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1. INTRODUCTION AND TERMINOLOGY

Thomassen conjectured ([1]) that every longest circuit of a 3-connected

graph has a chord. In 1987, C. Q. Zhang [9] proved that every longest

circuit of a 3-connected planar graph G has a chord if G is cubic or �ðGÞ �
4. In 1997, Carsten Thomassen [8] proved that every longest circuit in

a 3-connected cubic graph has a chord. We shall here prove the following

theorem.

Theorem 1.1 (The Main Theorem). Every longest circuit of a 4-connected

graph embedded in the torus or the Klein bottle has a chord.

The method that we shall use in the proof of Theorem 1.1 is very different

from those in papers [8] and [9]. Methods used in those papers are based on

connectivity, enumeration, Hamilton circuits, and vertex coloring. Here, we use

Euler contribution, charge/discharge method.

Throughout this paper, we consider only finite simple graphs. For a

graph G, the vertex set and edge set of G are denoted by VðGÞ and EðGÞ,
respectively.

Let u; v 2 VðGÞ. The vertex u is a neighbor of v if uv 2 EðGÞ. The set of all

neighbors of v is denoted by NðvÞ and the set of edges incident with the vertex v
is denoted by EðvÞ. The degree of a vertex v, denoted by dGðvÞ (or simply, dðvÞ, if

there is no confusion), is the number of neighbors of v. For a subgraph P of G,

dPðvÞ ¼ jNðvÞ \ VðPÞj.
Let P be a subgraph of a graph G. An edge e is a chord of P if e is not an edge of

P and both end vertices of e are in P. A P-bridge of G is either a chord of P or a

subgraph of G induced by the edges in a component of GnVðPÞ and all edges that

join the component and P. For a P-bridge B of G, the vertices in B \ P are the

attachments of B (on P) denoted by AðBÞ, and IðBÞ is the set of vertices of the

bridge B (excluding the attachment vertices on P).

The length of the boundary of a face f (or, simply, the length of f , the degree of

f ) of a graph G is denoted by dGð f Þ. The set of edges incident with a face f in a

graph G is denoted by EGð f Þ, and the set of vertices incident with a face f in a

graph G is denoted by VGð f Þ.
Let G be a 4-connected graph, C ¼ v1v2 � � � viviþ1 � � � vmv1 be a longest circuit

of G. Let vi; vj 2 VðCÞ with i < j, the segment viviþ1 � � � vj�1vj of C is denoted by

viCvj, the segment vjvj�1 � � � viþ1vi of C is denoted by vj
�CCvi.

Let G be embedded in a surface S. If each face of G is isomorphic to an open

disk, then this embedding is called an open 2-cell embedding. Note that every

graph has an open 2-cell embedding in some surface and all embeddings we

considered in this paper are open 2-cell embeddings.
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For the sake of convenience in the later discussion, if e ¼ xy and f 0; f 00 are

faces on the two sides of the edge e, we say that the edge e is associated with

sequence fx; y; f 0; f 00g. (One should be careful that it is possible that f 0 may be the

same as f 00 in some cases.)

2. EULER CONTRIBUTION

Let a graph H be embedded in a surface. For a vertex v 2 VðHÞ, let

fe1; . . . ; edðvÞg ¼ EðvÞ where ei; eiþ1 are on the boundary of a face (where

edðvÞþ1 ¼ e1). An angle at v of G is a pair of edges fei; eiþ1g (where edðvÞþ1 ¼ e1).

Denote the set of all angles of H by �. For an angle � 2 � at a vertex v
and at corner of a face f , denote the vertex v by v� and face f by f�. Note

that there are dðvÞ angles at vertex v and there are dð f Þ angles at the corners of

a face f and each edge appears in four angles and each angle consists of two

edges

jVðHÞj ¼
X

�2�ðHÞ

1

dðv�Þ
; jEðHÞj ¼

X
�2�ðHÞ

1

2
; jFðHÞj ¼

X
�2�ðHÞ

1

dðf�Þ
:

By the following Euler formula for the torus and the Klein bottle

jVðHÞj � jEðHÞj þ jFðHÞj ¼ 0;

we have the Lebesgue’s formula ([3])

X
�2�ðHÞ

1

dðv�Þ
þ 1

dðf�Þ
� 1

2

� �
¼ 0: ð1Þ

For each angle �, the general term of (1)

�ð�Þ ¼ 1

dðv�Þ
þ 1

dðf�Þ
� 1

2
ð2Þ

is called the Euler contribution of the angle �.

For an edge e ¼ v1v2, let f1; f2 be the faces incident with e. Note that e appears

in four angles and each angle consists of two edges. When one sums a half of the

Euler contribution of all angles containing e, one obtains the Euler contribution of

the edge e

�ðeÞ ¼ 1

dðv1Þ
þ 1

dðv2Þ
þ 1

dðf1Þ
þ 1

dðf2Þ
� 1: ð3Þ
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According to Lebesgue’s formula (1), we have the total Euler contributions of

all angles and all edges

X
�2�ðHÞ

�ð�Þ ¼
X

e2EðHÞ
�ðeÞ ¼ 0: ð4Þ

3. LEMMAS AND DEFINITIONS

The application of Euler contribution and the search of edges with positive Euler

contributions will lead our attention to the local structures of some adjacent pairs

of small faces. Though the global embedding in the torus or the Klein bottle is

different from that in the sphere, the local structure of a subgraph embedded in an

open disk neighborhood of the torus or the Klein bottle may appear very similar

to the planar graph. In order to avoid any possible misuse of properties that are for

sphere but not for the torus or the Klein bottle, we need two lemmas (Lemma 3.1

and Lemma 3.2), which describe some local properties of faces and its boundaries

in the torus and the Klein bottle. Lemma 3.1 (together with some claims, such as

claim (5) in the proof) enables us to work on some small faces locally without

worrying about any complicated structure around the boundaries (very much like

in the sphere).

