1. Let \(f(x) = x^{3/4} \).
 (a) Find the equation of the tangent line of \(y = f(x) \) at the point \((81, 27)\).

 (b) Use linear approximation to approximate the value of \(80^{3/4} \).

2. Consider the function

 \[
 f(x) = \begin{cases}
 \frac{3x^2 + 8x + 4}{x+2}, & \text{if } x < -2; \\
 \frac{x^2 - 4}{x+2}, & \text{if } x > -2.
 \end{cases}
 \]

 (a) Find the limit from the right and the limit from the left of \(f(x) \) as \(x \) approaches \(-2\).

 (b) Is it possible to define \(f(-2) \) so that \(f \) is continuous at \(x = -2 \)? Explain.
3. Let \(f(x) = \frac{x^3}{x^2 - 1} \). Please carefully sketch the graph of \(y = f(x) \). In so doing, please identify and label the open intervals of increasing and decreasing, the local extrema, the open intervals of concave up and down, and the horizontal or vertical asymptotes.