, $H_x, H_y \in \mathcal{C}$. Since $xy \notin E'$, xy is in a subgraph H_{xy} (say) in \mathcal{C}. By Theorem 3.7, $H_x \cup H_{xy} \in \mathcal{C}$ and so $(H_x \cup H_{xy}) \cup H_y \in \mathcal{C}$. Therefore, each component of $G - (E'' - E(H_{xy}))$ is in \mathcal{C}, contrary to the minimality of E''. Hence, E'' is uniquely determined. Since the maximal connected subgraphs of G in \mathcal{C} are the components of $G - E''$, they are uniquely determined, too. \qed

Lemma 3.9. Let \mathcal{C} be a complete family, let G be a graph, and let H be a connected subgraph of G in \mathcal{C}. Let E'' be a minimal subset of $E(G)$ such that every component of $G - E''$ is in \mathcal{C}; let E^{**} be a minimal subset of $E(G/H)$ such that every component of $(G/H) - E^{**}$ is in \mathcal{C}; and let

$$E' = \{e \in E(G) \mid e \text{ is in no subgraph of } G \text{ in } \mathcal{C}\}$$

and

$$E^* = \{e \in E(G/H) \mid e \text{ is in no subgraph of } G/H \text{ in } \mathcal{C}\}.$$

Then

$$E'' = E' = E^* = E^{**}. \quad (23)$$

Proof. The first and last equalities of (23) are instances of Corollary 3.8. It remains to prove $E' = E^*$.

Let H be a connected subgraph of G where $H \in \mathcal{C}$, let $e \in E'$, and suppose $e \notin E^*$, by way of contradiction. Then e is in a subgraph H'' of G/H where $H'' \in \mathcal{C}$. Denote by G'' the subgraph of G induced by $E(H) \cup E(H'')$. Thus,

$$H \subseteq G'', \quad H \in \mathcal{C}, \quad G''/H = H'' \in \mathcal{C},$$

and so by (C3), $G'' \in \mathcal{C}$. But, $e \in E(H'') \subseteq E(G'')$, contrary to $e \in E'$. Therefore,

$$E' \subseteq E^*. \quad (24)$$

Let $e \in E(G) - E'$. Hence by Corollary 3.8, G has a unique maximal subgraph $H_0 \in \mathcal{C}$ such that $e \in E(H_0)$. If H and H_0 are disjoint, then $e \in E(H_0), H_0 \subseteq G/H$, and $H_0 \in \mathcal{C}$ jointly imply

$$e \notin E^*. \quad (25)$$

Since (25) holds whenever $e \notin E'$, (24) implies $E' = E^*$. \qed

Let $\mathcal{C} = \{C_3\}$ (not a complete family) and let G be the graph with $V(G) = \{a, b, c, d, e\}$ and

$$E(G) = \{ab, bc, cd, de, ea, ac, ce\}.$$

Now consider what happens if subgraphs in \mathcal{C} (i.e., 3-cycles) are contracted until none remain. If $H = G[\{a, c, e\}]$ is contracted, then G/H has order 3 and no subgraph in
4. Free families and reduced graphs

Let \(\mathcal{C} \) be a complete family and let \(G \) be a graph. By Corollary 3.8, \(G \) has a unique maximal spanning subgraph

\[
G' = G - E'' = G - E'
\]

(where \(E'' \) and \(E' \) are the sets of Corollary 3.8), with components in \(\mathcal{C} \). Denote the components of \(G' \) by \(\{H_1, H_2, \ldots, H_c\} \). Define the \(\mathcal{C} \)-reduction of \(G \), called \(G/\mathcal{C} \), to be the graph obtained from \(G \) by contracting each \(H_i \) (1 \(\leq i \leq c \)) to a distinct vertex and by removing any resulting loops. If \(G \) has no nontrivial subgraph in \(\mathcal{C} \), then \(G = G/\mathcal{C} \), and we call \(G \) \(\mathcal{C} \)-reduced. For any family \(\mathcal{F} \), and for any graph \(G \), the \(\mathcal{F}^o \)-reduction of \(G \) is \(K_1 \) if and only if \(G \) is in the kernel \(\mathcal{F}^o \) of \(\mathcal{F} \).