Remark. Note that the embedding we are talking about here is an open 2-

cell embedding. That is, each face is isomorphic to an open disk. However, one

should not confuse it with closed 2-cell embedding, in which, the closure of every

face is isomorphic to a closed disk. Therefore, we should not assume that the

boundary of any face is a circuit since it is possible that some edge might be

passed through twice by the boundary of a face.

Definition 3.1. Let H be a graph embedded in a surface S. A face f of H is

good if no edge of H is passed by the boundary of f more than once. A face f is

bad if otherwise.

Lemmma 3.1. Let H be a connected triangle-free graph with �ðHÞ � 2 which

has an open 2-cell embedding in a surface S. Let f be a face of G in S. If f is a bad

face of G, then the length of f must be at least 10 if the surface S is orientable,

and is at least 8 if S is non-orientable.

Proof. Let C ¼ v1 � � � vrv1 be the boundary of the face f . Let the closed walk

C be oriented in the order C ¼ v1 � � � vrv1. Since f is bad, C is not a circuit.

Hence, some edge e is passed twice in C.

Case 1. The edge e is passed twice in opposite directions. Assume that e ¼ xy is

v1v2 ¼ xy and v��1v� ¼ yx in the closed walk C. Since �ðHÞ � 2, the graph

induced by the closed subwalk v2 . . . v��1 contains a circuit Q1 of length at most
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�� 3. Furthermore, Q1 is of length at least 4, since the graph H is triangle-free.

Symmetrically, the graph induced by the closed subwalk v� � � � vrv1 contains a

circuit Q2 of length at most r � �þ 1, which is also at least 4. So, it is obvious

that r � 10.

Case 2. The edge e is passed twice in the same direction. (Note that, this case

occurs only in non-orientable surface.) Assume that e ¼ xy is v1v2 ¼ xy and

v��1v� ¼ xy in the closed walk C. Since �ðHÞ � 2, the graph induced by the

closed subwalk v2 � � � v� contains a circuit Q3 of length at most �� 2.

Furthermore, the circuit Q3 is of length is at least 4, since the graph is

triangle-free. Symmetrically, the graph induced by the closed subwalk

v� � � � vrv1v2 contains a circuit Q4 of length at most r � �þ 2. So, it is obvious

that r � 8. &

Lemma 3.2. Let H be a 3-connected graph embedded in a surface S.

Assume that e is an edge of H incident with faces f 0 and f 00. Then f 0 ¼ f 00 iff

there is a non-contractible closed curve � in the surface S such that � \ H is a

single point. Furthermore, f 0 ¼ f 00 implies that dHð f 0Þ � 8 if H is simple and

triangle free.

Proof. The first statement is obvious since H is 3-connected. By Lemma 3.1,

the second statement holds as H is triangle free and �ðHÞ � 3. &

Definition 3.2. Let H be a graph embedded in a surface S and C be a given

dominating, chordless circuit of H. A good face f is normal (with respect to the

circuit C) if f has only one vertex which is not on C. A good face f is special

(with respect to the circuit C) if f is not normal.

Examples of normal and special faces are illustrated in Fig. 1.

For the sake of convenience of later discussion, the following table lists Euler

contributions of some edges where e is associated with fx; y; f 0; f 00g:

FIGURE 1. Example of a normal face and a special face.
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4. PROOF OF THE MAIN THEOREM

We prove the theorem by contradiction. Our proof consists of four parts. Part 1

gives some basic structures, part 2 discusses the existence of positive edges,

part 3 describes five non-avoidable configurations, and part 4 implements

charge–discharge on five non-avoidable configurations.

Let C ¼ v1v2 � � � vmv1 be a longest circuit of G without chord.

Let H be a graph obtained from G by contracting each C-bridge into a single

vertex.

Part 1. Some basic structures.

(1) C is a longest circuit of H, and C is a dominating, chordless circuit of H.

(2) H is 3-connected. For each vertex x =2 C, dHðxÞ � 4, since G is 4-

connected. And, dHðxÞ � 3 for each x 2 VðCÞ.
(3) H is triangle free, for otherwise, C can be extended.

(4) C is of length at least 8, since dHðxÞ � 4 for every x =2 VðCÞ.
(5) We investigate the local structure around some edges of C. Let

e ¼ v1v2 2 EðCÞ and f 0 and f 00 be the faces of H on the two sides of e

(that is, e is associated with fv1; v2; f
0; f 00g).

If

maxfdHð f 0Þ; dHð f 00Þg � 7 and dHð f 0Þ þ dHð f 00Þ � 12;

dHðxÞ dHðyÞ dHðf 0Þ dHðf 00Þ �ðeÞ

3 3 5 5 1
15

3 3 5 6 1
30

3 3 5 7 1
105

3 4 4 5 1
30

3 4 4 6 0
3 4 4 7 � 1

42

3 4 5 5 � 1
60

3 4 5 6 � 1
20

3 4 5 7 � 31
420

4 4 4 5 � 1
20

4 4 4 6 � 1
12

4 4 4 7 � 3
28

4 4 5 6 � 2
15
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then we claim that

(5-a) f 0 and f 00 are good faces and therefore, they are distinct.

If, in addition, both f 0 and f 00 are normal (see Definition 3.2), then we claim

that ((5-b), (5-c), (5-d))

(5-b) jEð f 0Þ \ Eð f 00Þj ¼ 1 ðthat is, the edge e ¼ v1v2 is the only common edge

of those two faces. See Fig. 2Þ
(5-c) Vð f 0Þ n VðCÞ 6¼ Vð f 00ÞnVðCÞ.
(5-d) dHð f 0Þ þ dHð f 00Þ � 10:

Proof of (5-a). Since f 0 and f 00 are of degree � 7, by Lemma 3.2, theirbound-

aries are circuits and therefore, they are good faces. Since they are good, the edge

e cannot be passed twice by the boundary of any one of them, they must be

different. &

Proof of (5-b). Let Q0 (and Q00) be the maximal segment of C contained in the

boundary of the normal face f 0 (and f 00, respectively). Here, the edge e 2 Q0 \ Q00.
Let P be a maximal segment of C contained in Q0 \ Q00. We first claim that the

length of P is at most one. If not, then every internal vertex of P must be of

degree 2, since f 0 and f 00 are distinct and are on the two sides of the segment P.

