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1. INTRODUCTION

The work in this paper is motivated by the following two conjectures.

Conjecture 1.1 (Tutte [12], [2]). Every bridgeless graph without 3-edge-cut

admits a nowhere-zero 3-flow.

Note that Conjecture 1.1 is equivalent to the statement that every 5-edge-

connected [9], 5-regular [10, 17] graph admits a nowhere-zero 3-flow.

Conjecture 1.2. Let G be a 4-edge-connected graph such that every edge of

G is contained in a circuit of length at most 4. Then G admits a nowhere-zero

3-flow.

Conjecture 1.2 is true for the 4-flow problem by a theorem of Catlin [3]

without the requirement of 4-edge-connectivity, and by a theorem of Jaeger [8]

without the requirement of small circuits, but remains open for 3-flow.

The following theorem is a partial result related to Conjecture 1.2.

Theorem 1.3 (Imrich and Skrekovski [7]). Let G and H be two graphs. Then

G� H admits a nowhere-zero 3-flow if both G and H are bipartite.

Theorem 1.3 is to be generalized by the main result (Theorem 1.5) of the paper.

Definition 1.4. A connected graph G is a circuit-tree if every block of G is a

circuit. A circuit-tree G is odd if every block of G is of odd length.

The set of all odd-degree vertices of a graph G is denoted by OðGÞ.

Theorem 1.5. Let G and H be two connected non-trivial graphs with

jOðGÞj � jOðHÞj. If the graphs G and H do not have the structure that G is an

odd-circuit-tree and H has a bridge, then their product G� H admits a nowhere-

zero 3-flow.

It can be proved (Lemma 3.6) that, for a 2-edge-connected graph G; G
contains no circuit of even length if and only if it is an odd-circuit-tree.

Immediate corollaries of Theorem 1.5 are that the product of any pair of

bridgeless graphs admits a nowhere-zero 3-flow, and, the product of any pair of

graphs both containing circuits of even lengths admits a nowhere-zero 3-flow.

One may also notice that the converse to Theorem 1.5 does not hold since the

products of some odd-circuit-trees and some graphs with bridges do admit

nowhere-zero 3-flows.

The following result is another corollary of Theorem 1.5.

Corollary 1.6. Let � be an abelian group and S be a minimal generating set of

the group �. If the Cayley graph G ¼ Cayð�; SÞ is of degree at least 2, then G

admits a nowhere-zero 3-flow except for only one case: S ¼ f�; �g where

j�j ¼ 2, j�j is odd.
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Corollary 1.6 is related to a conjecture [1] that every Cayley graph admits a

nowhere-zero 4-flow (the best result up-to-date to this conjecture is for solvable

groups, see [1]). The proof of Corollary 1.6 is straightforward. The degree of

G must be odd for otherwise a nowhere-zero 2-flow can be found in G (by

Lemma 3.1). Hence, S must contain an element � with j�j ¼ 2. Since S is a

minimal generating set of the abelian group �, the graph G is the product of two

smaller Cayley graphs CayðhS� �i; ðS� �ÞÞ and a single edge K2. Corollary 1.6

follows directly by applying Theorem 1.5.

2. NOTATION AND TERMINOLOGY

A circuit is a connected 2-regular subgraph. A circuit of even length (or, odd

length, respectively) is called an even circuit (or an odd circuit, respectively). An

even subgraph is a union of edge-disjoint circuits. An even subgraph is eulerian if

it is connected. An edge e that is not contained in any circuit of G is called a

bridge of G.

The set of all odd degree vertices of a graph G is denoted by OðGÞ. For a vertex

v of G, the set of edges incident with v is denoted by EðvÞ. The set of vertices of

G with degree precisely � is denoted by V�.

Let D be an orientation of a graph G. For a vertex v; EþðvÞ is the set of all

directed edges with tails at v, and E�ðvÞ is the set of all directed edges with heads

at v.

Let G be a graph. The underlying graph of G, denoted by G, is the graph

obtained from G by replacing every maximal induced path a single edge. That is,

G is a graph without degree 2 vertex to which G is homeomorphic.