Theorem 4.1. If \(\mathcal{C} \) is a complete family and \(G \) is a graph, then the \(\mathcal{C} \)-reduction of \(G \), i.e., \(G/\mathcal{C} \), is the unique \(\mathcal{C} \)-reduced graph obtained from \(G \) by contractions of subgraphs in \(\mathcal{C} \).

Proof. Let \(\mathcal{C} \) be a complete family, let \(G \) be a graph, and let \(E'' \) and \(E' \) have the meaning of Lemma 3.9 (and of Corollary 3.8). Let \(G_1 \) be a reduced graph obtained from \(G \) by a sequence of contractions of connected subgraphs of \(G \) in \(\mathcal{C} \). As \(G \) is contracted to \(G_1 \) by a sequence of contractions of connected subgraphs of \(G \), Lemma 3.9 asserts that \(E'' \) and \(E' \) remain constant and equal throughout every step of the sequence. Since \(G_1 \) is \(\mathcal{C} \)-reduced, \(G_1 \) has no edge in any subgraph in \(\mathcal{C} \), and so \(E(G_1) \subseteq E' \). As \(G \) is contracted to \(G_1 \), the only edges that are contracted are edges in subgraphs in \(\mathcal{C} \), and so the constancy of \(E' \) implies \(E' \subseteq E(G_1) \). Hence, \(E(G_1) = E' = E'' \) and by definition, \(G_1 \) must be \(G/\mathcal{C} \). \(\square \)

For any complete family \(\mathcal{C} \), the family \(\mathcal{C}^R \) (defined in (4)) is the family of \(\mathcal{C} \)-reduced graphs.

Corollary 4.2. Let \(\mathcal{C}' \) and \(\mathcal{C}'' \) be complete families of graphs. If \(\mathcal{C}' \subseteq \mathcal{C}'' \) then \((\mathcal{C}'')^R \subseteq (\mathcal{C}')^R \).

Proof. If \(G \in (\mathcal{C}'')^R \), then \(G \) is \(\mathcal{C}'' \)-reduced, and so \(G = G/\mathcal{C}'' \). By Theorem 4.1, \(G/\mathcal{C}'' \) has no nontrivial subgraph in \(\mathcal{C}'' \). Since \(\mathcal{C}' \subseteq \mathcal{C}'' \), \(G/\mathcal{C}' \) thus has no nontrivial subgraph in \(\mathcal{C}' \), and hence by definition, \(G/\mathcal{C}' \) is \(\mathcal{C}' \)-reduced. Hence \(G \in (\mathcal{C}')^R \). \(\square \)
There is a duality between complete families and free families, and between the operations $\mathcal{C} \rightarrow \mathcal{C}^R$ and $\mathcal{F} \rightarrow \mathcal{F}^C$, where \mathcal{C} is complete and \mathcal{F} is free. This duality appears below, and it has been studied further in [5]. For our purposes here, a contraction is trivial whenever it is edgeless, and any graph with an edge is a nontrivial contraction of itself.

Lemma 4.3. For any family \mathcal{C}, if H is a subgraph of G and if $G \in \mathcal{C}^R$, then $H \in \mathcal{C}^R$.

Proof. By the definition of \mathcal{C}^R, since $G \in \mathcal{C}^R$, G is \mathcal{C}-reduced. By definition, any subgraph H of G is \mathcal{C}-reduced, and hence $H \in \mathcal{C}^R$. □

Lemma 4.4. For any family \mathcal{C}, any graph in $\mathcal{C} \cap \mathcal{C}^R$ is edgeless.

