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The centrality of vertices has been a key issue in network analysis. For unweighted net-
works where edges are just present or absent and have no weight attached, many central-
ity measures have been presented, such as degree, betweenness, closeness, eigenvector and
subgraph centrality. There has been a growing need to design centrality measures for
weighted networks, because weighted networks where edges are attached weights would
contain rich information. Some network measures have been proposed for weighted net-
works, including three common measures of vertex centrality: degree, closeness, and
betweenness. In this paper, we propose a new centrality measure called the Laplacian cen-
trality measure for weighted networks. The Laplacian energy is defined as ELðGÞ ¼

P
ik

2
i ,

where ki’s are eigenvalues of the Laplacian matrix of weighted network G. The importance
(centrality) of a vertex v is reflected by the drop of the Laplacian energy of the network to
respond to the deactivation (deletion) of the vertex from the network. We also prove an
algebraic graph theory result that provides a structural description of the Laplacian central-
ity measure which is in terms of the number of all kinds of 2-walks. Laplacian centrality
unveils more structural information about connectivity and density around v (further than
its immediate neighborhood). That is, comparing with other standard centrality measures
proposed for weighted networks (e.g. degree, closeness or betweenness centrality), Lapla-
cian centrality is an intermediate measuring between global and local characterization of
the importance (centrality) of a vertex. We further investigate the validness and robustness
of this new centrality measure by illustrating this method to some classical weighted social
network data sets and obtain reliable results, which provide strong evidences of the new
measure’s utility.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Social network analysis (SNA) is the mapping and measuring of relationships and flows between people, groups, organi-
zations, computers, Urls, and other connected information/knowledge entities. The vertices in the network represent people
and groups while the edges show relationships between the vertices. SNA provides both a visual and a mathematical analysis
of objects’ relationships.

Note that whether the vertices represent individuals, organizations or even countries and the edges refer to communica-
tion, cooperation, friendship or trade, edges can be differentiated settings. These differences can be analyzed by defining a
weighted network, in which edges are not just either present or absent, but have some form of weight attached to them.
Many social network measures have been defined for binary situations in which a pair of vertices is either connected or
. All rights reserved.
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not. If we use the binary version of a weighted network, much of the information contained in a weighted network topology
cannot be described to the same extent or as richly. So, there has a growing need for network measures that directly account
for weighted networks.

The centrality of vertices, or the identification of vertices which are more ‘‘central’’ than others, has been a key issue in
network analysis. The findings of some important vertices with high centralities to characterize the properties on the net-
works have significant uses in many fields. These include the synchronization transition, epidemic spreading, and transmis-
sion of information. For example, in diffusive systems the vertices of large degree play a crucial role, which are decisive to
resolve the traffic jam at a bottleneck [15]. Various centrality measurements have been proposed for unweighted networks:
degree centrality, closeness centrality, betweenness centrality [6], eigenvector centrality and subgroup centrality [5].

Degree centrality is defined as the number of edges incident upon a vertex (i.e., the number of edges that a vertex is inci-
dent with). Closeness centrality was defined as the inverse sum of shortest distances to all other vertices from a focal vertex i,
which is based on the mean geodesic distance (i.e., the shortest path) between i and all other vertices reachable from it, that
is n�1P

j
di;j
; where di,j is the shortest distance between vertices i and j. Betweenness centrality assesses the degree to which a

vertex lies on the shortest paths between pairs of other vertices. Betweenness centrality of the vertex i is defined by the
number of shortest paths that pass through i. More specifically, let Lh,j be the total number of shortest paths from a vertex
h to another vertex j and Lh,j(i) be the number of the shortest paths that pass through the vertex i. The betweenness centrality

of the vertex i is defined as 2
ðn�1Þ�ðn�2Þ

P
h–i

P
j–i;j–h

Lh;jðiÞ
Lh;j

. Eigenvector centrality is another popular measure of the importance of a

vertex in a network. It assigns relative scores to all vertices in the network based on the principle that connections to high-
scoring vertices contribute more to the score of the vertex in question than equal connections to low-scoring vertex. The
eigenvector centrality of the vertex i is defined as the ith component of the eigenvector corresponding to the greatest eigen-

value of the following characteristic equation A~X ¼ k~X, where A is the adjacency matrix of the network. Another centrality
method named subgraph centrality also was presented by Estrada and Rodríguez-Velázquez [5], which characterizes the
participation of each vertex in all subgraphs in a network, with more weight given smaller subgraphs than larger ones.

The subgraph centrality of the vertex i is defined as
P1

k¼0
ukði;iÞ

k!
, where uk(i, i) is the number of closed k-walks that vertex i

participates in the network.
The above measures are all defined for unweighted networks. There have been several attempts to generalize degree,

betweenness and closeness centrality measures to weighted networks. Degree centrality was extended to weighted net-
works by Barrat et al. [1] and defined as the sum of the weights attached to the edges connected to a vertex. The extensions
of the closeness and betweenness centrality measures by Newman [11] and Brandes [2], respectively, rely on Dijkstra’s [4]
shortest path algorithm, which defines the shortest path between two vertices as the least costly path. Opsahl [12] provided
a package written in R named ‘‘tnet’’ that currently can calculate degree, closeness and betweenness centrality for weighted
social networks. Lately, Opsahl et al. [13] proposed a new generation of vertex centrality measures for weighted networks,
which takes into consideration both the weight of edges and the number of edges associated with a vertex, where the rel-
ative importance of these two aspects are controlled by a tuning parameter a.