An integer flow of a graph G is an ordered pair ðD; f Þ where D is an orientation

of EðGÞ and f : EðGÞ 7! Z and Z is the set of all integers such that

X

e2EþðvÞ
f ðeÞ ¼

X

e2E�ðvÞ
f ðeÞ

for every vertex v of G.

An integer flow ðD; f Þ is a k-flow if jf ðeÞj < k for every edge of G. The support

of a k-flow ðD; f Þ of G is the following set of edges

suppð f Þ ¼ fe 2 EðGÞ : f ðeÞ 6¼ 0g:

A k-flow ðD; f Þ of G is nowhere-zero if suppð f Þ ¼ EðGÞ.
Let A be an additive (abelian) group. An A-flow ðD; f Þ of a graph G consists of

an orientation D and a mapping f : EðGÞ 7! A such that

X

e2EþðvÞ
f ðeÞ �

X

e2E�ðvÞ
f ðeÞ
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for every vertex v 2 VðGÞ. The support of a group A-flow and a nowhere-zero

A-flow is defined similarly as integer flows.

Readers may immediately notice that if a graph G admits a nowhere-zero

k-flow ðD; f Þ then G admits a nowhere-zero k-flow ðD0; f 0Þ for any orientation D0

of G since the changes of signs of f for all edges with opposite orientations under

D and D0 yield a nowhere-zero k-flow ðD0; f 0Þ. It is the same for group A-flows.

Note that a graph G admits a nowhere-zero integer-valued k-flow if and only if

G admits a nowhere-zero Zk-flow (by a theorem of Tutte [14] and [15] or see [18]:

Theorem 1.3.3 and Theorem 2.2.3). We sometime work with group Z3-flows

instead of integer 3-flows for the sake of technical convenience.

An orientation D of a graph G is called a mod-3-orientation if

jEþðvÞj � jE�ðvÞj � 0 mod ð3Þ:

Let G and H be two graphs. The product of G and H, denoted by G� H, is the

graph with vertex set VðGÞ � VðHÞ, and two vertices ðg; hÞ; ðg0; h0Þ of G� H are

adjacent to each other if either g and g0 2 VðGÞ are adjacent in G or h and

h0 2 VðHÞ are adjacent in H.

Let g0 2 VðGÞ and h0 2 VðHÞ. In the product G� H, the subgraph of G� H

induced by all vertices fðg0; hÞ : h 2 VðHÞg is called an H-layer, and the subgraph

of G� H induced by all vertices fðg; h0Þ : g 2 VðGÞg is called a G-layer.

3. LEMMAS

A. Basic Lemmas for Flows

Lemma 3.1 (Tutte [16]). A graph G admits a nowhere-zero 2-flow if and only if

the graph G is even (that is, each component of G is eulerian).

Lemma 3.2 ([13] or see [18] Lemma 4.1.2). A graph G admits a nowhere-zero

3-flow if and only if G admits a mod-3-orientation.

Lemma 3.3 (Tutte [14]). A cubic graph G admits a nowhere-zero 3-flow if and

only if G is bipartite.

Lemma 3.4. Let G be a graph. If the subgraph of G induced by V3 is not

bipartite, then G does not admit a nowhere-zero 3-flow.

Proof. If the subgraph of G induced by V3 is not bipartite, then G cannot

have a mod-3-orientation. (Lemma 3.2 is applied here.) &

Lemma 3.5 (Seymour [11]). Let G be a bridgeless graph. Then G admits a

3-flow ðD; f Þ and contains an even subgraph C such that suppð f Þ [ EðCÞ ¼
EðGÞ.
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B. CIRCUIT TREES AND EVEN CIRCUITS

Lemma 3.6. A graph G contains no even circuit if and only if every block of G

is an odd circuit or a single edge.

The proof is quite simple and is left as an exercise for readers.

C. VERTEX SPLITTING

Definition 3.7 (Vertex Splitting). Let v be a vertex of G and e1; e2 2 EðvÞ
having ends v1 and v2, respectively, different from v. The graph G½v;e1;e2� is

obtained from G by deleting e1 and e2 and adding a new edge v1v2.