This contradicts that �ðHÞ � 3 (by (2)).

Thus, we can see that the claim is true if Q0 \ Q00 contains only one segment.

So, we assume that Q0 \ Q00 contains more than one segment.

Since Q0;Q00 are contained in the circuit C, Q0 \ Q00 consists of at most two

segments, say, P0 and P00. Furthermore, Q0 [ Q00 ¼ C. Note that we have already

proved that each segment contained in Q0 \ Q00 is of length at most 1. So, if the

claim is not true, each segment P0 and P00 is of length precise 1. Hence,

jEðCÞj ¼ jEðQ0Þj þ jEðQ00Þj � jEðP0Þj � jEðP00Þj
¼ ðdHð f 0Þ � 2Þ þ ðdHð f 00Þ � 2Þ � 2

� 12 � 6 ¼ 6;

This contradicts (4) that C is of length at least 8. &

FIGURE 2. Q 0 \Q 00 has one segment.
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Proof of (5- c). Let x1 2 Vð f 0ÞnVðCÞ and x2 2 Vð f 00ÞnVðCÞ. By (5-b),

e ¼ v1v2 is the only one edge contained in both f 0 and f 00. Therefore, if x1 ¼
x2, then x1v1v2x1 would be a triangle in the triangle-free graph H. A

contradiction. &

Proof of (5- d). Let f 0 ¼ x1v1Cvjx1 and f 00 ¼ x2v2
�CCvhx2, since e ¼ v1v2 is the

only edge in Eð f 0Þ \ Eð f 00Þ. (See Fig. 2.)

We have another circuit C0 ¼ vhx2v2v1x1vjCvh. Here, with h � j, since C is a

longest circuit in H, we have that

jEðCÞj � jEðC0Þj
¼ jEðCÞj � jEðvhCv1Þj � jEðv2CvjÞj þ jEðvhx2v2Þj þ jEðv1x1vjÞj
¼ jEðCÞj � ðdHð f 0Þ � 3Þ � ðdHð f 00Þ � 3Þ þ 4

¼ jEðCÞj � dHð f 0Þ � dHð f 00Þ þ 10:

Hence,

dHð f 0Þ þ dHð f 00Þ � 10:

This proves our claim of (5-d). &

(6) Let f be a face of degree 4. It is easy to prove that if Eð f Þ \ EðCÞ 6¼ ;, or

some vertex of f is of degree 3, then f must be a normal 4-face.

(7) We investigate the local structure of a degree 3 vertex of H. Let vi 2 VðCÞ
with dHðviÞ ¼ 3 and let vix 2 EðHÞnEðCÞ. Let B be the C-bridge in the

original graph G that the vertex x of H is created by the contraction of B,

and let vj 2 AðBÞnfvig.

(7-a). We claim that there is a path in B joining vi and vj of length at least 3.

(7-b). We claim that jEðviCvjÞj � 3 and jEðvjCviÞj � 3: (See Fig. 3.)

(7-c). We claim that each face of H containing the edge vix is of degree at

least 5.

(7-d). We claim that if e ¼ viviþ1 2 EðCÞ with dHðviÞ ¼ dHðviþ1Þ ¼ 3, then

every face of H containing the edge e is of degree at least 5.

Proof of (7- a). Since dGðviÞ � 4 and dHðviÞ ¼ 3, all vertices of NGðviÞn
VðCÞ are in the bridge B, and, hence, jIðBÞj � 2 in G. Let IðBÞ ¼ fb1; b2; . . . ; btg
ðt � 2Þ. Note that dBðviÞ � 2 in B, since dGðviÞ � 4. Without loss of generality, let

vib1; vib2 2 EðGÞ. For vj 2 AðBÞnfvig, let vjbk 2 EðGÞ for some k ð1 � k � tÞ,
there are some paths joining vi and vj in B; since BnAðBÞ is connected. Let

Pvivj
be a longest path of B joining vi and vj in B. We claim that jEðPvivj

Þj � 3.

Otherwise, jEðPvivj
Þj � 2 implies jEðPvivj

Þj ¼ 2. Let Pvivj
¼ vibkvj and let
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b‘ 2 fb1; b2gnfbkg as dBðviÞ � 2. There is a path P0 of BnAðBÞ joining b‘ and bk,

since BnAðBÞ is connected. The path vib‘P
0bkvj would be longer than Pvivj

, a

contradiction. &

Proof of (7- b). It is obvious by (7-a) (see Fig. 3).

Proof of (7- c). Assume that there is a face f of degree 4 where f is incident

with the edge vix. We can see that f is neither a normal 4�face (by (7-b)), nor a

special 4�face (by (6) since dHðviÞ ¼ 3).

Proof of (7- d ). Let vix; viþ1y 2 EðHÞnEðCÞ. By (7-c), each face incident

with either vix or viþ1y is of degree at least 5. Assume that there is a face f that

contains the edge e ¼ viviþ1 but not any of vix and viþ1y. Since dHðviÞ ¼
dHðviþ1Þ ¼ 3, the face f must use the segment vi�1viviþ1viþ2 of the circuit C. So,

the face f must be of length at least 5. &

(8) Let edge e ¼ viviþ1 2 C be associated with fvi; viþ1; f 0; f 00g and f 0 6¼ f 00.
We claim that

(8-a). if both f 0 and f 00 are normal faces, then

fdHð f 0Þ; dHð f 00Þg 6¼ f4; 4g or f4; 5g;

(8-b). if both f 0 and f 00 are normal faces and dHðviÞ ¼ dHðviþ1Þ ¼ 3, then

fdHð f 0Þ; dHð f 00Þg 6¼ f5; 5g or f5; 6g:

Proof of (8-a). (8-a) is an immediate corollary of (5-d). &

Proof of (8-a). (Illustrations of (8-b) are in Fig. 4). Assume that dH ðviÞ ¼
dHðviþ1Þ ¼ 3 and fdHð f 0Þ; dHð f 00Þg ¼ f5; 5g. By (5-b), we know that Eð f 0Þ \
Eð f 00Þ ¼ fe ¼ viviþ1g. Let f 0 ¼ wviviþ1 viþ2viþ3w; f 00 ¼ xvi�2vi�1viviþ1x where

FIGURE 3. E(vi Cvj )j � 3 and jE(vj Cvi )j � 3:
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x;w =2 VðCÞ and w 6¼ x (by (5-c)). By (7-a), there is a path Pði�2Þðiþ1Þ of length at

least 3 in the C-bridge Biþ1 of G corresponding to the vertex x of H, and there is a

path Piðiþ3Þ of length at least 3 in the C-bridge Bi of G corresponding to the vertex

w of H. Then the circuit vi�2Pði�2Þðiþ1Þviþ1viPiðiþ3Þviþ3 Cvi�2 would be longer

than C. This contradicts that C is a longest circuit of H.

Similarly, if fdHð f 0Þ; dHð f 00Þg ¼ f5; 6g, then C would not be a longest circuit

of H, either.

Part 2. The existence of positive edges.

An edge e of H is positive, negative, or zero if �ðeÞ > 0, < 0, or ¼ 0,

respectively.

(9) We claim that every non-negative edge e is incident with two distinct faces.

Assume that e is incident with only one face f . Since H is triangle free and

�ðHÞ � 3, then dHð f Þ � 8 by Lemma 3.1. We have that

�ðeÞ � 1

3
þ 1

3
þ 1

8
þ 1

8
� 1 < 0:

(10) We claim that there exists some positive edge in H.

We prove it by contradiction. If the claim is false, then �ðeÞ ¼ 0 for every edge

e 2 EðHÞ since
P

e2EðHÞ�ðeÞ ¼ 0.

There are only three possibilities:

�ðeÞ ¼ 1

3
þ 1

4
þ 1

4
þ 1

6
� 1 ¼ 0; or ð�Þ

�ðeÞ ¼ 1

4
þ 1

4
þ 1

4
þ 1

4
� 1 ¼ 0; or ð��Þ

�ðeÞ ¼ 1

3
þ 1

3
þ 1

6
þ 1

6
� 1 ¼ 0; ð���Þ

since dHðxÞ � 3 and H has no triangles.

FIGURE 4. When dH(vi )¼ dH(viþ 1)¼ 3 and fdH(f 0),dH (f 00)g¼f5,5g.
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Note that ð���Þ does not happen for any edge e 2 EðHÞnEðCÞ, since

dHðyÞ � 4 for every y =2 VðCÞ.
(10.1) We claim that every vertex of VðCÞ is of degree 4.

Assume that dHðxÞ ¼ 3 for some vertex x of H. By (2), x 2 VðCÞ.
Let e ¼ xy 2 EðHÞnEðCÞ (x 2 VðCÞ; y =2VðCÞ), let f 0 and f 00 be the faces on

the two sides of edge e ¼ xy. Since dHðxÞ ¼ 3 then we must have the case ð�Þ
here:

�ðeÞ ¼ 1

dHðxÞ
þ 1

dHðyÞ
þ 1

dHð f 0Þ þ
1

dHð f 00Þ � 1 ¼ 1

3
þ 1

4
þ 1

4
þ 1

6
� 1 ¼ 0 ð�Þ

as dHðxÞ ¼ 3 and dHðyÞ � 4.

(10.1.1) We claim that the case ð�Þ will not happen. Assume that the case ð�Þ
holds for an edge e 2 EðHÞnEðCÞ, then there is at least one 4-face incident with

e. This contradicts (7-c), since dHðxÞ ¼ 3 and the face f 0 contains the edge in

calculation : xy.

(10.1.2) By (10.1.1), only the case ð��Þ holds for every e ¼ xy 2 EðHÞnEðCÞ.
The case ð��Þ implies dHðxÞ ¼ 4 for all x 2 VðCÞ, since each vertex of VðCÞ is

incident with at least one edge of EðHÞnEðCÞ. So, by (10.1.1) and (10.1.2),

dHðxÞ ¼ 4 for every x 2 VðCÞ.
(10.2) Now we consider edges in EðCÞ. Let eð¼ v1v2Þ 2 C be associated with

fv1; v2; f
0; f 00g, by (10.1), dHðv1Þ ¼ dHðv2Þ ¼ 4, we must have

�ðeÞ ¼ 1

dHðv1Þ
þ 1

dHðv2Þ
þ 1

dHð f 0Þ þ
1

dHð f 00Þ � 1 ¼ 1

4
þ 1

4
þ 1

4
þ 1

4
� 1 ¼ 0

as H is triangle free. So, dHð f 0Þ ¼ dHð f 00Þ ¼ 4. Obviously, both 4-faces f 0 and f 00

must be normal faces by (6). But, this contradicts (8-a). Hence, there exists at

least one edge with non-zero Euler contribution. By the equation (4) of Section 2,

there are some positive edges.

(11) We claim that every positive edge must be on the longest circuit C.

By (10), there is some positive edge. Assume that our claim is false. Let

e ¼ wv 2 EðHÞnEðCÞ be a positive edge associated with fv;w; f 0; f 00g and

v 2 VðCÞ;w =2VðCÞ.
Notice that dHðvÞ � 3, dHðwÞ � 4 by (2).

(11.1). We claim that dHðvÞ ¼ 3. If not, assume dHðvÞ � 4, then

�ðeÞ ¼ 1

dHðvÞ
þ 1

dHðwÞ
þ 1

dHð f 0Þ þ
1

dHð f 00Þ � 1 � 1

4
þ 1

4
þ 1

4
þ 1

4
� 1 � 0

as dHðwÞ � 4 and H is triangle-free, a contradiction.