But note that these standard methods generalized for weighted networks also inherit the weakness when they were used
for unweighted case. For example, as have been stated, ‘‘The simplicity of degree method is an advantage and also is an dis-
advantage: only the local structure around a vertex is calculated and it does not take into consideration the global structure
of the network; for example, although a vertex might be connected to many others, it might not be in a position to reach others
quickly to access resources, such as information or knowledge [13]’’; ‘‘Betweenness method considers the global network
structure and also can be applied to networks with disconnected components, but it is not without limitations; for example,
vertices in a network that generally do not lie on a shortest path between any two other vertices will receive the same score of
zero [13]’’. Besides, these existing measures describe either the local environment around a vertex (e.g., degree centrality) or
the more global position of a vertex in the network (e.g., closeness, betweenness and subgraph centrality). For example, from
its definition, ‘‘subgraph centrality’’ tends to find the center (s) of whole network. But at the most time what we are really inter-
ested is to find the center for each community in the network. If the network is consist of more than two communities and with
dramatically different sizes, the nodes in smaller community would get lower ‘‘subgraph centrality’’ ranks than the ones in
larger community, so that the leader in smaller community will not come up with high rank. Thus, an intermediate (between
local and global) characterization of the vertex centrality has been claimed as a necessity for the study of food web in [8,9] if
species to community relations are to be understood. An intermediate centrality approach is also suggested to be the most
appropriate if the relative importance of vertex is to be quantified in social networks.

In this paper, we propose a new centrality strategy for weighted networks, which permits one to consider more ‘‘inter-
mediate’’ environmental information around a vertex. The centrality of some vertex v is characterized as a function in terms
of the numbers of 2-walks that the vertex v takes part in the network, which implies the estimation of the centrality of a
vertex involves not only the direct connections with its immediate neighborhood but also the importance of its neighbors.
This strategy is called ‘‘Laplacian centrality method’’ because it is from the use of a matrix valued function that describes the
so-called ‘‘Laplacian energy’’ of the network. The basic idea is that the importance (centrality) of a vertex is related to the
ability of the network to respond to the deactivation of the vertex from the network. In particular, the relative drop of Lapla-
cian energy in the network caused by the deactivation of this vertex from the network will be used as the indicator to show
its importance in the network. We further investigate the validity and robustness of this new measure by applying this
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method to some classical data sets of social networks. Successful applications on those bench mark data sets are evidences of
the utility of this proposed centrality measurement.

This paper is organized as follows. In Section 2, we give some useful graph theory notations and terminology. In Section 3,
we present the definition of Laplacian centrality; In Section 4, we give a theorem to show a structural description of the
Laplacian centrality. Analytical and numerical results based on various centrality measures applying on classic social net-
work data sets are shown in Section 5; Time complexity of Laplacian method is discussed at Section 6; Conclusions are made
in Section 7.

2. Graph theory notation and terminology

A social network usually is represented as a graph. The vertices are the individuals, and the edges represent the social
links. In this paper, we consider the symmetric case where social networks are represented by undirected graphs. Multiple
edges are two or more edges connecting the same two vertices. Graphs with multiple edges are called multigraph. A degen-
erate edge of a graph which joins a vertex to itself, is called a loop. The number of edges that are incident to a vertex is called
the degree of the vertex. The neighborhood of a vertex v is the set of all vertices adjacent to v.

Graph entropy measures are always used for determining the structural information content of graphs, which has been
proved to play an important role in a variety of problem areas, including biology, chemistry, and sociology [4]. Laplacian en-
ergy, which could be thought as one kind of graph entropy, representing a certain coherent measuring of a network, is used
here to measure the importance (centrality) of a vertex by the relative drop of Laplacian energy in the network caused by the
deactivation of this vertex from the network. In Section 3, we will introduce the definition of Laplacian energy of a network
and Laplacian centrality of a vertex.

3. Laplacian centrality

3.1. Laplacian energy for a network

Let G = (V,E,W) be a weighted network (or weighted graph) with the vertex set V(G) = {v1,v2, . . . ,vn}, edge set E, where each
edge e = (vi,vj) is attached with a weight wi,j. If there is no edge between vi and vj, wi,j = 0. Since we only consider undirected
network without loops, then wi,j = wj,i and wi,i = 0.

We define
WðGÞ ¼

0 w1;2 . . . w1;n

w2;1 0 . . . w2;n

� � � �

wn;1 wn;2 . . . 0

0BBBBBB@

1CCCCCCA

and
XðGÞ ¼

x1 0 . . . 0

0 x2 . . . 0

� � � �

0 0 . . . xn

0BBBBB@

1CCCCCA

with xi ¼

Pn
j¼1wi;j ¼

P
u2Nðv iÞwv i ;u, and we call xi the sum-weight of a vertex vi, where N(vi) is the neighborhood of vi.

