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a b s t r a c t

In Luo et al. (2012), an extremal graph theory problem is proposed
for group connectivity: for an abelian group A with |A| ≥ 3 and
an integer n ≥ 3, find ex(n, A), where ex(n, A) is the maximum
number so that every n-vertex simple graph with at most ex(n, A)
edges is not A-connected. In this paper, we determine the values
ex(n, A) for A = Zk where k ≥ 3 is an odd integer and for
A = Z4, each of which solves some open problem proposed in
Luo et al. (2012). Furthermore, the values ex(n, Z4) also imply a
characterization of Z4-connected graphic sequences.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The vertex set and edge set of G are denoted by V (G) and E(G), respectively. An orientation D of a
graph G is a directed graph by assigning a direction to each edge in E(G). For a direct graph D and a
vertex v ∈ V (D), we use E+

D (v) (or E−

D (v), respectively) to denote the set of edges with tails (or heads,
respectively) at v and we denote d+

D (v) = |E+

D (v)| and d−

D (v) = |E−

D (v)| the outdegree and indegree
of v respectively. Let A be an abelian group. The order of A is denoted by |A|. The degree of the vertex
v ∈ V (G) is the number of edges incident with it, denoted by dG(v) (or simply d(v)).

A mapping β : V (G) → A is an A-boundary if


v∈V (G) β(v) ≡ 0 (mod k) where k = |A|. A graph
G is A-connected, if for every A-boundary β , there exists an orientation D and a mapping f : E(D) →
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A \ {0} so that f +(v)− f −(v) ≡ β(v) (mod k) for each vertex v ∈ V (G) where f +(v) =


e∈E+

D (v) f (e)
and f −(v) =


e∈E−

D (v) f (e). In particular, if β(v) = 0 for every vertex v, such pair (D, f ) is called a
nowhere-zero A-flow.

Note that, whether a bridgeless G admits a nowhere-zero A-flow only depends on the order of A.
Tutte [12] proved that a graph G admits a nowhere-zero k-flow if and only if it admits a nowhere-zero
A-flow for any abelian group A with |A| = k.

Unlike the group flow, it is unknown whether the structure of the group A plays any role in
A-connectivity. In fact, it is an open problem to determine if any Z4-connected graph is also Z2 × Z2-
connected, or vise versa proposed in [2].

The concept of A-connectivity was introduced by Jaeger, Linial, Payan, and Tarsi [2] as a
generalization of nowhere-zero flows. A-connected graphs are contractible configurations of A-flow
and play an important role in the study of group flows and integer flows.

Major open problems in this area are Tutte’s celebrated 3-, 4-, and 5-flow conjectures and group
Z3-, Z5-connectivity conjectures by Jaeger, Linial, Payan, and Tarsi [2]. Readers are referred to [13] for
in-depth accounts and [6,11] for recent results.

A sparse graphmay still admit a nowhere-zeroA-floweven for |A| = 2, 3, 4 such as any cycle admits
a nowhere-zero Z2-flow while it is not A-connected if |A| is not big enough. It has been observed (see
[5,7,14]) that higher density of edges in a graph would imply smaller group connectivity and that
graphs with small group connectivity number cannot have too few edges. The following extremal
problem on group connectivity was studied in [8]: for an abelian group Awith |A| ≥ 3 and an integer
n ≥ 3, find ex(n, A), where ex(n, A) is themaximum number so that every n-vertex simple graphwith
at most ex(n, A) edges is not A-connected. Lai et al. also asked a similar question (see Problem 7.21
of [4]). The following result was proved in [8].

Theorem 1.1 ([8]). Let A be an abelian group with |A| = k.
(1) 3n/2 ≤ ex(n, Z3) ≤ 2n − 3 if n ≥ 6.
(2) If |A| = k ≥ 4 and n ≥ k, then ex(n, A) ≤ ⌈

(n−1)(k−1)
k−2 ⌉ − 1.

As observed in [8], ex(n, A) = n−1 if 3 ≤ n < |A|, ex(3, Z3) = 3, ex(4, Z3) = 6, and ex(5, Z3) = 7.
It is conjectured in [8] that those upper bounds stated in Theorem 1.1 above are the exact values

for ex(n, A).

Conjecture 1.2 ([8]). ex(n, A) = ⌈
(n−1)(k−1)

k−2 ⌉ − 1 if |A| ≥ 4 and n ≥ |A| or if A = Z3 and n ≥ 6.