(11.2). We claim that dHð f 0Þ; dHð f 00Þ � 5.
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By (11.1), we have that dHðvÞ ¼ 3. Therefore, the claim follows immediately

by (7-c).

By (11.1) and (11.2), we have that

�ðeÞ � 1

3
þ 1

4
þ 1

5
þ 1

5
� 1 < 0;

This contradicts that e is a positive edge.

Part 3. Five non-avoidable configurations.

(12) We investigate the local structure of the face(s) incident with a positive

edge e.

By (11), each positive edge e must be on the longest circuit C. Hence, every

edge not on C is a non-positive edge. Without loss of generality, let e 2 EðCÞ be a

positive edge associated with fv1; v2; f
0; f 00g.

If both dHðv1Þ; dHðv2Þ � 4 or one of them is of at least 6, then

�ðeÞ ¼ 1

dHðv1Þ
þ 1

dHðv2Þ
þ 1

dHð f 0Þ þ
1

dHð f 00Þ � 1 � 0;

since both dHð f 0Þ; dHð f 00Þ � 4. So,

minfdHðv1Þ; dHðv2Þg ¼ 3 and maxfdHðv1Þ; dHðv2Þg � 5

Thus,

fdHðv1Þ; dHðv2Þg 2 ff3; 3g; f3; 4g; f3; 5gg

where we assume that dHðv1Þ � dHðv2Þ.
(12.1) We first investigate the case dHðv1Þ ¼ 3 and dHðv2Þ � 4. That is,

fdHðv1Þ; dHðv2Þg ¼ f3; 4g or f3; 5g:

(a)

minfdHð f 0Þ; dHð f 00Þg � 4

since H is triangle-free.

maxfdHð f 0Þ; dHð f 00Þg � 5;

for otherwise, �ðeÞ � 0. If fdHð f 0Þ; dHð f 00Þg ¼ f5; 5g, then �ðeÞ < 0. So,

fdHð f 0Þ; dHð f 00Þg ¼ f4; 4g or f5; 4g:

12 JOURNAL OF GRAPH THEORY



(b) By (a), one of f 0; f 00 is a 4-face. Any 4-face must be normal (by (6)). And

note that at least one of f 0; f 00 is special (by (8-a)). Hence, only one case left by (a)

and (b):

fdHð f 0Þ; dHð f 00Þg ¼ f5; 4g where f 0 is a special 5�face; f 00 is a normal 4�face

andfdHðv1Þ; dHðv2Þg ¼ f3; 4g or f3; 5g
(call it ‘‘Configuration 1,’’ see Fig. 5).

(12.2) We, then, investigate the case that dHðv1Þ ¼ dHðv2Þ ¼ 3.

By (7-d), none of f f 0; f 00g is a 4-face. So, dHð f 0Þ; dHð f 00Þ � 5.

If both dHð f 0Þ; dHð f 00Þ are at least 6, or one of fdHð f 0Þ; dHð f 00Þg is at least 8,

then �ðeÞ � 0. So, we have

minfdHð f 0Þ; dHð f 00Þg ¼ 5 and maxfdHð f 0Þ; dHð f 00Þg � 7:

Therefore, there are only three possible subcases left in this case:

fdHð f 0Þ; dHð f 00Þg 2 ff5; 5g; f5; 6g; f5; 7gg:

(a) By (8-b), we have that f 0 and f 00 cannot be both normal faces if fdHð f 0Þ;
dHð f 00Þg ¼ f5; 5g or f5; 6g.

(b) We claim that f 0 and f 00 cannot be both special if fdHð f 0Þ; dHð f 00Þg ¼ f5; 5g
or f5; 6g. Otherwise, assume both f 0 and f 00 are special. Since f 0 is a special 5-

face, the boundary of f 0 must be v1v2xviyv1 for some x; y =2 VðCÞ and vi 2 VðCÞ.
Thus, the boundary of the face f 00 must use the segment vmv1v2v3 of C, since

dHðv1Þ ¼ dHðv2Þ ¼ 3. This would imply that dHð f 00Þ � 7 if f 00 is special.

From the discussion above, we know that, except for the case that

fdHð f 0Þ; dHð f 00Þg ¼ f5; 7g;

FIGURE 5. Configuration 1.
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the positive edge e is incident with precisely one special face. Let f 0 be the special

face if only one of ff 0; f 00g is special, or f 0 is the shorter one if both f 0 and f 00 are

special, f 0 is the longer one if both f 0 and f 00 are normal.

Above discussion lead us to the following ‘‘Configurations’’:

dHð f 0Þ ¼ 5 and dHð f 00Þ 2 f6; 7g ðwhere f 0 is specialÞ and dHðv1Þ
¼ dHðv2Þ ¼ 3 ðcall it ‘‘Configuration 2,’’ see Fig: 6Þ:

dHð f 0Þ 2 f6; 7g and dHð f 00Þ ¼ 5 ðwhere f 0 is special and f 00 is normalÞ
and dHðv1Þ ¼ dHðv2Þ ¼ 3 ðcall it ‘‘Configuration 3,’’ see Fig: 7Þ:

dHð f 0Þ ¼ dHð f 00Þ ¼ 5 (where f 0 is special, and f 00 is normal) and

dHðv1Þ ¼ dHðv2Þ ¼ 3 (call it ‘‘Configuration 4,’’ see Fig: 8Þ:

dHð f 0Þ ¼ 7 and dHð f 00Þ ¼ 5 and both f 0 and f 00 are normal and

dHðv1Þ ¼ dHðv2Þ ¼ 3 ðcall it ‘‘Configuration 5,’’ see Fig: 9Þ:

Part 4. Charge–discharge

(13) From the previous subsections, we have found that the graph H em-

bedded in the torus or the Klein bottle must have some positive edges and

they are contained in the longest circuit C:

Let  : EðHÞ ! R be a function such that  ðeÞ ¼ �ðeÞ (� is the Euler

contribution) as the initial charge to EðHÞ. As we already knew in Section 2,

X
e2EðHÞ

 ðeÞ ¼ 0 ðAÞ

In this subsection, we will redistribute (charge and discharge, as commonly

called) the function  such that the total sum of the function  ðeÞ remains the

FIGURE 6. Configuration 2.
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same as before, and we will show later that under the new function, the total sum

of the function will be negative. This will contradict to Equation (A).

