On the structure of k-connected graphs without K_{k}-minor

Ken-ichi Kawarabayashi ${ }^{\text {a }}$, Rong Luo ${ }^{\text {b }}$, Jianbing Niu ${ }^{\text {b }}$, Cun-Quan Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Graduate School of Information Sciences (GSIS), Tohoku University, Aramaki aza Aoba 09, Aoba-ku Sendai, Miyagi 980-8579, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

Received 25 July 2002; accepted 26 January 2004
Available online 21 July 2004

Abstract

Suppose G is a k-connected graph that does not contain K_{k} as a minor. What does G look like? This question is motivated by Hadwiger's conjecture (Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943) 133) and a deep result of Robertson and Seymour (J. Combin. Theory Ser. B. 89 (2003) 43).

It is easy to see that such a graph cannot contain a $(k-1)$-clique, but could contain a $(k-2)$-clique, as $K_{k-5}+G^{\prime}$, where G^{\prime} is a 5 -connected planar graph, shows. In this paper, however, we will prove that such a graph cannot contain three "nearly" disjoint $(k-2)$-cliques. This theorem generalizes some early results by Robertson et al. (Combinatorica 13 (1993) 279) and Kawarabayashi and Toft (Combinatorica (in press)). © 2004 Elsevier Ltd. All rights reserved.

1. Introduction and notation

Hadwiger's conjecture from 1943 suggests a far-reaching generalization of the Four Color Problem, and it is perhaps the most interesting conjecture in graph theory. Hadwiger's conjecture states the following.

Conjecture 1.1 ([5]). For all $k \geq 1$, every k-chromatic graph has the complete graph K_{k} on k vertices as a minor.

[^0]For $k=1,2,3$, it is easy to prove, and for $k=4$, Hadwiger himself [5] and Dirac [4] proved it. For $k=5$, however, it seems extremely difficult. In 1937, Wagner [22] proved that the case $k=5$ is equivalent to the Four Color theorem. So, assuming the Four Color theorem [1, 2, 14], the case $k=5$ in Hadwiger's conjecture holds. In 1993, Robertson, Seymour and Thomas [17] proved that a minimal counterexample to the case $k=6$ is a graph G which has a vertex v such that $G-v$ is planar. Hence, assuming the Four Color theorem, the case $k=6$ of Hadwiger's conjecture holds. This result is the deepest in this research area. So far, the cases $k \geq 7$ are open.

Motivated by Hadwiger's conjecture, the following question is drawn attention to by many researchers.

Question 1.2. What do K_{k}-minor-free graphs look like?

One approach is to consider the maximal size of graphs not having K_{k} as a minor. Wagner [23] showed that a sufficiently large chromatic number (which depends only on k) guarantees a K_{k} as a minor, and Mader [11] showed that a sufficiently large average degree will do. Kostochka [10], and Thomason [19], independently, proved that $k \sqrt{\log k}$ is the correct order for the average degree because random graphs having no K_{k}-minor may have average degree of order $k \sqrt{\log k}$. (Recently, Thomason [20] gave a more exact "extremal" function.)

Another approach is due to Robertson and Seymour [15]. They considered how to construct graphs with no K_{k}-minor. If G contains a set X with at most $k-5$ vertices such that $G-X$ is planar, G does not contain K_{k} as a minor since planar graphs cannot contain K_{5} as a minor. Similarly, if G contains a set X with at most $k-7$ vertices such that $G-X$ can be drawn in the projective plane, then clearly G does not contain K_{k} as a minor. (Since the projective plane cannot contain K_{7} as a minor.) Or if G contains a set with at most $k-8$ vertices such that $G-X$ can be drawn in the torus, then clearly G does not contain K_{k} as a minor. (Again, the torus cannot contain K_{8} as a minor.) These observations together with the concept "clique-sum" led Robertson and Seymour to one of their celebrated results of excluding the complete graph minor, and this is the most important step in their proof of "Wagner's conjecture" [16].

Our motivation is the following question.

Question 1.3. What do K_{k}-minor-free k-connected graphs look like?

It does not seem that random graphs give an answer to this question because, as Thomason [20] pointed out, extremal graphs are more or less exactly vertex disjoint unions of suitable dense random graphs. It does not seem that Robertson and Seymour's excluded minor theorem gives an answer either, because their characterization does not seem to guarantee high connectivity. In view of these observations, we still do not know what K_{k} -minor-free k-connected graphs look like.

The following question is also motivated by Hadwiger's conjecture.
Question 1.4. Is it true that a minimal counterexample to Hadwiger's conjecture for $k \geq 6$ has a set X of $k-5$ vertices such that $G-X$ is planar?