When |A| = 4, a little more general result was proved (stated as Theorem 1.3 below), which
concludes that any simple graph G with minimum degree at least 2 and with at least ex(n, A) + 1
edges either is A-connected or there is another A-connected simple graph H with the same degree
sequence as G. A sequence of n nonnegative integers is graphic if it is the degree sequence of a simple
graph and such a graph is called a realization of the degree sequence.

Theorem 1.3 ([8]). Let A be an abelian groupwith |A| = 4, n ≥ 3 be an integer, andπ = (d1, d2, . . . , dn)
be a graphic sequence with minimum degree at least 2. If the degree sum d1 + d2 + · · · + dn ≥ 3n − 3,
then π has a realization that is A-connected.

The following conjecture is also proposed in [8].

Conjecture 1.4 ([8]). Let A be an abelian group with |A| = 4 and π = (d1, d2, . . . , dn) be a graphic
sequence with minimum degree at least 2. Then π has an A-connected realization if and only if the degree
sum d1 + d2 + · · · + dn ≥ 3n − 3.

It has been extensively studiedwhether a degree sequencehas a realizationwith certain properties.
A noticeable application (see [10]) of graph realization with 4-flows has been found in the design of
critical partial Latin squares which leads to the proof of the so-called simultaneous edge-coloring
conjecture by Keedwell [3] and Cameron [1]. All graphic sequences which have realizations admitting
a nowhere-zero 3-flow or 4-flow are characterized in [9,10] respectively.

In this paper, we prove the following results.
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Theorem 1.5. (1) ex(n, Zk) = ⌈
(n−1)(k−1)

k−2 ⌉ − 1 if k ≥ 5 is odd and n ≥ k or if k = 3 and n ≥ 6.
(2) ex(n, Z4) = ⌈

3n−3
2 ⌉ − 1 if n ≥ 4.

Our results confirm Conjecture 1.2 for A = Zk where k ≥ 3 is an odd integer and for A = Z4.
Theorem 1.5(2) together with Theorem 1.3 also implies that Conjecture 1.4 is true for Z4, which
characterizes Z4-connected graphic sequences.

Theorem 1.6. Let π = (d1, d2, . . . , dn) be a graphic sequence with minimum degree at least 2. Then π
has a Z4-connected realization if and only if d1 + d2 + · · · + dn ≥ 3n − 3.

Proof. The proof simply follows from Theorems 1.3 and 1.5(2). �

2. Proof of Theorem 1.5

The proofs of (1) and (2) of Theorem1.5 are different. In this section,wewill prove them separately.

2.1. ex(n, Zk) where k is odd

By Theorem 1.1, we only need to prove the following.

Theorem 2.1. Let k ≥ 3 be an odd integer. Every simple Zk-connected graph with n ≥ k vertices has at
least (n−1)(k−1)

k−2 edges.

Proof. Let G be a Zk-connected graph with n vertices. Denote V (G) = {v1, v2, . . . , vn}.
Let t = s = k − 2. Define a Zk-boundary of G, β as

β(vi) ≡ t − sd(vi) (mod k) (1)

for each i = 1, . . . , n− 1 and β(vn) ≡ −
n−1

i=1 β(vi) (mod k). Since G is Zk-connected, there is a pair
(D1, f1) such that f1(e) ∈ Zk \ {0} for each edge e and f +

1 (v) − f −

1 (v) ≡ β(v) (mod k) for each vertex
v. Since k is odd, for each integer i, either i or i − k is odd and i ≡ i − k (mod k). If f1(e) is even, we
can obtain an equivalent β-flow of G by reversing the direction of e and replacing f1(e) with k− f1(e).
Thus we may further assume f1(e) ∈ {1, 3, . . . , (k − 2)}.