For the sake of convenience of later discussion, we define some terms. Under

the function  ¼ �, an edge e with  ðeÞ > 0 is called a D-edge (means that this

edge will be discharged later). We notice that in Configurations 1–4, a D-edge is

FIGURE 7. Some examples of Configuration 3.
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incident with a special face f 0, which is called a C=D-face (it means that the

charge/discharge operation will occur along the edges of this face). We also

notice that in Configuration 5, the faces f 0; f 00 incident with the D-edge e are

normal, which, are called C=D-faces, in this case.

Each e =2 EðCÞ is called a C-edge, C-edge e is called a ½þþ�-edge if it is

incident with two C=D�faces, or is a ½þ��-edge if it is incident with at most one

C=D-face (it means that the edge e will be charged twice from two sides or

charged at most once from one side).

The charge/discharge operation is described as follows.

For a C=D-face f 0 in configurations 1–4, we need to show that

X
e2Eð f 0Þ

"ðeÞ ðeÞ < 0

where "ðeÞ ¼ 1 if e is a D-edge or e is a ½þ��-edge, and "ðeÞ ¼ 1=2 if e is a

½þþ�-edge. (That is, each edge e 2 Eð f ÞnfD-edgesg, which is of negative value

originally, will be charged with "ðeÞj ðeÞj from those D-edges along the face f 0.

FIGURE 8. Configuration 4.

FIGURE 9. Configuration 5.
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And we will show that those ½þþ� and ½þ��-edges remain non-positive, and those

D-edges will be of negative value after the operation.) For Configuration 5,

let e ¼ v1v2 be the D-edge and let v2u and v1z be the edges of EðHÞnEðCÞ that

are incident with e ¼ v1v2. The charge/discharge operation occurs only among

the edges 2 fv1v2; v2u; v1zg as follows: each e� 2fv1z; v2ug will be charged
1
2
j ðe�Þj from the D-edge v1v2.

Note that Configuration 5 is very different that no face is special, it will be dealt

with separately. And Configuration 4 needs a little more attention, since a rough

estimation would not lead us to a negative total value of  around the special face.

In the subsections (13-1) and (13-2), we will deal with the first four configurations.

(13-1) The calculation of

X
e2Eð f 0Þ\EðCÞ

 ðeÞ

for Configurations 1–4.

Since f 0 is a special face of degree at most 7 and contains at least one edge

e ¼ v1v2 of the chordless circuit C,

jEð f 0ÞnEðCÞj ¼ 2jVð f 0Þ � VðCÞj

must be even and, therefore, is either 4 or 6 (the later case occurs only when

dHð f 0Þ ¼ 7). Since no edge of EðHÞnEðCÞ is positive (by (11)), they are C-edges.

Considering the worst case in calculations, each edge of Eð f 0Þ \ EðCÞ could be

positive (therefore, a D-edge).

(i) If the degree of the special face f 0 is 5, then e ¼ v1v2 is the only edge of

Eð f 0Þ \ EðCÞ. Hence,

(i-1) for Configuration 1,

X
e2Eð f 0Þ\EðCÞ

 ðeÞ ¼  ðv1v2Þ � 1=3 þ 1=4 þ 1=5 þ 1=4 � 1 ¼ 1=30;

(i-2) for Configuration 2,

X
e2Eð f 0Þ\EðCÞ

 ðeÞ ¼  ðv1v2Þ � 1=3 þ 1=3 þ 1=5 þ 1=6 � 1 ¼ 1=30;

(i-3) for Configuration 4,

X
e2Eð f 0Þ\EðCÞ

 ðeÞ ¼  ðv1v2Þ � 1=3 þ 1=3 þ 1=5 þ 1=5 � 1 ¼ 1=15:

(ii) For Configuration 3, let e ¼ v0v00 2 Eð f 0Þ \ EðCÞ be associated with

fv0; v00; f 0; f �g. By applying (7-c) and (7-d) whenever there is a possibility that a
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degree 3 vertex or a pair of degree 3 vertices is involved, the sequence of degrees

fdHðv0Þ; dHðv00Þ; dHð f 0Þ; dHðf �Þg must be one of following cases:

f3; 3; dHð f 0Þ;� 5g; f3;� 4; dHð f 0Þ;� 4g; f� 4;� 4; dHð f 0Þ;� 4g:

Hence,

 ðeÞ � max
1

3
þ 1

3
þ 1

dHð f 0Þ þ
1

5
� 1;

1

3
þ 1

4
þ 1

dHð f 0Þ

�

þ 1

4
� 1;

1

4
þ 1

4
þ 1

dHð f 0Þ þ
1

4
� 1 ¼ 1

3
þ 1

3
þ 1

dHð f 0Þ þ
1

5
� 1 ¼ 1

dHð f 0Þ �
2

15
:

�

So, if jEð f 0Þ \ EðCÞj ¼ dHð f 0Þ � 4, then

X
e2Eð f 0Þ\EðCÞ

 ðeÞ � ½dHð f 0Þ � 4� � ½1=dHð f 0Þ � 2=15�

� ½6 � 4� � ½1=6 � 2=15� ¼ 1=15

(since dHð f 0Þ ¼ 6 or 7); if jEð f 0Þ \ EðCÞj ¼ dHð f 0Þ � 6 and dHð f 0Þ ¼ 7, then

X
e2Eð f 0Þ\EðCÞ

 ðeÞ � ½dHð f 0Þ � 6� � ½1=dHð f 0Þ � 2=15�

< 1=15:

(13-2) The calculation of

X
e2Eð f 0ÞnEðCÞ

 ðeÞ

for Configurations 1–4.