Definition 1. The matrix L(G) = X(G) �W(G) is called the Laplacian matrix of the weighed network G.
Definition 2. Let G = (V,E,W) be a weighted network on n vertices, and k1, k2, . . ., kn be the eigenvalues of its Laplacian matrix.
The Laplacian energy of G is defined as the following invariant:
ELðGÞ ¼
Xn

i¼1

k2
i :
At first, we will give some properties of Laplacian energy of G.
Theorem 1. For any network G = (V,E,W) on n vertices whose vertex sum-weights are x1, x2, . . ., xn respectively, we have
ELðGÞ ¼
Xn

i¼1

x2
i þ 2

X
i<j

w2
i;j:



X. Qi et al. / Information Sciences 194 (2012) 240–253 243
Proof. Let
LðGÞ ¼

x1 �w1;2 . . . �w1;n

�w2;1 x2 . . . �w2;n

� � � �
�wn;1 �wn;2 . . . xn

0BBB@
1CCCA:
Denote the characteristic polynomial of L(G) as
pðkÞ ¼ kn þ an�1k
n�1 þ an�2k

n�2 þ � � � þ a1kþ a0
whose roots are ki, i = 1, 2, . . ., n.
We all know that
a0 ¼ ð�1ÞndetðLðGÞÞ;
a1 ¼ �trðLðGÞÞ;
where det(L(G)) is the determinant of square matrix L(G), and tr(L(G)) is the trace of square matrix L(G).
Viète rules says
Xn

i¼1

ki ¼ �an�1
and
 X
i<j

kikj ¼ an�2:
Note that wi,j = wj,i, by computing the coefficient an�2 of kn�2, we would have,
Xn

i¼1

ki ¼
Xn

i¼1

xi; ð1ÞX
i<j

kikj ¼
X
i<j

xixj �
X
i<j

w2
i;j: ð2Þ
Therefore,
ELðGÞ ¼
Xn

i¼1

k2
i ¼

Xn

i¼1

ki

 !2

�
X
i–j

kikj ¼
Xn

i¼1

xi

 !2

�
X
i–j

xixj þ
X
i–j

w2
i;j ¼

Xn

i¼1

x2
i þ

X
i–j

w2
i;j ¼

Xn

i¼1

x2
i þ 2

X
i<j

w2
i;j: �
Corollary 1. If H is an arbitrary subgraph of a network G, then EL(H) 6 EL(G). And equality holds if and only if V(G) � V(H) is a set
of isolated vertices.
3.2. Laplacian centrality for a vertex
Definition 3. If G = (V,E,W) is a network of n vertices {v1,v2, . . . ,vn}, let Gi be the network obtained by deleting vi from G. The
Laplacian centrality CL(vi,G) of vertex vi is defined as
CLðv i;GÞ ¼
ðDEÞi
ELðGÞ

¼ ELðGÞ � ELðGiÞ
ELðGÞ
Obviously, by Corollary 1, EL(G) � EL(Gi) must be non-negative. Since the denominators EL(G) are the same for all vertices,
we just need to focus on the numerator (DE)i. In the next section, we will prove a graph theory result that provides a struc-
tural description of (DE)i.
4. Graph theoretical descriptions of Laplacian centrality

4.1. 2-walks

Let G = (V,E,W) be a weighted network of n vertices {v1,v2, . . . ,vn}. A walk of length k (we denote it by k-walk) is a sequence
of (not necessary different) vertices v i0 ; v i1 ; . . . ; v ik�1

; v ik such that for each i = 1, 2, . . ., k there is an edge from v ij�1
to v ij . A

walk v i0 � � �v ik is closed if v i0 ¼ v ik .
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Clearly, every k-walk is related to a given subgraph in a network, thus the importance of some vertex in G could be mea-
sured by the number of k-walks it participates in the network. The more k-walks it participates in, the more important it is.
For example, the degree centrality is actually using the number of 1-walks that vertex v participates in the network as an
indicator of its importance. It is easy to see when k becomes bigger, the involved environment around the focal vertex grows
larger. In this paper, we will focus on the case when k = 2.

For the sake of easy understanding, we always assume the weight wi,j for each edge e = (vi,vj) is a non-negative integer.1

By replacing e with wi,j copies of unweighted multiedges (see Fig. 1a), an weighted network G = (V,E,W) is transferred as an un-
weighted multigraph. A 2-walk v0v1v2 in the weighted network version will correspond to ðwv0 ;v1 �wv1 ;v2 Þ 2-walks in the un-
weighted multigraph version. For the number of 2-walks that a given vertex v takes part in a network G = (V,E,W), we have
the following observation.

Lemma 1. Let G = (V,E,W) be a weighted network and v be an arbitrary vertex of G. Then there are three types of 2-walks
containing v with the following observations.