In the rest of the proof, we regard (D1, f1) as an integer-valued (not in Zk any more) flow of G
(maybe unbalanced) such that f1(e) ∈ {1, 3, . . . , (k − 2)} for each edge e ∈ D1 and f +

1 (v) − f −

1 (v) ≡

β(v) (mod k) for each vertex v ∈ V (G).
Let D be the directed graph obtained from D1 by adding a new directed edge corresponding to

each edge in D1 with an opposite direction. We define an integer-valued function f : E(D) → Z as
f (uv) = f1(uv) if uv ∈ D1 and f (uv) = −f1(uv) if uv ∈ D − D1. Then it is easy to check that (D, f )
satisfies the following properties:

(1) f +(v) = f +

1 (v) − f −

1 (v) ≡ β(v) (mod k) for each vertex v;
(2) f (uv) + f (vu) = 0 for any two edges uv and vu in D;
(3)


e∈E(D) f (e) = 0;

(4) f (e) ∈ {±1, ±3, . . . ,±(k − 2)} and f (e) is odd for each edge e in E(D);
(5) |E(D)| = 2|E(G)|.
Define another integer-valued function g : E(D) → Z such that for each edge e ∈ E(D), g(e) =

s + f (e). Hence, we have the following properties.
(i) For each edge e ∈ E(D), g(e) ≥ 0 and is even.

Let e ∈ E(D). By (4), f (e) is odd and −(k − 2) ≤ f (e) ≤ k − 2. Since s = k − 2, we have g(e) =

s + f (e) = k − 2 + f (e) ≥ k − 2 + (−(k − 2)) = 0. Since k is odd, g(e) = k − 2 + f (e) is even.
(ii) For each i = 1, 2, . . . , n, g+(vi) =


e∈E+

D (vi)
g(e) ≥ 0 and is even.

(ii) follows from (i) directly because g(e) ≥ 0 and is even for each edge e ∈ D.
(iii) g+(vi) ≥ 2k − 2 for each 1 ≤ i ≤ n − 1.
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Let 1 ≤ i ≤ n − 1. Since g+(vi) =


e∈E+

D (vi)
g(e) = sd(vi) + f +(vi), by (1) we have

g+(vi) = sd(vi) + f +(vi) ≡ sd(vi) + β(vi) (mod k).

Sinceβ(vi) ≡ t−sd(vi) (mod k) by the definition ofβ (see Eq. (1)) and since t = k−2,we further have

g+(vi) = sd(vi) + f +(vi) ≡ sd(vi) + β(vi) ≡ t ≡ k − 2 (mod k).

Since g+(vi) ≥ 0 by (ii), g+(vi) ≥ k − 2. Since g+(vi) is even by (i) and k − 2 is odd, we have
g+(vi) ≥ k − 2 + k = 2k − 2.

Since |E(D)| = 2|E(G)| and g(e) = s + f (e) and since


e∈E(D) f (e) = 0 by (3), we have
u∈V (G)

g+(u) =


u∈V (G)


e∈E+

D (u)

g(e) =


e∈E(D)

g(e) = 2s|E(G)| +


e∈E(D)

f (e) = 2(k − 2)|E(G)|.

On the other hand since g+(u) ≥ 0 for each vertex u by (ii) and g+(vi) ≥ 2k − 2 for each i =

1, . . . , n − 1 by (iii), we have
u∈V (G)

g+(u) ≥

n−1
i=1

g+(vi) ≥ (2k − 2)(n − 1).

So |E(G)| ≥
(n−1)(k−1)

k−2 . �

2.2. The values of ex(n, Z4)

By Theorem 1.1, we only need to prove the following result.

Theorem 2.2. Every simple Z4-connected graph with n ≥ 4 vertices has at least 3n−3
2 edges.

Proof. Let G be Z4-connected with n vertices. Denote V (G) = {v1, v2, . . . , vn}.
Define a Z4-boundary β : V (G) → Z4 as β(vi) ≡ d(vi) − 1 (mod 4), 1 ≤ i ≤ n − 1 and β(vn) ≡

−
n−1

i=1 β(vi)(mod 4). Since G is Z4-connected, there is a pair (D, f ) so that f (e) ∈ Z4 \ {0} for each
edge e in D and for each vertex v in G

f +(v) − f −(v) ≡ β(v) (mod 4).

Since 2 ≡ −2 and 3 ≡ −1 in Z4, we may assume f (e) ∈ {1, 2} for each edge e in D.
Let D1 be the subgraph of D consisting of edges with weight 1 and let E2 denote the set of edges

with weight 2.

Claim. For each vertex v ∈ {v1, . . . , vn−1}, d+

D1
(v) − d−

D1
(v) ≤ d(v) − 3.