We notice that the special face f 0 has exactly four or six edges in Eð f 0ÞnEðCÞ
(the later case occurs only for Configuration 3 when dHð f 0Þ ¼ 7).

(i) For Configuration 1, the degree of f 0 is 5. Let f 0 ¼ v1v2u1u2u3v1, where

u1; u3 =2 VðCÞ. Here, dHðv1Þ ¼ 3 and dHðv2Þ � 4. Then the degree sequence

fdHðv1Þ; dHðu3Þ; dHð f 0Þ; dHðf �Þg associated with the edge v1u3 must be f3;� 4;
5;� 5g by (2) and (7-c); and the degree sequence fdHðxÞ; dHðyÞ; dHð f 0Þ; dHðf �Þg
associated with the edge xy 2 fv2u1; u1u2; u2u3g must be f� 4;� 4; 5;� 4g by

(2) and (3). Thus,

 ðv1u3Þ � 1=3 þ 1=4 þ 1=5 þ 1=5 � 1 ¼ �1=60;
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and

 ðv2u1Þ;  ðu2u1Þ;  ðu2u3Þ � 1=4 þ 1=4 þ 1=5 þ 1=4 � 1 ¼ �1=20:

So,

X
e2Eð f 0ÞnEðCÞ

 ðeÞ � �1=60 þ 3 � ð�1=20Þ ¼ �1=6:

(ii) For Configurations 2 and 4, the degree of f 0 is 5. Let f 0 ¼ v1v2u1

u2u3v1 where u1; u3 =2VðCÞ. Then the degree sequence fdHðxÞ; dHðyÞ; dHð f 0Þ;
dHðf �Þg associated with the edge xy 2 fv2u1; v1u3g must be f3;� 4; 5;� 5g
by (2) and (7-c); and the degree sequence fdHðxÞ; dHðyÞ; dHð f 0Þ; dHðf �Þg
associated with the edge xy 2 fu1u2; u2u3g must be f� 4;� 4; 5;� 4g by (2) and

(3). Thus,

 ðv2u1Þ;  ðv1u3Þ � 1=3 þ 1=4 þ 1=5 þ 1=5 � 1 ¼ �1=60;

and

 ðu1u2Þ;  ðu2u3Þ � 1=4 þ 1=4 þ 1=5 þ 1=4 � 1 ¼ �1=20:

So, the total  value of those C-edges is

X
e2Eð f 0ÞnEðCÞ

 ðeÞ � 2 � ð�1=60Þ þ 2 � ð�1=20Þ ¼ �2=15:

(iii) For Configuration 3, the degree of f 0 is 6 or 7. Let e ¼ v0v00 2 Eð f 0ÞnEðCÞ
be associated with fv0; v00; f 0; f �g. By applying (7-c), whenever there is a possibi-

lity that a degree 3 vertex is involved, the sequence of degrees fdH ðv0Þ; dHðv00Þ;
dHð f 0Þ; dHð f �Þg must be one of following cases:

f3;� 4; dHð f 0Þ;� 5g; f� 4;� 4; dHð f 0Þ;� 4g:

Hence,

 ðeÞ � maxf1=3 þ 1=4 þ 1=dHð f 0Þ þ 1=5 � 1; 1=4 þ 1=4

þ 1=dHð f 0Þ þ 1=4 � 1g ¼ 1=3 þ 1=4 þ 1=dHð f 0Þ
þ 1=5 � 1 � 1=dHð f 0Þ � 13=60 � 1=6 � 13=60 ¼ �1=20:

Since jEð f 0ÞnEðCÞj ¼ 4 or 6,

X
e2Eð f 0ÞnEðCÞ

 ðeÞ � 4½�1=20� ¼ �1=5:
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(13-3) By the calculations in (13-1) and (13-2), we are ready to estimateP
e2Eð f 0Þ "ðeÞ ðeÞ for some configurations.

Note that by considering the worst case in the calculation, each C-edge should

be considered as a ½þþ�-edge. That is, the coefficient " will be 1=2 for the worst

cases in the estimation.

(i) For Configuration 1 (by (13-1)-(i-1) and (13-2)-(i)), we have that

X
e2Eð f 0Þ

"ðeÞ ðeÞ �
X

e2Eð f 0Þ\EðCÞ
"ðeÞ ðeÞ þ

X
e2Eð f 0ÞnEðCÞ

"ðeÞ ðeÞ

� ð1=30Þ þ ð1=2Þð�1=6Þ ¼ �1=20:

(ii) For Configuration 2 (by (13-1)-(i-2) and (13-2)-(ii)), we have that

X
e2Eð f 0Þ

"ðeÞ ðeÞ �
X

e2Eð f 0Þ\EðCÞ
"ðeÞ ðeÞ þ

X
e2Eð f 0ÞnEðCÞ

"ðeÞ ðeÞ

� ð1=30Þ þ ð1=2Þð�2=15Þ ¼ �1=30:

(iii) For Configuration 3, (by (13-1)-(ii) and (13-2)-(iii)), we have that

X
e2Eð f 0Þ

"ðeÞ ðeÞ �
X

e2Eð f 0Þ\EðCÞ
"ðeÞ ðeÞ þ

X
e2Eð f 0ÞnEðCÞ

"ðeÞ ðeÞ

� ð1=15Þ þ ð1=2Þð�1=5Þ ¼ �1=30:

The value of
P

e2Eð f 0Þ "ðeÞ ðeÞ for each Configuration 1, 2, and 3 is negative.

However, the same estimation for Configuration 4 would give us a zero. This is

not what we would like to have. Of course, we notice that the estimations in

(13-1) and (13-2) are not very tight at all. Therefore, some further attention is

needed for Configuration 4 (see Fig. 8).

(13-4) For Configuration 4, the degree of both faces f 0 ¼ v1v2u1u2u3v1

(special) and f 00 ¼ v1v2v3zvmv1 (normal) are 5 and dHðv1Þ ¼ dHðv2Þ ¼ 3, where

u1; u3 =2VðCÞ. Here, dHðv1Þ ¼ dHðv2Þ ¼ 3.