Type 1. Closed 2-walks containing the vertex v: the number of such 2-walks is
1 We
2 For
NWC
2ðvÞ ¼

X
yi2NðvÞ

w2
v ;yi
:

(Blue2 edges in Fig. 1b).
Type 2. Non-closed 2-walks containing the vertex v as one of the end-vertices: the number of such 2-walks is
NWE
2ðvÞ ¼

X
yi2NðvÞ

X
zj2fNðyiÞ�vg

wv;yi
wyi ;zj

0@ 1A:
will see from the subsequent Corollary 2, it does not affect our result.
interpretation of color in Figs. 1, 4 and 5, the reader is referred to the web version of this article.
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(Green edges in Fig. 1b).
Type 3. Non-closed 2-walks containing the vertex v as the middle point, the number of such 2-walks is
NWM
2 ðvÞ ¼

X
yi ;yj2NðvÞ;yi–yj

wyi ;vwv;yj
:

(Red edges in Fig. 1b).

4.2. Graph theoretical descriptions

From a graph theoretic perspective we have the following results.

Theorem 2. G = (V,E,W) is a weighted network of n vertices {v1,v2, . . . , vn}. Let H be the network obtained by deleting vertex v from
G, then the drop of Laplacian energy with respect to vi is
ðDEÞi ¼ ELðGÞ � ELðHÞ ¼ 4 � NWC
2ðv iÞ þ 2 � NWE

2ðv iÞ þ 2 � NWM
2 ðv iÞ
Proof. Note that ELðGÞ ¼
Pn

i¼1x2ðv iÞ þ 2
P

i<jw
2
i;j:

Without loss of generality, assume H = G � v1. Let N(v1) be the neighborhood of vertex v1 in G and x0(vi) be the
corresponding sum-weight of vertex vi in H. We will have:
x0ðv iÞ ¼
0; if i ¼ 1;

xðv iÞ �wv1 ;v i
; if v i 2 Nðv1Þ;

xðv iÞ; otherwise:

8><>: ð3Þ
So, by Theorem 1 and Eq. (3),
ELðHÞ ¼
X

v i2Nðv1Þ
ðxðv iÞ �wv1 ;v i

Þ2 þ
X

v iRNðv1Þ
x2ðv iÞ þ 2

X
1<i<j

w2
i;j
Thus, the drop of Laplacian energy with respect to v1 is
ðDEÞv1
¼ ELðGÞ � ELðHÞ

¼ x2ðv1Þ þ
X

v i2Nðv1Þ
½x2ðv iÞ � ðxðv iÞ �wv1 ;v i

Þ2� þ 2
Xn

j¼2

w2
1;j

¼ x2ðv1Þ þ
X

v i2Nðv1Þ
½wv1 ;v i

� ð2xðv iÞ �wv1 ;v i
Þ� þ 2

Xn

j¼2

w2
1;j

¼ x2ðv1Þ þ 2
X

v i2Nðv1Þ
wv1 ;v i

� xðv iÞ �
X

v i2Nðv1Þ
w2

v1 ;v i
þ 2

Xn

j¼2

w2
1;j

¼
X

v i2Nðv1Þ
wv1 ;v i

 !2

�
X

v i2Nðv1Þ
w2

v1 ;v i
þ 2

X
v i2Nðv1Þ

wv1 ;v i
� xðv iÞ þ 2

Xn

j¼2

w2
1;j

¼ 2
X

v i ;v j2Nðv1Þ;v i–v j

wv1 ;v i
�wv j ;v1 þ 2

X
v i2Nðv1Þ

wv1 ;v i
�
X

u2Nðv iÞ
wv i ;u þ 2

Xn

j¼2

w2
1;j

¼ 2
X

v i ;v j2Nðv1Þ;v i–v j

wv1 ;v i
�wv j ;v1 þ 2

X
v i2Nðv1Þ

X
u2Nðv iÞ

wv1 ;v i
�wv i ;u þ 2

X
y2Nðv1Þ

w2
v1 ;y

¼ 2
X

v i ;v j2Nðv1Þ;v i–v j

wv1 ;v i
�wv j ;v1 þ 2

X
v i2Nðv1Þ

X
u2fNðv iÞ�v1g

wv1 ;v i
�wv i ;u þw2

v1 ;v i

 !
þ 2

X
y2Nðv1Þ

w2
v1 ;y

¼ 2
X

v i ;v j2Nðv1Þ;v i–v j

wv1 ;v i
�wv j ;v1 þ 2

X
v i2Nðv1Þ

X
u2fNðv iÞ�v1g

wv1 ;v i
�wv i ;u þ 4

X
y2Nðv1Þ

w2
v1 ;y

¼ 2 � NWE
2ðv1Þ þ 2 � NWM

2 ðv1Þ þ 4 � NWC
2ðv1Þ �
By Theorems 1 and 2, and Definition 3, the following corollary is obvious:

Corollary 2. Let G = (V,E,W) be a weighted network. If we redefine the weight wi,j of each edge e = (vi,vj) as gwi;j ¼ c �wi;j, where c
is any common constant. Then, each vertex has the same Laplacian centrality in both network G = (V,E,W) and eG ¼ ðV ; E;fW Þ.

From Theorem 2, we also notice the following facts.
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Fig. 2. A network with 6 vertices and 6 weighted edges, which has the same topology as Fig. 2 in [13] but with different weights.

Table 1
Scores based on various centrality methods.