Proof. If $H \in \mathcal{C}^R$, then by definition H has no nontrivial subgraph in \mathcal{C}. □

Lemma 4.5. For any family \mathcal{F}, any graph in $\mathcal{F} \cap \mathcal{F}^C$ is edgeless.

Proof. If $G \in \mathcal{F}^C$ then no nontrivial contraction of G is in \mathcal{F}. □

Theorem 4.6. For any family \mathcal{C} that is closed under contraction, \mathcal{C}^R is a free family.

Proof. We show that \mathcal{C}^R satisfies (F1)–(F3). By definition, all edgeless graphs are in \mathcal{C}^R, so (F1) holds. By Lemma 4.3, \mathcal{C}^R satisfies (F2).

Suppose by contradiction that (F3) fails for G and some nontrivial induced subgraph H of G. Thus, $H \in \mathcal{C}^R$, $G/H \in \mathcal{C}^R$, but $G \notin \mathcal{C}^R$, and hence G has a nontrivial subgraph $G' \in \mathcal{C}$.

First, suppose $V(G') \subseteq V(H)$. Since H is an induced subgraph, $G' \subseteq H$. Since $H \in \mathcal{C}^R$, Lemma 4.3 implies that $G' \in \mathcal{C}^R$, too. Thus, $G' \in \mathcal{C} \cap \mathcal{C}^R$, which is impossible by Lemma 4.4.

Therefore, $V(G') \not\subseteq V(H)$, and so $G'/(H \cap G')$ is nontrivial, where $G'/(H \cap G')$ denotes G' is $H \cap G'$ is edgeless. Since \mathcal{C} is closed under contraction and $G' \in \mathcal{C}$, we have $G'/(H' \cap G) \in \mathcal{C}$. Thus, G/H has the nontrivial subgraph $G'/(H \cap G')$ in \mathcal{C}, contrary to $G/H \in \mathcal{C}^R$. Hence, (F3) holds for \mathcal{C}^R, and so \mathcal{C}^R is free. □

Closure under contraction is needed in Theorem 4.6. Let \mathcal{C} be the family of all graphs of odd order. Then \mathcal{C} is not closed under contraction. Clearly, $K_2 \in \mathcal{C}^R$. Suppose that \mathcal{C}^R is free. Then (F3) and $K_2 \in \mathcal{C}^R$ imply that \mathcal{C}^R contains trees of all odd orders. So does \mathcal{C}. This violates Lemma 4.4.

Lemma 4.7. Let \mathcal{F} be a free family containing K_2 as a member. The subfamily of connected graphs in \mathcal{F}^C is closed under edge-addition.

Proof. Let \mathcal{F} be a free family containing K_2 as a member, and let G be a nontrivial graph with a distinguished edge e such that $H = G - e$ is connected. By contradiction,
suppose that \(H \in \mathcal{F}^C \) and \(G \notin \mathcal{F}^C \). Then \(G \) has a nontrivial contraction \(G_0 \) (say) in \(\mathcal{F} \), but \(H \) has no nontrivial contraction in \(\mathcal{F} \).

Case 1: Suppose \(e \notin E(G_0) \). Let \(G_0(e) \) denote the graph to which \(G \) is contracted when the edges of \((E(G) − E(G_0)) − e\) are contracted. First suppose that \(e \notin E(G_0(e)) \). Then the contraction (in \(G \)) of the edges of \((E(G) − E(G_0)) − e\) identifies the ends of \(e \), and hence \(G_0 = G_0(e) \) and this \(G_0(e) \) is also a contraction of \(H = G − e \). But then \(H \) has a nontrivial contraction \(G_0 \) in \(\mathcal{F} \), a contradiction. Therefore, \(e \in E(G_0(e)) \), and \(G_0 \) is obtained from \(G_0(e) \) by contracting \(e \). If \(G_0(e) \) has an edge \(e' \) parallel to \(e \), then \(G_0 \in \mathcal{F} \) could be obtained from \(H \) by contracting \(H \) to \(G_0(e) − e \) and then by contracting \(e' \), but this would violate the fact that \(H \) has no nontrivial contraction in \(\mathcal{F} \). Hence, \(G_0(e) \) has no edge \(e' \) parallel to \(e \), and so \(G_0(e)[e] \), a \(K_2 \), is an induced subgraph of \(G_0(e) \).