Lemma 3.8 (Fleischner [4], or see [5] [6] [11] [18]). Let G be a 2-edge-

connected graph and v 2 VðGÞ with dðvÞ � 4. Then there are edges e1; e2 2 EðvÞ
such that G½v;e1;e2� remains 2-edge-connected.

Lemma 3.9. Let G be a connected graph and OðGÞ be the set of all odd vertices
of G.

(1) Suppose that OðGÞ 6¼ ;. Then, after a series of vertex splitting operations,

we can obtain a new graph from G that is a disjoint union of jOðGÞj=2

paths of length at least one.

(2) Suppose that OðGÞ ¼ ;. Then, after a series of vertex splitting operations,

we can obtain a new graph from G that is a circuit of length jVðGÞj.

Proof. For (1), construct a new graph G� from G by adding a new vertex x

and new edges xvi for every vi 2 OðGÞ. Let T be an Euler tour of G�. Deleting x

from T , we obtain a set of ðjOðGÞj=2Þ edge-disjoint trails of length at least one.

Applying vertex splitting operations along those trails until the degree of every

vertex is 1 or 2.

(2) is similar to (1) by splitting high degree vertices along an Euler

tour T. &

Lemma 3.10. If an eulerian G is not an odd-circuit tree, then, after a series of

splitting operations, we can obtain either an even circuit (if jVðGÞj ¼ even) or a

circuit tree consisting of precisely two even circuits (if jVðGÞj ¼ odd).

Proof. Case 1. jVðGÞj ¼ even, then G can be split to a circuit of length

jVðGÞj by Lemma 3.9 (2).

Case 2. jVðGÞj ¼ odd. Let G be a counterexample with jEðGÞj as small as

possible. By Lemma 3.6, G contains an even circuit C.

Subcase 2.1. We claim that every vertex of VðCÞ is either of degree 2 or is a

cut-vertex of G. Assume that v 2 VðCÞ is of degree greater than 2 and is not a

cut-vertex of G. Let e1; e2 2 EðvÞ � EðCÞ. Then, after splitting e1; e2 away from

v, the resulting graph G0 ¼ G½v;e1;e2� remains connected and has fewer number of
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edges than G. So, the smaller graph G0, which contains an even circuit C, can be

further split to a circuit tree consisting of precisely two even circuits.

Subcase 2.2. We claim that the even circuit C cannot intersect with any odd

circuit. Assume that C0 is an odd circuit that VðCÞ \ VðC0Þ 6¼ ;. By Subcase 2.1,

the intersection of these circuits must be a cut vertex v of G. Let e3 2
EðCÞ \ EðvÞ and e4 2 EðC0Þ \ EðvÞ. Then, after splitting e3; e4 away from v, the

resulting graph G00 ¼ G½v;e3;e4� remains connected and has fewer number of edges

than G, and the new circuit resulted by the combination of two circuits C and C0

is of even length. So, the smaller graph G00, which contains an even circuit, can be

further split to a circuit tree consisting of precisely two even circuits.

Subcase 2.3. By Subcase 2.2, every circuit intersecting with C must be of even

length. Note that the even circuit C was chosen arbitrarily. Therefore, by Subcase

2.2 again to every even circuit of G, every circuit of G is of even length since G is

connected. By Subcase 2.1, the graph is a circuit tree with every block as an even

circuit.

Subcase 2.4. We claim that any even circuit C cannot intersect with two other

circuits. Assume that C intersects with two circuits C1 and C2 (both are of even

lengths, by Subcase 2.2). By Subcase 2.1, the intersection of the circuits C and C1

must be a cut vertex v of G. Let e5 2 EðCÞ \ EðvÞ and e6 2 EðC1Þ \ EðvÞ. Then,

after splitting e5; e6 away from v, the resulting graph G000 ¼ G½v;e5;e6� remains

connected and has fewer number of edges than G. So, the smaller graph G000,
which contains a circuit C2 of even length, can be further split to a circuit tree

consisting of precisely two even circuits.

By Subcases 2.3 and 2.4, it is obvious that the circuit tree G has only two

blocks, each of which is a circuit of even length. &

Lemma 3.11. Let G and H be two graphs and v 2 VðGÞ with dðvÞ � 3 and

e1; e2 2 EðvÞ. Then G� H admits a nowhere-zero 3-flow if G½v;e1;e2� � H admits a

nowhere-zero 3-flow.