Degree Betweenness Closeness Laplacian

A 6 4 0.125 0.70
B 9 8 0.143 0.90
C 3 0 0.083 0.28
D 2 0 0.091 0.22
E 3 4 0.111 0.26
F 1 0 0.059 0.04
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First, the Laplacian centrality agrees with the standard measures on assignment of extremes. For example, if all edges in a
network have the same weights, it will give the maximum value to the central vertex of a star, and equal value to the vertices
of a cycle or a complete graph. Second, as we know, the degree centrality of v is actually considering the number of vertices
which could be reachable from v directly, while the Laplacian centrality of a vertex involves the information of vertices that
could be reachable from v within two steps. The Laplacian centrality of a vertex not only takes into account the local envi-
ronment around it but also a bigger environment around its neighbors. Third, three types of 2-walks weight differently in the
calculation of Laplacian centrality: the closed walk is assigned the biggest weight 4 and the other two types are assigned
with weight 2. It is reasonable because the closed 2-walks reflect the most local environment of v, which should have the
most influence on the centrality of v.

4.3. Two simple examples

In this section, we will give simple examples to show the differences between the known standard centrality measures
(degree, closeness and betweenness) and Laplacian centrality for weighted network.

The first simple example is a weighted network with 6 vertices and 6 weighted edges, see Fig. 2. We will use Opsahl’s
package ‘‘tnet’’ to calculate centralities,3 where the functions degree, closeness and betweenness are respectively with default
value of parameter a = 1, see Table 1.

Vertices C and E in this network will be paid attention here. They gain the same score 3 based on their sum-weights, and
we cannot tell which one is more important based on degree method. Vertex E is a cut vertex in this network, thus it is re-
garded to be more important than vertex C based on betweenness centrality. And because the sum of distance from vertex C
to all other vertices is bigger than that from vertex E, that explains why vertex E gets a higher score than vertex C based on
closeness centrality.4 In Laplacian centrality method, the number of 2-walks that vertex C involves in is more than that of vertex
E, so vertex C gets higher rank than vertex E.

It is easy to see that betweenness and closeness centrality method are more global, while degree method is local and
Laplacian method is intermediate. To further illustrate the differences between Laplacian and degree method, we present
another example, see Fig. 3. For the sake of simplicity, each edge’s weight is assumed to be 1. Based on degree centrality,
u has higher ranking than v because the degree of u is 6 while the degree of v is 4. But based on Laplacian method, v would
have higher ranking than u because
3 Tnet i
4 In clo
ðDEÞu ¼ 4 � NWC
2ðuÞ þ 2 � NWE

2ðuÞ þ 2 � NWM
2 ðuÞ ¼ 78:
and
ðDEÞv ¼ 4 � NWC
2ðvÞ þ 2 � NWE

2ðvÞ þ 2 � NWM
2 ðvÞ ¼ 84;
s available for downloaded online: http://toreopsahl.com/tnet/.
seness and betweenness, the distance between any two vertices is defined as the reciprocal of their edge weight.

http://toreopsahl.com/tnet/
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Fig. 3. An unweighted simple example to show the difference of degree and Laplacian method.
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5. Applications and experimental results

In this section, we focus onto illustrate the utility of Laplacian centrality on real weighed networks. We apply this mea-
sure to two commonly used weighted network data sets: the Freeman’s EIES data set [7], and Zachary’s ‘‘karate club’’ network
of 1977 [16]. We also test our method on one unweighted terrorist networks: the 9/11 hijacker network. As we will see from
the following subsections, for the first data set (‘‘the Freeman’s EIES data set’’), we detect the same most two popular scien-
tists by Laplacian centrality measure as other methods; for the second data set (Zachary’s ‘‘karate club’’ data set), only Lapla-
cian method and degree method successfully find the two centers–the administrator and instructor; and for the third one
(unweighted 9/11 hijacker network), only Laplacian method could find the four pilots as the top four important person.
These results all give a strong evidence of the utility of the new method. We will discuss them detailedly in the following
subsections.

5.1. Freeman’s EIES network

Freeman’s EIES dataset was collected in 1978 [7] and contains three different network relations among researchers work-
ing on social network analysis. While the first two networks are the inter-personal relationships among the researchers at
the beginning and at the end of the study, the edges in the third network are defined as the number of messages sent among
32 of the researchers on an electronic communication tool. Here we test all centrality measure on the third weighted
network.

The centrality scores of these 32 scientists based on three standard centrality methods for weighted networks (degree,
closeness and betweenness) and the new Laplacian centrality method are given in Table 2, where the vertices are sorted
by their Laplacian centrality scores. The top four are indicated in bold. As we see from the table, based on Laplacian central-
ity, Lin Freeman and Barry Wellman also get the two highest scores as other methods, which give an evidence of the utility of
Laplacian method. Furthermore, since each centrality method are focusing on different aspects of the network, the orderings
of these 32 scientists based on different methods are expected to be different. Here, to see the difference visually, we plot the
detailed ranking information of these 32 vertices based on the four centrality measures in Fig. 5 (top), where the X-axis rep-
resents the 32 scientists which are sorted in the decreasing order of their Laplacian centrality. We will see from Fig. 5 (top)
the curve based on betweenness ranking appears odd, that is because many actors get the same score (e.g. 0) and will get a
same rank (5th) under betweenness centrality, which is exactly one shortcoming of betweenness centrality measure men-
tioned in [13]. The plotted figure also reflect the fact that the first two nodes (Lin Freeman and Barry Wellman) get the same
rank (No. 1 and No. 2) based on all the methods.