Since \(\mathcal{F} \) is a free family, since \(G_0(e)[e] = K_2 \in \mathcal{F} \), and since \(G_0(e)/e = G_0 \in \mathcal{F} \), (F3) implies that \(G_0(e) \in \mathcal{F} \). By (F2), \(G_0(e) − e \in \mathcal{F} \). Since \(G − e \) is connected, so is \(G_0(e) − e \), and it is nontrivial. Hence, \(H = G − e \) has the nontrivial contraction \(G_0(e) − e \in \mathcal{F} \), a contradiction precluding Case 1.

Case 2: Suppose \(e \in E(G_0) \). By \(G_0 \in \mathcal{F} \) and by (F2), \(G_0 − e \in \mathcal{F} \). Since \(G − e \) is connected, so is \(G_0 − e \), and so \(G_0 − e \) is a nontrivial contraction of \(H \) lying in \(\mathcal{F} \), contrary to \(H \in \mathcal{F}^C \). □

Lemma 4.8. For any family \(\mathcal{F} \), \(\mathcal{F}^C \) is closed under contraction.

Proof. Let \(\mathcal{F} \) be a family. If all members of \(\mathcal{F}^C \) are edgeless, then the lemma is easy.

Suppose that \(G \in \mathcal{F}^C \) and that \(G_0 \) is a nontrivial contraction of \(G \). By the definition of \(\mathcal{F}^C \), \(G \) has no nontrivial contraction in \(\mathcal{F} \), and so neither does \(G_0 \). Thus, \(G_0 \in \mathcal{F}^C \). □

Lemma 4.9. If \(\mathcal{F} \) is free and \(G \in \mathcal{F} \), then \(G \cup K_1 \in \mathcal{F} \).

Proof. Apply (F3) with \(H \) and \(G \), respectively, of (F3) replaced by \(G \) and \(G \cup K_1 \), respectively. Then \(G/H \) of (F3) is edgeless, and by (F1) it is in \(\mathcal{F} \). □

Theorem 4.10. Suppose \(\mathcal{F} \) is a free family. Then the family \(\mathcal{C} = \mathcal{F}^C \) is complete. Also, \(\mathcal{F} = \mathcal{C}^R = (\mathcal{F}^C)^R \).

Proof. If no graph in \(\mathcal{F} \) has an edge, then \(\mathcal{F} \) is the family of all edgeless graphs, \(\mathcal{C} = \mathcal{F}^C \) is the family of all graphs, which is complete, and \(\mathcal{C}^R \) is the family of all edgeless graphs.

Suppose that \(\mathcal{F} \) is a free family such that some graph of \(\mathcal{F} \) has an edge, and let \(\mathcal{C} = \mathcal{F}^C \). By (F2), \(K_2 \in \mathcal{F} \), so Lemma 4.7 applies. We must prove that \(\mathcal{C} \) satisfies axioms (C1)–(C3) of the definition of a complete family, and that \(\mathcal{F} = \mathcal{C}^R \). By definition, \(\mathcal{C} \) satisfies (C1). By Lemma 4.8, (C2) holds.
We prove (C3). Let G be a supergraph of a nontrivial graph

\[H \in \mathcal{C}. \] \hspace{1cm} (26)

We claim

\[G/H \in \mathcal{C} \Rightarrow G \in \mathcal{C}. \] \hspace{1cm} (27)

By way of contradiction, suppose (27) is false. Then

\[G \notin \mathcal{C} \quad \text{and} \quad G/H \in \mathcal{C}. \] \hspace{1cm} (28)

By the definition of \mathcal{C}, $G \notin \mathcal{C}$ of (28) implies that G has a nontrivial contraction G_0 (say) in \mathcal{F}. Let $\theta : V(G) \rightarrow V(G_0)$ denote the surjection induced by this contraction.