This is true for $k=6$ as Robertson et al. [17] showed. To consider a minimal counterexample to Hadwiger's conjecture, one can prove the following conjecture.

Conjecture 1.5. A minimal counterexample to Hadwiger's conjecture is k-connected.
This is true for $k \leq 7$ as Mader proved in [12]. Note that Toft [21] proved that a minimal counterexample to Hadwiger's conjecture is k-edge-connected. This gives a strong evidence to Conjecture 1.5.

Question 1.4 and Conjecture 1.5 lead us to the following question.
Question 1.6. Is it true that a K_{k}-minor-free k-connected graph for $k \geq 6$ has a set X of $k-5$ vertices such that $G-X$ is planar?

The case $k=6$ is a well-known conjecture due to Jørgensen [7], and still open. If true, this would imply Hadwiger's conjecture for $k=6$ case by Mader's result [11]. The case $k=7$ was conjectured in [8] as well.

Even though the case $k=6$ of the Question 1.6 is still open, Robertson et al. [17] gave a result for searching K_{6}-minor.

Theorem 1.7 ([17]). Let G be a simple 6-connected non-apex graph. If G contains three 4-cliques, say, L_{1}, L_{2}, L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq 2(1 \leq i<j \leq 3)$, then G contains a K_{6} as a minor.

Recently, Kawarabayashi and Toft [8] proved the following theorem.
Theorem 1.8. Any 7 -chromatic graph has K_{7} or $K_{4,4}$ as a minor.
This settles the case $(6,1)$ of the following conjecture known as the $(k-1,1)$-minor conjecture which is a relaxed version of Hadwiger's conjecture:

Conjecture 1.9 ([3, 24]). For all $k \geq 1$, every k-chromatic graph has either a K_{k}-minor or a $K_{\left\lfloor\frac{k+1}{2}\right\rfloor,\left\lceil\frac{k+1}{2}\right\rceil}$-minor.

In [8], the following result is the key lemma, and gave a result for searching K_{7}-minor.
Theorem 1.10 ([8]). Let G be a 7 -connected graph with at least 19 vertices. Suppose G contains three 5 -cliques, say, L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 12$, then G contains a K K_{7}-minor.

Our work is motivated by Theorems 1.7 and 1.10, and the main result of this paper is the following theorem which generalizes Theorems 1.7 and 1.10.

Theorem 1.11. Let G be a $(k+2)$-connected graph where $k \geq 5$. If G contains three k-cliques, say L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3 k-3$, then G contains a K_{k+2} as a minor.

Note that the main theorem is for $k \geq 5$ since there are counterexamples to the theorem when $k=3$ and $k=4$ (while it is trivial that the theorem is true for $k=1,2$). Counterexamples for the case of $k=3$ are 5 -connected planar graphs. (Theorem 1.11 is true for non-planar graphs by Halin theorem ([6], or see p. 284 of [25]) in the case of $k=3$.) Counterexamples for the case of $k=4$ are apexes obtained from a 5 -connected
planar graph G^{\prime} by adding a vertex adjacent to some vertices of G^{\prime}. (Theorem 1.11 is true for non-apex graphs in the case of $k=4$ by Theorem 1.7, Menger's theorem and the argument as in the 3.2.3.)

A k-connected graph may contain many ($k-2$)-cliques, but not necessary K_{k}-minor. For example, the graph $K_{k-5}+G_{1}$, where G_{1} is a 5 -connected planar graph, is K_{k}-minor-free and contains many copies of $(k-2)$-cliques. In this paper, Theorem 1.11, which generalizes Theorems 1.7 and 1.10, proves that a k-connected K_{k}-minor-free graph cannot contain three "nearly" disjoint $(k-2)$-cliques.

We hope our result would be used to prove some results on 7- and 8-chromatic graphs. In fact, in [9], Kawarabayashi proved that any 7 -chromatic graph has K_{7} or $K_{3,5}$ as a minor using our result. Maybe one can use this result to prove 8-chromatic case of Conjecture 1.9.

There is a conjecture by Seymour and Thomas (private communication with R. Thomas.)

Conjecture 1.12. For every $p \geq 1$, there exists a constant $N=N(p)$ such that every $(p-2)$-connected graph on $n \geq N$ vertices and at least $(p-2) n-\frac{(p-1)(p-2)}{2}+1$ edges has a K_{p}-minor.