5.2. Zachary’s karate club network

The second social network we are testing here is the well known ‘‘karate club’’ of Zachary [16]. Zachary observed 34 mem-
bers of a karate club over two years. During the course of observation, the club members split into two groups because of the
disagreement between the administrator of the club and the club’s instructor, and the members of one group left to start
their own club. Zachary constructed a weighted network (whose adjacency matrix is given in Fig. 3 of [16]), where each
member in the club is represented by a vertex, each edge is drawn if the two members are friends outside the club activities,
and the weight assigned for edge is the number of contexts in which interaction took place between the two individuals in-
volved. Fig. 4 shows the network, with the administrator and instructor represented by vertices 1 and 34 respectively. Red



Table 2
Scores of 32 social network scientist of Freeman’s EIES network based on various centrality methods.

Degree Betweenness Closeness Laplacian

LIN FREEMAN 3449 422 0.0557 0.6544
BARRY WELLMAN 2221 188 0.0527 0.3772
RUSS BERNARD 1721 31 0.0487 0.2670
DOUG WHITE 1500 0 0.0498 0.2517
LEE SAILER 1157 2 0.0457 0.1801
SUE FREEMAN 1324 0 0.0439 0.1725
PAT DOREIAN 869 0 0.0423 0.1183
NICK MULLINS 783 0 0.0420 0.1017
AL WOLFE 423 0 0.0393 0.0563
STEVE SEIDMAN 470 0 0.0348 0.0548
MAUREEN HALLINAN 276 0 0.0373 0.0462
RON BURT 446 0 0.0336 0.0457
JOHN BOYD 392 0 0.0328 0.0454
PAUL HOLLAND 345 0 0.0316 0.0443
RICHARD ALBA 377 0 0.0297 0.0386
JACK HUNTER 318 0 0.0316 0.0372
JOEL LEVINE 284 0 0.0348 0.0365
CAROL BARNER-BARRY 274 0 0.0306 0.0346
DAVOR JEDLICKA 246 0 0.0308 0.0306
NICK POUSHINSKY 171 0 0.0335 0.0282
MARK GRANOVETTER 214 0 0.0304 0.0274
CLAUDE FISCHER 206 0 0.0324 0.0271
CHARLES KADUSHIN 175 0 0.0203 0.0169
GARY COOMBS 124 0 0.0241 0.0167
BRIAN FOSTER 148 0 0.0212 0.0161
PHIPPS ARABIE 189 0 0.0170 0.0155
DON PLOCH 149 0 0.0218 0.0153
NAN LIN 125 0 0.0192 0.0151
SAM LEINHARDT 112 0 0.0230 0.0143
ED LAUMANN 101 0 0.0192 0.0130
EV ROGERS 101 0 0.0179 0.0111
JOHN SONQUIST 78 0 0.0166 0.0097

Fig. 4. Zachary’s karate club network.
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squares represent individuals associated with the administrator and green diamond represent those associated with the
instructor.



Table 3
Scores of 34 members of Zachary’s karate club network based on various centrality methods.

Degree Betweenness Closeness Laplacian

1 42 209 0.0157 0.2544
2 29 38 0.0153 0.1725
3 33 178 0.0167 0.2166
4 18 32 0.0129 0.0965
5 8 0 0.0108 0.0350
6 14 4 0.0111 0.0571
7 13 28 0.0111 0.0541
8 13 0 0.0125 0.0789
9 17 71 0.0163 0.1222

10 3 0 0.0093 0.0218
11 8 1 0.0095 0.0309
12 3 0 0.0105 0.0216
13 4 0 0.0090 0.0174
14 17 29 0.0156 0.1189
15 5 0 0.01020 0.0366
16 7 0 0.012 0.0549
17 6 0 0.0080 0.0173
18 3 0 0.0090 0.0192
19 3 0 0.0090 0.0226
20 5 0 0.0100 0.0331
21 4 0 0.0101 0.0280
22 4 0 0.0090 0.0246
23 5 0 0.0109 0.0382
24 21 6 0.0132 0.1294
25 7 0 0.0100 0.0227
26 14 9 0.0128 0.0645
27 6 0 0.0100 0.0282
28 13 18 0.0135 0.0752
29 6 0 0.0114 0.0365
30 13 7 0.0114 0.0707
31 11 0 0.0129 0.0709
32 21 47 0.0150 0.1310
33 38 84 0.0149 0.2371
34 48 172 0.0165 0.3067
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The scores based on all centrality methods are listed in Table 3. The top two individuals are also indicated in bold. As we
will see, based on Laplacian centrality, the administrator and instructor (#1 and #34) get the two highest scores as we ex-
pect. Note that only Laplacian method and degree method can give such a desire result. We also present detailed ranking infor-
mation of these 34 vertices based on four centrality measures in Fig. 5 (Middle), where the X-axis represents these 34 actors
sorted in the decreasing order of the Laplacian centrality score, and Y-axis corresponds to their ranking. We find that degree
method and Laplacian method give the same top five centers, but afterwards they differ a lot. That is because the top 5 ver-
tices all have big degrees, and the number of closed 2-walks dominates its corresponding Laplacian score. And we also find
that vertex 3 get higher ranks based on both betweenness and closeness method which are No. 2 and No. 1 respectively, that
is because of its relatively neutral position with two groups, it has many contacts with both the members of ‘‘administrator’’
group and the members of ‘‘instructor’’ group, thus it is misunderstood as one of the ‘‘centers’’ by either betweenness or
closeness method.