Proof. Obvious. &

4. PROOF OF THE MAIN THEOREM

Consider a counterexample G� H to the theorem with the fewest number of

edges. The proof is to be divided into several parts.

In the first part, we are to find nowhere-zero 3-flows for the product of certain

graphs (circuits, paths, and circuit trees) in several lemmas. Though those graphs

are too special, lemmas proved in this part will be useful in Part Two.

In the second part of the proof, we are to prove that one factor, say G, must be a

circuit of odd length. The proof is outlined as follows. By applying the vertex

splitting method (defined in Subsection 3C) and some lemmas in Part One, we
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first show that one of fG;Hg is an even subgraph while another one is not.

Furthermore, we will reduce the factors G and H to be some of those special

graphs considered in Part One. The existence of nowhere-zero 3-flows follows by

applying those lemmas proved in Part One.

In the third (the last) part of the proof, the product G� H is to be decomposed

into a few subgraphs. The proof is to be completed here by showing that each of

these subgraphs admits a nowhere-zero 3-flow. In this part, the 6-flow theorem of

Seymour [11] is to be applied to the non-eulerian factor H.

A. Part One: Products of Special Graphs

Lemma 4.1. If G and H are paths of length � 1, then G� H admits a nowhere-

zero 3-flow.

Proof. Since G� H is planar, we can apply a theorem of Tutte [15] that a

planar graph is face k-colorable if and only if G admits a nowhere-zero k-flow.

The faces of G� H can be easily colored as follows: red and blue alternatively

for square faces, and yellow for the exterior face. &

Lemma 4.2. Suppose that G is a circuit and H is a path. Then G� H admits a

nowhere-zero Z3-flow if and only if G is a circuit of even length. Furthermore, if G

is a circuit of even length and H is a path, then for any given vertex v 2 VðGÞ,
the product G� H admits a nowhere-zero 3-flow ðD; f Þ such that the H-layer

fvg � H is oriented under D as a directed path with f ðeÞ ¼ 1 for every edge e of

fvg � H.

Proof. Let g0 � � � g2k�1g0 be the even circuit G and h0 � � � ht be the path H.

Assign a mod-3-orientation D to G� H as follows.

(1) In the G-layer G� fh0g, the vertex ðg2�; h0Þ dominates both ðg2��1; h0Þ
and ðg2�þ1; h0Þ for every � ¼ 0; . . . ; k � 1 (mod ð2kÞ);

(2) In the G-layer G� fhtg, the vertex ðg2�; h0Þ is dominated by both

ðg2��1; h0Þ and ðg2�þ1; h0Þ for every � ¼ 0; . . . ; k � 1 (mod ð2kÞ);
(3) Every other G-layer G� fhrg (r 6¼ 0 or t) is oriented as a directed circuit

(in either direction);

(4) For every � ¼ 0; . . . ; k � 1, the H-layer fg2�g � H is oriented as a direct-

ed path from ðg2�; h0Þ to ðg2�; htÞ;
(5) For every � ¼ 0; . . . ; k � 1, the H-layer fg2�þ1g � H is oriented as a

directed path from ðg2�þ1; htÞ to ðg2�þ1; h0Þ.

It is easy to see that D is a mod-3-orientation. Let f : EðG� HÞ 7! f1g.

Obviously ðD; f Þ is a Z3-flow of the graph.

If G is a circuit of odd length, then the product contains an odd length circuit

that consists of degree 3 vertices, which cannot admit nowhere-zero 3-flow (by

Lemma 3.4). &
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Lemma 4.3. Suppose that G is a circuit tree consisting of two even circuits and

H is a path. Then G� H admits a nowhere-zero 3-flow.

Proof. Let C1 ¼ u0u1 � � � uau0 and C2 ¼ v0v1 � � � vbv0 be circuits of G with

the cut-vertex x ¼ u0 ¼ v0. By Lemma 4.2, Ci � H admits a nowhere-zero Z3-

flow ðD; fiÞ for each i such that both fu0g � H and fv0g � H are directed paths

under the orientation D with the same flow-value 1. Hence, ðD; f1 þ f2Þ is a

nowhere-zero Z3-flow of G� H. &

B. Part Two

Lemma 4.4. Let G� H be a counterexample to Theorem 1.5 with the fewest

number of edges. If jOðGÞj � jOðHÞj, then G must be a circuit of odd length and

H must be cubic.

