Compute derivatives of implicit functions

Facts: Given an equation \(F(x, y) = 0 \) involving variables \(x \) and \(y \) which defines \(y \) as a function \(y = y(x) \), to compute \(y' = \frac{dy}{dx} \), we can apply the following procedure.

(Step 1) View \(y = y(x) \) and differentiate both sides of the equation \(F(x, y) = 0 \) with respect to \(x \) (often Chain Rule is needed here). This will yield a new equation involving \(x, y \) and \(y' \).

(Step 2) Solve the resulting equation from (Step 1) for \(y' \).

Example 1 Given \(x^4 + x^2 y^2 + y^4 = 48 \), find \(\frac{dy}{dx} \).

Solution: View \(y = y(x) \) and differentiate both sides of the equation \(x^4 + x^2 y^2 + y^4 = 48 \) to get
\[
4x^3 + 2xyy' + 2x^2 yy' + 4y^3 y' = 0.
\]
To solve this new equation for \(y' \), we first combine those terms involving \(y' \),
\[
(2x^2 y + 4y^3)y' = -4x^3 - 2xy^2,
\]
and then solve for \(y' \):
\[
y' = \frac{-4x^3 - 2xy^2}{2x^2 y + 4y^3}.
\]

Example 2 Find an equation of line tangent to the curve \(xy^2 + x^2 y = 2 \) at the point \((1, -2)\).

Solution: The slope \(m \) of this line, is \(\frac{dy}{dx} \) at \((1, -2)\), and so we need to find \(y' \) first. Apply implicit differentiation. We differentiate both sides of the equation \(xy^2 + x^2 y = 2 \) with respect to \(x \) (view \(y = y(x) \) in the process) to get
\[
y^2 + 2xyy' + 2xy + x^2 y' = 0.
\]
Then we solve for \(y' \). First we have \((2xy + x^2)y' = -y^2 - 2xy \), and then
\[
y' = \frac{-y^2 - 2xy}{2xy + x^2}.
\]
At \((1, -2)\), we substitute \(x = 1 \) and \(y = -2 \) in \(y' \) to get the slope \(m = \frac{-(-2)^2 - 2(1)(-2)}{2(1)(-2) + 1^2} = 0 \), and so the tangent line is \(y = -2 \).

Example 3 Find all the points on the graph of \(x^2 + y^2 = 4x + 4y \) at which the tangent line is horizontal.

Solution: First find \(y' \). We differentiate both sides of the equation \(x^2 + y^2 = 4x + 4y \) with respect to \(x \) (view \(y = y(x) \) in the process) to get
\[
2x + 2yy' = 4 + 4y'.
\]
Then we solve for \(y' \). First we have \((2y - 4)y' = 4 - 2x \), and then
\[
y' = \frac{2 - x}{y - 2}.
\]
Note that when \(x = 2 \), the equation \(x^2 + y^2 = 4x + 4y \) becomes \(4 + y^2 = 8 + 4y \), or \(y^2 - 4y = 4 \). Solve this equation we get \(y = 2 + \sqrt{8} \) and \(y = 2 - \sqrt{8} \). Therefore, at \((2, 2 - \sqrt{8})\) and \((2, 2 + \sqrt{8})\), the curve has horizontal tangent lines.
Compute related rates

The Problem: Given an equation \(F(x, y) = 0 \), where \(x = x(t) \) and \(y = y(t) \), and given values of \(x, y \) and one of \(x'(t) \) and \(y'(t) \) (say \(x'(t) \)), we want to find the missing rate value (in this case is \(y'(t) \)).

(Step 1) View \(x = x(t) \) and \(y = y(t) \), apply chain rule to differentiate both sides of the equation \(F(x, y) = 0 \) with respect to \(t \). This will yield a new equation involving \(x, y, x'(t) \) and \(y'(t) \).

(Step 2) Solve the resulting equation from (Step 1) for \(y'(t) \), assuming that the values of \(x, y \) and \(x'(t) \) are given.

Remark: Please distinguish this problem with the implicit differentiation problem.

Example 1 A circular oil slick of uniform thickness is caused by a spill of 1 m\(^3\) of oil. The thickness of the oil slick is decreasing at the rate of 0.1 cm/h. At what rate is the radius of the slick increasing when the radius is 8m?

Solution: Let \(r \) and \(h \) denote the radius and the thickness of the oil slick, respectively. Then both \(r = r(t) \) and \(h = h(t) \) are functions of the times \(t \). That the volume of the slick is 1m\(^3\) becomes

\[
\pi r^2 h = 1.
\]

View \(r = r(t) \) and \(h = h(t) \) and differentiating both sides of this equation with respect to \(t \), we get

\[
2\pi rr'h + \pi r^2 h' = 0.
\]

We shall use meter as the unit for length. Therefore, \(h'(t) = -0.001 \text{m/h} \). When \(r = 8 \), we have \(h = \frac{1}{8\pi} = \frac{1}{64\pi} \). Substitute all these in to equation involving the rates, we have

\[
2\pi(8)r'(t) \frac{1}{64\pi} + \pi64(-0.001) = 0, \text{ and so } r'(t) = \frac{4 \cdot 64\pi}{1000} = \frac{32\pi}{125} \text{m/h}.
\]

Thus when the radius is 8m, the radius of the slick increasing at the rate of \(\frac{32\pi}{125} \) m/h.

Example 2 The width of a rectangle is half its length. At what rate is its area increasing if its width is 10cm and is increasing at 0.5 cm/s\(^2\)?.

Solution: Let \(w \) and \(l \) denote the width and the length of the rectangle, respectively. Then both \(l = l(t) \) and \(w = w(t) \) are functions of the time \(t \). Moreover, \(2w = l \). Thus the area \(A = lw = 2w^2 \).

View \(w = w(t) \) and differentiating \(A(t) \) with respect to \(t \), we get

\[
A'(t) = 4ww'(t).
\]

When \(w = 10 \text{cm} \) and \(w'(t) = 0.5 \text{ cm/s}^2 \), we have \(A'(t) = 4(10)(0.5) = 20 \text{ cm/s} \).