5.3. Unweighted network–9/11 hijacker network

As we have mentioned, unweighted network could be regarded as a special case of weighted network where the weight of
each edge is set as 1. To show the utility of Laplacian method further, we test the applications of Laplacian method on one
unweighted terrorist networks: the 9/11 hijacker network. Through public data, Krebs [10] examined the network centered
around the 19 hijackers of these events, which contains numerous additional individuals involved in the support network
behind the 19 hijackers who actually conducted the suicide mission. These co-conspirators were conduits for money, com-
munications routes, and provided needed skills and knowledge. Fig. 4 in [10] shows the hijackers and their network neigh-
borhood - their direct and indirect associates.

There were four commercial airplanes hijacked in this terror plot. The following is the list of all hijackers on these
airplanes.

American Airlines (AA 11): Mohamed Atta (pilot), Abdulaziz al-Omari, Satam al-Suqami, Wail al-Shehri, Waleed al-Shehri.
American Airlines (AA 77): Hani Hanjour (pilot), Nawaf al-Hazmi, Salem al-Hazmi, Khalid al-Mihdhar, Majed Moqed.
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Fig. 5. Ranking information based on all centrality methods for these 3 data sets considered here. (Top) The 32 scientists in Freeman’s EIES network;
(Middle) 34 actors in Zachary’s karate club; (Below) these 19 hijackers in the 9/11 hijacker network.
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Table 4
Scores of 19 hijacks based on various centrality methods.

Names Scores

Laplacian Degree Betweenness Closeness

Mohamed Atta 1.0000 1.0000 1.0000 1.0000
Marwan al-Shehhi 0.7628 0.8182 0.1495 0.7939
Hani Hanjour 0.4817 0.5909 0.2147 0.7591
Ziad Jarrah 0.3716 0.4545 0.0289 0.7222
Nawaf al-Hazmi 0.3472 0.5000 0.2617 0.7536
Abdul Aziz al-Omari 0.3399 0.4091 0.0387 0.7222
Salem al-Hazmi 0.2738 0.3636 0.0217 0.6228
Satam Suqami 0.2738 0.3636 0.0857 0.6980
Fayez Ahmed 0.2714 0.3636 0.0438 0.6933
Wail al-Shehri 0.2249 0.2727 0.0042 0.6842
Hamza al-Ghamdi 0.1883 0.3182 0.0376 0.6154
Waleed al-Shehri 0.1809 0.2727 0.0013 0.5714
Khalid al-Mihdhar 0.1540 0.2727 0.0095 0.5652
Ahmed al-Ghamdi 0.1369 0.2273 0.0118 0.5778
Ahmed al-Haznawi 0.1345 0.1818 0.0260 0.6797
Saeed al-Hazmi 0.1296 0.2727 0.0198 0.5652
Majed Moqed 0.1174 0.1818 0.0000 0.5591
Ahmed al-Nami 0.0733 0.1364 0.0000 0.5503
Mohand al-Shehri 0.0440 0.0909 0.0000 0.5306
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United Airlines (UA 175): Marwan al-Shehhi (pilot), Fayez Ahmed, Hamza al-Ghamdi, Ahmed al-Ghamdi, Mohand al-
Shehri.
United Airlines (UA 93): Ziad Jarrah (pilot), Ahmed al-Haznawi, Saeed al-Ghamdi, Ahmed al-Nami.

We apply Laplacian method on the whole unweighted network which has 62 vertices, and only list the centrality scores
for these 19 hijackers that we are interested. The values are normalized (dividing by the highest score of each method), see
Table 4. We see that the four most important centers in 9/11 hijacker network based on Laplacian centrality is different from
that based on all the other methods. When we trace back to the original references to check the centers’ identities of Lapla-
cian method, to our surprise, they comprise all four pilots of the different flights (AA 11, AA 77, UA 175 and UA 93), which is
thought to be very reasonable by political analysts based on the fact that a pilot is much more important when a flight was
hijacked because they need much more money and time to train, and also is consistent with our intuition of Laplacian meth-
od that ‘‘the importance (centrality) of a vertex is reflected by the drop of the Laplacian energy of the network to respond to
the deactivation (deletion) of the vertex from the network’’, which gives us a strong evidence of the utility of Laplacian meth-
od. We also present detailed ranking information of these 19 hijacks based on four centrality measures in Fig. 5 (Below),
where the X-axis represents these 19 actors sorted in the decreasing order of the Laplacian centrality score, and Y-axis cor-
responds to their ranking. From this figure, we could see that the pilot Ziad Jarrah gets higher ranks (i.e., 4th) in Laplacian
method than in others (degree (5th), closeness (5th) and also betweenness (9th)), which is exactly the interesting facts that
Laplacian method has showed.
6. Time complexity of Laplacian centrality

For the sake of comparison, we first present the complexity of all standard methods—degree, closeness and betweenness
centralities. The data structure of the input graph is the adjacency list of G, which presents the adjacency relation of all edges
and their weights of the input graph G. Assume there are m edges and n nodes.