Let f 0 and fu3v1
be the faces on the two sides of edge u3v1. By (7-c),

dHðfu3v1
Þ � 5 since dHðv1Þ ¼ 3.

Case 4-1. If dHðfu3v1
Þ � 6.

For the D-edge e ¼ v1v2;

 ðv1v2Þ ¼
1

3
þ 1

3
þ 1

5
þ 1

5
� 1 ¼ 1

15
:

Note that dHðfu3v1
Þ � 6;

 ðu3v1Þ �
1

3
þ 1

4
þ 1

5
þ 1

6
� 1 ¼ � 1

20
:
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By earlier results (see (13-2)-(ii)), we have that

 ðu1u2Þ;  ðu2u3Þ � � 1

20

and

 ðv2u1Þ � � 1

60
:

So, for all the C-edges, we have that

X
e2Eð f 0ÞnEðCÞ

 ðeÞ � � 1

60
þ 1

20
þ 1

20
þ 1

20

� �
¼ � 10

60
:

Hence,

X
e2Eð f 0Þ

"ðeÞ ðeÞ � 1

2
ð� 10

60
Þ þ 1

15
< 0:

Case 4-2. If dHðfu3v1
Þ ¼ 5.

(a) We shall determine that the C-edge u3v1 must be a ½þ��-edge (thus, the

coefficient " would be 1 instead of 1=2).

Assume that u3v1 is a ½þþ�-edge, hence fu3v1
is a C=D-face with respect to

some edges of Eðfu3v1
Þ \ EðCÞ.

First, we show that fu3v1
cannot be normal. Assume that the face fu3v1

is normal.

Thus, the normal 5-face fu3v1
has the boundary v1u3vm�2vm�1vmv1. By (7-a), there

is a path P of G joining vm�2 and v1 of length at least 3, where EðPÞ \ EðCÞ ¼ ;.

Then vm�2Pv1vmzv3Cvm�2 (see the figure of Configuration 4) would be longer

than C, a contradiction. So, the face fu3v1
must be special.

Since fu3v1
is special and dHðv1Þ ¼ 3 and dHðfu3v1

Þ ¼ 5 (for this case 4-2), vmv1

is the only edge in Eðfu3v1
Þ \ EðCÞ. Furthermore, dHðvmÞ � 4.

Now, with a calculation, we have that  ðvmv1Þ < 0. Since vmv1 is the only

edge in Eðfu3v1
Þ \ EðCÞ, the face fu3v1

cannot be a C=D-face and therefore, it

proves our claim that u3v1 is a ½þ��-edge.

(b) Calculations: For the D-edge v1v2;

 ðv1v2Þ �
1

3
þ 1

3
þ 1

5
þ 1

5
� 1 ¼ 1

15
:

Now, take a half charge of all other C-edges and total charge of the ½þ��-edge

u3v1, we have that

X
e2Eð f 0Þ

"ðeÞ ðeÞ ¼  ðv1v2Þ þ
1

2
½ ðv2u1Þ þ  ðu1u2Þ þ  ðu2u3Þ� þ  ðu3v1Þ

¼ 1

15
� 1

2

1

60
þ 1

20
þ 1

20

� �
� 1

60
¼ 1

15
� 9

120
< 0:
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(14) Configuration 5 (Fig. 9). fdHð f 0Þ; dHð f 00Þg ¼ f5; 7g where f 0 is a normal

5-face and f 00 is a normal 7-face.

By (5-b), Eð f 0Þ \ Eð f 00Þ ¼ eð¼ v1v2Þ, without loss of generality, let f 0 ¼
v1v2uvm�1vmv1 (where u =2 VðCÞ) and f 00 ¼ zv1v2 � � � v6z (where z =2 VðCÞ).

Note that the face f 0 (or, f 00 as well) is not a C=D-face for any edge of

Eð f 0Þ \ EðCÞ with respect to any Configuration 1–4, since the C=D�faces for

Configurations 1–4 must be special. Thus, if the charge/discharge operation

occurs more than once in the face f 0 (or, similar for f 00), it must be for the D-edge

vm�1vm or (v5v6) in another Configuration 5. There is no conflict in the calcu-

lation here, since the charge/discharge operation occurs only at incident C-edges

for Configuration 5. Let the edge v1z be associate with fv1; z; f
00; fv1zg and the

edge v2u be associate with fv2; u; f
0; fv2ug. By (7-c), dHðfv1zÞ � 5; dHðfv2uÞ � 5,

since dHðv1Þ ¼ dHðv2Þ ¼ 3.

So, we have following calculation:

 ðv1v2Þ ¼
1

3
þ 1

3
þ 1

5
þ 1

7
� 1 ¼ 1

105
:

 ðv2uÞ � 1

3
þ 1

4
þ 1

5
þ 1

5
� 1 ¼ � 1

60
;

 ðv1zÞ � 1

3
þ 1

4
þ 1

5
þ 1

7
� 1 ¼ � 31

420
;

 ðv1zÞ þ  ðv2uÞ � � 38

420
:

Therefore,

X
e2Eð f 0Þ

"ðeÞ ðeÞ �  ðv1v2Þ þ
1

2
 ðv1zÞ þ 1

2
 ðv2uÞ < 0:

Final conclusion. After charging/discharging, we have seen that the total charge

of all the edges is negative. This contradicts to the fact

X
e2EðHÞ

 ðeÞ ¼ 0

(Equation (4) of Section 2).

5. REMARKS

The proof of the main theorem actually shows that every longest circuit of a

4-connected graph embedded in a surface with a non-negative characteristic has

a chord. However, it is already known that every 4-connected graph embedded in

a sphere or projective plane (Tutte [5] and Thomas and Yu [6]) is hamiltonian.
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But it remains open (Grünbaum [2] and Nash-Williams [4]) that every 4-

connected toroidal graph is hamiltonian and it was proved for 5-connected

toroidal graphs (Thomas and Yu [7]).
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