We claim first that there is an edge $e \in E(H) \cap E(G_0)$: otherwise, G/H can be contracted to the nontrivial graph $G_0 \in \mathcal{F}$, contrary to $G/H \in \mathcal{C} = \mathcal{F}^C$ in (28). Let H_e be the component of H containing e. Denote

\[E = \{xy \mid \text{there is an } i \text{ such that } x, y \in \theta^{-1}(v_i) \cap H_e\}. \]

Let $J = (H/E)(H - E(H_e))$. Note $J \in \mathcal{F}^C$. Let H_0 be the subgraph of G_0 containing the edges of $H_e \cap G_0$ and no isolated vertices. Note that $H_0 \notin \mathcal{F}$. Add enough isolated vertices to H_0 so that it will equal J. By Lemma 4.9, $J \in \mathcal{F}$, contradicting Lemma 4.5. This contradiction proves (27) and hence that \mathcal{C} satisfies (C3).

Now we prove $\mathcal{F} \subseteq \mathcal{C}^R$. Suppose $G \in \mathcal{F}$. By contradiction, if $G \notin \mathcal{C}^R$ then G has a nontrivial subgraph $H \in \mathcal{C} = \mathcal{C}^C$. By $G \in \mathcal{F}$ and (F2), $H \in \mathcal{F}$, and so by Lemma 4.5, H is trivial, a contradiction.

To prove $\mathcal{C}^R \subseteq \mathcal{F}$, we suppose (by contradiction) that G is a minimal member of $\mathcal{C}^R - \mathcal{F}$. Since \mathcal{F} contains all edgeless graphs, G is a nontrivial graph in \mathcal{C}^R. By Lemma 4.4, $G \notin \mathcal{C} = \mathcal{C}^C$. One of these two cases holds:

Case A: Suppose G is disconnected. Let H be a component of G and let $H' = G - H$.

By the minimality of G, both H and H' are in \mathcal{F}. Let G' denote the graph obtained by adding an edge e (say) joining some vertex of $V(H)$ and some vertex $V(H')$. Therefore, G' has vertex-induced subgraphs $G'[e], H,$ and H', all in \mathcal{F} since $K_2 \in \mathcal{F}$.

By two applications of (F3), $G' \in \mathcal{F}$. By (F2), $G = G' - e \in \mathcal{F}$, a contradiction.

Case B: Suppose G is connected. Since $G \notin \mathcal{F}^C$, some nontrivial contraction G_0 (say) of G is in \mathcal{F}. Since $G \notin \mathcal{F}$, $G \neq G_0$. Since G is connected and $G_0 \neq K_1$, we have $E(G_0) \neq \emptyset$. Hence, $G - E(G_0)$ has $|V(G_0)| = c$ components, say H_1, H_2, \ldots, H_c, for some $c \geq 2$. Each H_i is an induced subgraph of G, and by Lemma 4.3, $H_i \in \mathcal{C}^R$ ($1 \leq i \leq c$). Since G was chosen to be a minimal member of $\mathcal{C}^R - \mathcal{F}$ and since $c \geq 2$, each H_i ($1 \leq i \leq c$) is in \mathcal{F}. But also $G_0 \in \mathcal{F}$, and so by repeated applications of axiom (F3), $G \in \mathcal{F}$. This contradiction proves $\mathcal{C}^R = \mathcal{F}$, as claimed. ∎

In Theorem 4.10, \mathcal{F} cannot be just any family. Suppose, for example, that \mathcal{F} is the family of connected graphs of odd order. Thus, \mathcal{F} violates (F2), so \mathcal{F} is not a free family. It is easily seen that \mathcal{F}^C is not complete: \mathcal{F}^C contains K_2, and hence
if (C3) held then \(\mathcal{F}^C \) would contain all trees. But trees of odd order are in \(\mathcal{F} \), and Lemma 4.5 is violated.

