1. For the function \(f(x) = x^2 + 3x \) on the interval \([0, 1]\), do the following:

 (a) Write the Riemann Sum for the partition of \([0, 1]\) into the 4 subintervals \([0, \frac{1}{4}],
 \frac{1}{4}, \frac{1}{2}], [\frac{1}{2}, \frac{3}{4}], [\frac{3}{4}, 1]\), when the left hand endpoints are selected for the \(x^*_i\).

 (b) Use the regular partition of \([0, 1]\) into \(n\) equal subintervals and select the right
 hand endpoints for the \(x^*_i\) to write a Riemann Sum for \(f(x)\).

 (c) Compute the value of the Riemann Sum in part (b) for \(n = 5\).
2. Consider the sum
\[\sum_{i=1}^{n} \left(\sin \left(\frac{i}{n} \right) - 1 \right)^3 \frac{1}{n}. \]

(a) Explain why the sum can be interpreted as a Riemann sum for a function \(f(x) \)
on the interval \([0, 1]\). That is, guess the function \(f(x) \), the partition, and the \(x_i^* \)selection.