Proof of Cliam. Let v ∈ {v1, . . . , vn−1} and a = |[E+

D (v) ∪ E−

D (v)] ∩ E2|. Then d+

D1
(v) + d−

D1
(v) + a =

d(v). Since 2 ≡ −2 (mod 4), we have

f +(v) − f −(v) ≡ d+

D1
(v) − d−

D1
(v) + 2a ≡ β(v) ≡ d(v) − 1 (mod 4). (2)

Since d+

D1
(v) + d−

D1
(v) ≡ d+

D1
(v) − d−

D1
(v) (mod 2), by Eq. (2), we have

d(v) − a = d+

D1
(v) + d−

D1
(v) ≡ d+

D1
(v) − d−

D1
(v) ≡ d(v) − 1 (mod 2).

Therefore a is odd and of course a ≥ 1.
If d−

D1
(v) ≥ 1, then d+

D1
(v) − d−

D1
(v) = d(v) − a − 2d−

D1
(v) ≤ d(v) − 3.

If d−

D1
(v) = 0, then d+

D1
(v)+a = d(v). By Eq. (2), we have a ≡ −1 (mod 4). Hence a ≥ 3. Therefore

d+

D1
(v) − d−

D1
(v) = d(v) − a ≤ d(v) − 3. This completes the proof of the claim. �



Author's personal copy

Y. Wu et al. / European Journal of Combinatorics 40 (2014) 137–141 141

Since
n

i=1(d
+

D1
(vi) − d−

D1
(vi)) = 0,

n−1
i=1 (d+

D1
(vi) − d−

D1
(vi)) = d−

D1
(vn) − d+

D1
(vn). By the above

claim, we have
n−1
i=1

(d(vi) − 3) ≥

n−1
i=1

(d+

D1
(vi) − d−

D1
(vi)) = d−

D1
(vn) − d+

D1
(vn) ≥ −d(vn).

Therefore, 2|E(G)|−3n =
n

i=1(d(vi)−3) =
n−1

i=1 (d(vi)−3)+d(vn)−3 ≥ −d(vn)+d(vn)−3 =

−3. This implies |E(G)| ≥
3n−3

2 . �

Acknowledgments

The second author’s project was partially supported by NSF-China grant: NSFC 11171288. The
fourth author’s project was partially supported by a US NSA (National Security Agency) grant H98230-
12-1-0233 and a US NSF grant DMS 1264800.

References

[1] P.J. Cameron, Problems from the 16th British combinatorial conference, Discrete Math. 197/198 (1999) 799–812.
[2] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow

properties, J. Combin. Theory Ser. B 56 (1992) 165–182.
[3] A.D. Keedwell, Critical sets for Latin squares, graphs and block designs: a survey, in Festschrift for C.St.J.A. Nash-Williams,

Congr. Numer. 113 (1996) 231–245.
[4] H-.J. Lai, X. Li, Y.H. Shao, M. Zhan, Group connectivity and group colorings of graphs–a survey, Acta Math. Sinica, English

Ser. 27 (2011) 405–434.
[5] H.-J. Lai, X.-J. Yao, Group connectivity of graphs with diameter at most 2, European J. Combin. 27 (2006) 436–443.
[6] L.M. Lovász, C. Thomassen, Y. Wu, C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser.

B 103 (2013) 587–598.
[7] R. Luo, R. Xu, J.-H. Yin, G. Yu, Ore-condition and Z3-connectivity, European J. Combin. 29 (2008) 1587–1595.
[8] R. Luo, R. Xu, G. Yu, An extremal problem on group connectivity of graphs, European J. Combin. 339 (2012) 1078–1085.
[9] R. Luo, R. Xu,W. Zang, C.-Q. Zhang, Realizing degree sequences with graphs having nowhere-zero 3-flows, SIAM J. Discrete

Math. 22 (2008) 500–519.
[10] R. Luo, W. Zang, C.-Q. Zhang, Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial Latin squares,

Combinatorica 24 (2004) 641–657.
[11] C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012)

521–529.
[12] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80–91.
[13] C.-Q. Zhang, Integer Flows and Cycle Covers of Graph, Marcel Dekker Inc., New York, 1997.
[14] X.-X. Zhang, M.-Q. Zhan, R. Xu, Y.-H. Shao, X.-W. Li, H.-J. Lai, Z3-connectivity in graphs satisfying degree sum condition,

Discrete Math. 310 (2010) 3390–3397.