Degree centralities. Though degree measuring is rather intuitively heuristic and its processing is pretty straightforward,
the time complexity is O(m).

Closeness and betweenness centralities. The most basic step in these two algorithms is the search for the shortest paths be-
tween every pair of vertices. Computing the shortest paths between any two vertices is the necessary step. Its fastest algo-
rithm is Floyd-Warshall algorithm whose time complexity is O(n3) [14]. Hence, the total time complexity for either closeness
method or betweenness method is at least O(n3).

Laplacian centrality. By glancing at the definition of Laplacian centrality (Definition 2), one might initially guess that the
computational complexity would be relatively high since each step it involves the calculation of eigenvalues. However, by
applying an algebraic graph theory result (Theorem 2), we are able to design a much faster algorithm provides a structural
result that graphically describes the Laplacian centrality.

At first, by scanning the adjacency list, we could get all needed information (including the neighborhood, corresponding
edge weights, the sum-weight and also degree) for each vertex. Clearly, this step could be finished in O(m). Then, by Theorem
2 and Lemma 1, we compute the Laplacian centrality for each vertex v by calculating NWC

2ðvÞ;NWE
2ðvÞ and NWM

2 ðvÞ
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respectively. Denote the degree of vertex v by dv, and denote D as the maximum degree, that is D = maxv2V(G)dv. Clearly, com-
puting Type 1 walks NWC

2ðvÞ needs dv additions and dv multiplications since NWC
2ðvÞ ¼

P
j2NðvÞw

2
j;v ; computing Type 2 walks

NWE
2ðvÞ needs dv additions, dv subtraction and dv multiplications since NWE

2ðvÞ ¼
P

j2NðvÞ½wv ;j � ðxj �wv ;jÞ�; computing Type 3

walks NWM
2 ðvÞ needs dv

2

� �
additions and dv

2

� �
multiplications since NWM

2 ðvÞ ¼
P

i;j2NðvÞ;i–jwi;vwv ;j. Thus, for a vertex v of

degree dv, it costs totally 5dv + dv � (dv � 1) operations. So for the whole graph G, the worst time complexity would beP
v2VðGÞ 5dv þ d2

v

� �
¼ Oðmþ nD2Þ ¼ OðnD2Þ, where n is the number of vertices. Thus, the total complexity for computing

Laplacian centrality for network G with n vertices and maximum degree D would be no more than O(nD2).
To be clear, the time complexities for each method are summarized in the following table. We could see that Laplacian

method has higher time complexity than the most straightforward method—degree method, but would run faster than the
other two methods.
Degree
 Closeness
 Betweenness
 Laplacian
Time complexity
 O(m)
 O(n3)
 O(n3)
 O(nD2)
7. Concluding remarks and future research

As we know from Corollary 2, we allow fractional weights of edges for practical applications. Furthermore, we also could
control the relative importance of the weight of edges and the number of edges associated with a vertex by a tuning param-
eter a as Opsahl did in Ref. [13]. That is, we could redefine wi;j :¼ wa

i;j for each edge (vi,vj) where a P 0. Notice that when a = 0,
the networks are treated as unweighted, thus the impact of weights are zero; when a = 1, the weights will act thoroughly,
that is also what we are doing in this paper. To save space and also for the sake of easy understanding of the graph theoretical
interpretations, here we present Laplacian centrality method with default value a = 1, and also compare other methods with
the same value of a = 1.

We propose a new centrality measure–Laplacian centrality in this paper, which is applicable to weighted networks, but
we have no intention to compete with other existing methods, since for any particular research project we will have to iden-
tify which centrality measure is most meaningful or useful. As we have illustrated in Theorem 2, the Laplacian centrality of
some vertex is actually related to the number of 2-walks it participates in. That is, it not only takes into account the local
environment immediately around it but also a bigger environment around its neighbors. It is an intermediate between global
and local characterization of the position of a vertex in weighted networks. Thus it is supposed to have advantages when
vertices to community (not whole network) relations are to be understood. The applications on two classical weighted data
sets and one unweighted network have showed strong evidences of its utility. Unfortunately, Laplacian centrality also has a
limitation that it cannot apply on directed networks directly. Laplacian matrix of directed network is not symmetric, thus the
eigenvalues are complex numbers instead of real numbers. What is the relationship between Laplacian energy of directed
graph and its graphical structure is still unknown. Characterizing the relationship and introducing a similar ‘‘intermediate’’
centrality method for directed graph is also one of our future research directions.
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