Theorem 4.11. If \(\mathcal{C} \) is a complete family, then \((\mathcal{C}^R)^C = \mathcal{C}\).

Proof. Suppose that \(\mathcal{C} \) is complete and let \(\mathcal{F} = \mathcal{C}^R \). First suppose \(G \in (\mathcal{C}^R)^C \). By the definition of \(\mathcal{F}^C \), no nontrivial contraction \(H \) of \(G \) is in \(\mathcal{C}^R \). But by Theorem 4.1, the graph \(G/H \) is a contraction of \(G \) in \(\mathcal{C}^R \). Hence, \(G/H \) must be edgeless, and this implies that the components of \(G \) are in \(\mathcal{C} \). Hence by Theorem 3.7, \(G \in \mathcal{C} \), and so \((\mathcal{C}^R)^C \subseteq \mathcal{C}\).

Suppose instead that \(G \in \mathcal{C} \). The complete family \(\mathcal{C} \) is closed under contraction and hence all contractions of \(G \) are in \(\mathcal{C} \). Thus, by Lemma 4.4, \(G \) has no nontrivial contraction in \(\mathcal{C}^R \), and so by the definition of \(\mathcal{F}^C \), \(G \in (\mathcal{C}^R)^C \). Thus, \(\mathcal{C} \subseteq (\mathcal{C}^R)^C \). □

Theorem 4.12. Let \(\mathcal{C} \) and \(\mathcal{F} \) be two graph families. If both \(\mathcal{C} = \mathcal{F}^C \) and \(\mathcal{F} = \mathcal{C}^R \), then \(\mathcal{C} \) is a complete family and \(\mathcal{F} \) is a free family. For any complete family \(\mathcal{C} \) there is a free family \(\mathcal{F} = \mathcal{F}^C \) such that \(\mathcal{C} = \mathcal{F}^C \). For any free family \(\mathcal{F} \) there is a complete family \(\mathcal{C} = \mathcal{F}^C \) such that \(\mathcal{F} = \mathcal{C}^R \).

Proof. Let \(\mathcal{C} \) and \(\mathcal{F} \) be two graph families, and suppose \(\mathcal{C} = \mathcal{F}^C \) and \(\mathcal{F} = \mathcal{C}^R \). By Lemma 4.8, \(\mathcal{C} = \mathcal{F}^C \) is closed under contraction. Hence, by Theorem 4.6, \(\mathcal{F} = \mathcal{C}^R \) is a free family, and so by Theorem 4.10, \(\mathcal{C} = \mathcal{F}^C \) is a complete family.

For any complete family \(\mathcal{C} \), apply Theorems 4.6 and 4.11 to obtain the desired free family \(\mathcal{F} = \mathcal{C}^R \). For any free family \(\mathcal{F} \), apply Theorem 4.10 to obtain the desired complete family \(\mathcal{C} = \mathcal{F}^C \). □

For the operations \(\mathcal{C} \rightarrow \mathcal{C}^R \) and \(\mathcal{F} \rightarrow \mathcal{F}^C \), it is natural to ask when families \(\mathcal{C} \) and \(\mathcal{F} \) exist satisfying \(\mathcal{C} = \mathcal{F}^C \) and \(\mathcal{F} = \mathcal{C}^R \). Thus, Theorem 4.12 motivates the study of complete families and free families. Our original motivation for considering these families was the study of the kernel \(\mathcal{F}^O \) and the corresponding reduced graphs, but Theorem 4.12 is another justification.