Proof. I. We claim that either OðGÞ or OðHÞ ¼ ;, but not both. If neither

OðGÞ nor OðHÞ ¼ ;, then by Lemma 3.9 (1), the graphs G and H can be split to

graphs G� and H�, each of which is a disjoint union of paths. By Lemma 4.1, each

component of G� � H� admits a nowhere-zero 3-flow, so is G� � H�. By

Lemma 3.11, G� H admits a nowhere-zero 3-flow as well. This contradicts that

G� H is a counterexample. So assume that OðGÞ ¼ ;. But OðHÞ cannot be

empty, for otherwise, both G and H are eulerian, so is G� H, which admits a

nowhere-zero 2-flow (by Lemma 3.1).

II. We claim that G is an odd circuit tree. Assume that G is eulerian but not an

odd-circuit tree. By Lemma 3.10, the graph G can be split to a graph G� that

is either a circuit of even length or a circuit tree consisting of precisely two

circuits of even lengths. By Lemma 3.9 (1), let H� be the graph obtained from H

by vertex-splitting operations such that H� is a disjoint union of paths. By

Lemma 4.2 or Lemma 4.3, the graph G� � H� admits a nowhere-zero 3-flow, so is

G� H (by Lemma 3.11), a contradiction.

III. We claim that G is an odd circuit. Since G� H is a smallest coun-

terexample to the theorem and G is an odd-circuit tree, the another factor H must

be bridgeless. If G is not a circuit, by Lemma 3.9 (2), G can be split further to an

odd circuit G� with jEðG�Þj < jEðGÞj. Here, G� � H is smaller than G� H and,

therefore, admits a nowhere-zero 3-flow, so is G� H (by Lemma 3.11). Thus, we

have that G is an odd circuit and H is bridgeless.

IV. We claim that �ðHÞ > 2. Assume that dðhÞ ¼ 2 for some vertex h 2 VðHÞ
with e1; e2 2 EðhÞ. Note that h becomes an isolated vertex of H½h;e1;e2�. Then

G� H½h;e1;e2� is the union of two disconnected parts: one is a circuit G� fhg, while

the another one G� ½H½h;e1;e2� � fhg� is smaller than the smallest counterexample

G� H. Therefore, both parts admit nowhere-zero 3-flows, so is their union G� H.

V. By Lemma 3.8, vertices of H with degree � 4 can be split. Hence, we may

assume that H is cubic, for otherwise, by Lemma 3.11, G� H is not a smallest

counterexample. &
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C. Part Three—The Final Step

The proof of the theorem is to be completed in this part.

Let G� H be a counterexample to the theorem with the fewest number of

edges. By Lemma 4.4, the factor G is a circuit of odd length and the factor H is a

bridgeless, cubic graph. Let the vertex set of the bridgeless cubic graph H be

fh1; . . . ; hng and let the circuit G be g0g1 � � � gmg0 (m is even).

In the product G� H, for the sake of convenience, a G-layer G� fhig is called

the i-th G-layer; and an H-layer fgjg � H is called the j-th H-layer.

C(1). Strategy. Let ðDHj
; fHj

Þ be a 3-flow of the j-th H-layer H � fgjg, and let

Bj ¼ EðH � fgjgÞ � suppð fHj
Þ—the subset of edges excluded from the support of

the 3-flow ðDHj
; fHj

Þ in H � fgjg.

We will construct a subgraph K of G� H that consists of all edges of Bj, for

every j 2 f0; . . . ;mg and all G-layers.

The key point in this final step is how to choose those 3-flows ðDHj
; fHj

Þ in H-

layers so that the subgraph K admits a nowhere-zero 3-flow ðDK ; fKÞ. If we can do

so, then the union of the supports of all 3-flows ðDHj
; fHj

Þ and ðDK ; fKÞ covers the

entire graph G� H.

C(2). 3-flows in H-layers. Let ðDH ; fHÞ be a Z3-flow of H and C be an even

subgraph of H such that (by Lemma 3.5)

(1) suppðfHÞ [ EðCÞ ¼ EðHÞ;
(2) The even subgraph C is oriented under DH as a union of edge-disjoint

directed circuits.

Let B� ¼ fe 2 EðCÞ : fHðeÞ � �g for each � 2 Z3. Let ðDH ; f
0
HÞ be a 2-flow

of H (by Lemma 3.1) such that f 0HðeÞ ¼ 1 if e 2 EðCÞ, and ¼ 0 otherwise. Since

H is isomorphic to each H-layer, without causing any confusion, ðDH ; fHÞ and

ðDH; f
0
HÞ are also considered as flows in each H-layer. For each j 2 f0; . . . ;mg,

the 3-flow ðDHj
; fHj

Þ in the j-th H-layer fgjg � H is constructed as follows.

ðDH0
; fH0

Þ ¼ ðDH ; fHÞ;
ðDH1

; fH1
Þ ¼ ðDH ; fH � f 0HÞ

and

ðDHj
; fHj

Þ ¼ ðDH ; fH þ f 0HÞ

for j ¼ 2; . . . ;m.

Note that ðDH ; f
0
HÞ is a non-negative 2-flow of H with the support EðCÞ ¼

B0 [ B1 [ B2. Since the sum is taken in the cyclic group Z3,

suppð fH0
Þ ¼ fg0g � H0 � fg0g � B0;

suppð fH1
Þ ¼ fg1g � H1 � fg1g � B1;
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and

suppð fHj
Þ ¼ fgjg � H2 � fg1g � B2

for every j ¼ 2; . . . ;m, where fgig � B� is the copy of B� in the i-th H-layer

fgig � H.

C(3). The subgraph K. Let

K ¼ G� H �
[m

i¼0

suppð fHi
Þ:

By the discussion we had in the Subsubsection 4C(1), it is sufficient to find a

nowhere-zero 3-flow in the subgraph K.

Since H is cubic and B0 [ B1 [ B2 ¼ EðCÞ, it is obvious that each B� is a

matching and each vertex of C is incident with precisely two edges of B0 [
B1 [ B2. Thus, every component of K is either a circuit or is homeomorphic with

a cubic graph. It is obvious that a circuit component of K must be a G-layer

G� fhg that h =2 VðCÞ, which admits a nowhere-zero 2-flow (by Lemma 3.1).

Therefore, by Lemma 3.3, it is sufficient to show that every non-circuit com-

ponent of K is homeomorphic with a cubic bipartite graph. That is, we shall find a

proper vertex-2-coloring of the graph K 0, where K 0 is obtained from K by deleting

all circuit-components.

Recall that each DHi
is an orientation of the cubic graph fgig � H such that

every component of the even subgraph C is oriented as a directed circuit. That is,

every edge of K �
Sn

i¼1 EðG� fhigÞ is oriented as a directed edge under the

orientation of the corresponding H-layer.

For each i ¼ 0; 1 and i ¼ 2� for each � ¼ 1; . . . ;m=2, the heads and the tails

of all directed edges of K 0 originally contained in the i-th H-layer are colored

with red and blue, respectively.

If m � 4, then for each i ¼ 2�þ 1; � 2 f1; . . . ;m=2 � 1g, the heads and the

tails of all directed edges of K 0 originally contained in the i-th H-layer are colored

with blue and red, respectively.

Now, we are ready to verify that K 0 is bipartite by showing that the above

vertex-2-coloring of K 0 is proper.

If a vertex hi of H is the tail of a directed edge of B0 and the head of a directed

edge of B1, then the i-th G-layer G� fhig is a circuit of length 2 in K 0 with

precisely one red vertex and one blue vertex.

If a vertex hi of H is the tail of a directed edge of B0 and the head of a directed

edge of B2, then the i-th G-layer G� fhig is a circuit of length m in K 0 consisting

of m=2 red vertices and m=2 blue vertices, alternatively.

It is similar for all other cases. This completes the proof of the theorem. &
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