Theorem 4.13. Let \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) be free families of graphs. Then

\[\mathcal{F}_1 \subseteq \mathcal{F}_2 \quad \text{if and only if} \quad \mathcal{F}_2^C \subseteq \mathcal{F}_1^C. \]

Proof. Let \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) be free families. Suppose \(\mathcal{F}_1 \subseteq \mathcal{F}_2 \) and let \(G \in \mathcal{F}_2^C \). By definition, no nontrivial contraction of \(G \) is in \(\mathcal{F}_2 \). Hence, no nontrivial contraction of \(G \) is in \(\mathcal{F}_1 \), and so by definition, \(G \in \mathcal{F}_1^C \).

Conversely, suppose \(\mathcal{F}_2^C \subseteq \mathcal{F}_1^C \). By Theorem 4.10, \(\mathcal{F}_2^C \) and \(\mathcal{F}_1^C \) are complete families. By Theorem 4.10 (twice) and Corollary 4.2,

\[\mathcal{F}_1 = (\mathcal{F}_1^C)^R \subseteq (\mathcal{F}_2^C)^R = \mathcal{F}_2. \]
Corollary 4.14. Let \mathcal{C}' and \mathcal{C}'' be complete families. Then

$$\mathcal{C}' \subseteq \mathcal{C}'' \text{ if and only if } \mathcal{C}''^R \subseteq \mathcal{C}'^R.$$

Proof. By Theorem 4.6, $\mathcal{F}_1 = (\mathcal{C}'')^R$ and $\mathcal{F}_2 = (\mathcal{C}')^R$ are free families. This and Theorem 4.11 imply both $\mathcal{F}_1^C = (\mathcal{C}'')^R)^C = \mathcal{C}''$ and $\mathcal{F}_2^C = ((\mathcal{C}')^R)^C = \mathcal{C}'$. Applying Theorem 4.13, we get the result. \Box

5. Examples: free families

The smallest free family \mathcal{F} containing a nontrivial graph is the family of all forests. (By (F2), if a free family \mathcal{F} has any member with an edge, then $K_2 \in \mathcal{F}$. This and (F1) and (F3) imply that \mathcal{F} contains all forests.) The corresponding complete family \mathcal{F}^C consists of all graphs with no cut-edges.

Corresponding to edge-connectivity $\kappa'(G)$, define

$$\overline{\kappa}'(G) = \max_{H \subseteq G} \kappa'(H).$$

Let $k \in \mathbb{N}$. If \mathcal{C} is the complete family of graphs with k-edge-connected components, then $\mathcal{C}^R = \{ G \mid \overline{\kappa}'(G) < k \}$ is the corresponding free family.

For $k \geq 2$, define $\mathcal{F}_k = \{ G \mid G \text{ has girth at least } k \}$. Then \mathcal{F}_k is a free family, \mathcal{F}_2 is the family of all graphs, and \mathcal{F}_3 is the family of all simple graphs.

Define, for any nontrivial graph G,

$$\gamma(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1},$$

where the maximum runs over all nontrivial subgraphs H of G. Nash-Williams [6] showed that $[\gamma(G)]$, called the edge-arboricity of G, is the minimum number of forests whose union contains G. For $k \in \mathbb{N}$, the family of graphs with edge-arboricity at most k is a free family. If \mathcal{C} is the complete family of graphs with k edge-disjoint spanning trees, then \mathcal{C}^R is the family of graphs G with edge-arboricity at most k, but with no nontrivial subgraph of G having k edge-disjoint spanning trees.

Suppose a free family \mathcal{F} contains a graph having an n-cycle. By (F2), $K_2, C_n \in \mathcal{F}$. This and repeated applications of (F3) imply that all cycles of length at least n are in \mathcal{F}. For example, the free families $\mathcal{C}L^R$ and $(\mathcal{C}L^O)^R$ contain all cycles of length at least 4.

The complete family of graphs whose components all have two edge-disjoint spanning trees is contained (by Theorem 2 and the corollary of Theorem 3 of [2]) in the kernel \mathcal{L}^O, a complete family, by Theorem 3.3. Hence, by Corollary 4.14, any graph G in $(\mathcal{L}^O)^R$ has edge-arboricity at most 2.
References