Note that the connectivity condition and the condition of the order of graphs are necessary because random graphs having no K_{k}-minor may have the average degree $k \sqrt{\log k}$, but all these graphs are small. So if a graph is large enough and highly connected, we do not know any construction of infinite family of counterexamples. This conjecture is true for $p \leq 9$. For $p \leq 7$, these were proved by Mader [12]. For $p=8$, Jørgensen [7] proved. Very recently, Song and Thomas [18] proved the case $p=9$. Note that all of these results do not require the connectivity condition in this conjecture.

We hope that our result could give a weaker result since, as far as we know, the only known extremal graphs are $K_{k-5}+G_{1}$, where G_{1} is a 5-connected planar graph. So this graph could contain a $(k-2)$-clique. On the other hand, our result implies that it cannot contain three nearly "disjoint" K_{k-2}. Hence one can prove a weaker bound on the number of edges.

2. Terminology and notations

All graphs considered in this paper are finite, undirected, and without loops or multiple edges. The complete graph (or, clique, as a subgraph) on n vertices is denoted by K_{n}, and the complete bipartite graph such that one partite set has n vertices and the other partite set has m vertices is denoted by $K_{n, m}$. A circuit on n vertices is denoted by C_{n}. A graph H is a minor of a graph G if H can be obtained from G by deleting edges and vertices and contracting edges.

For a vertex x of a subgraph H_{1} of G, the neighborhood of x in H_{1} is denoted by $N_{H_{1}}(x)$. And, for a vertex $v \in V(G)$ and a vertex subset (or a subgraph) Y of G, $d_{Y}(x)=|\{v \in Y: x v \in E(G)\}|$. A graph G is k-chromatic if G is vertex- k-colorable but not vertex- $(k-1)$-colorable. Let V_{1} and V_{2} be subsets of $V(G)$. The symmetric difference of V_{1} and V_{2}, denoted by $V_{1} \Delta V_{2}$, is the set $\left(V_{1} \cup V_{2}\right)-\left(V_{1} \cap V_{2}\right)$.

3. Existence of a $\boldsymbol{K}_{\boldsymbol{k}+2}$-minor

The main theorem (Theorem 1.11) is to be proved in this section.

3.1. H-Wege lemma

The key lemma in our proof is Mader's " H-Wege" theorem which was proved in [13].
Lemma 3.1 ([13]). Let G be a graph, let $S \subseteq V(G)$ be an independent set, and $k \geq 0$ be an integer. Then exactly one of the following two statements holds.
(1) There are k paths of G, each with two distinct ends both in S, such that each $v \in V(G)-S$ is in at most one of the paths.
(2) There exists a vertex set $W \subseteq V(G)-S$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-(S \cup$ W), and a subset $X_{i} \subseteq Y_{i}, 1 \leq i \leq n$, such that
(a) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$,
(b) no vertex in $Y_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cap Y_{i}\right)$ and,
(c) every path of $G-W$ with distinct ends both in S has an edge with both ends in Y_{i} for some i.

Let $Z_{1}, Z_{2}, \ldots, Z_{h}$ be subsets of $V(G)$. A path P of G with ends u, v is said to be good if there exist distinct i, j with $1 \leq i, j \leq h$ such that $u \in Z_{i}$ and $v \in Z_{j}$.

As Robertson et al. pointed out in [17], we can deduce the following lemma from Lemma 3.1.

Lemma 3.2 ([17]). Let G be a graph, let $Z_{1}, Z_{2}, \ldots, Z_{h}$ be subsets of $V(G)$, and let $k \geq 1$ be an integer. Then exactly one of the following two statements holds.
(1) There are k mutually disjoint good paths of G.
(2) There exists a vertex set $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-W$, and a subset $X_{i} \subseteq Y_{i}$, for $1 \leq i \leq n$ such that
(a) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$,
(b) for any i with $1 \leq i \leq n$, no vertex in $Y_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cup Y_{i}\right)$ and $Y_{i} \cap\left(\cup_{j=1}^{h} Z_{j}\right) \subseteq X_{i}$, and
(c) every good path P in $G-W$ has an edge with both ends in Y_{i} for some i.

3.2. Proof of the main theorem

Prove by way of contradiction. Assume G does not contain a K_{k+2} as a minor, and the following assertion is obvious by Menger's theorem.

3.2.1.

The graph G contains no clique of order $(k+1)$.
A path P of G with ends u, v is said to be good if there exist distinct i, j with $1 \leq i, j \leq 3$ such that $u \in L_{i}$ and $v \in L_{j}$. Let $L=L_{1} \cup L_{2} \cup L_{3}$.

3.2.2.

We claim that there do not exist $(k+2)$ mutually disjoint good paths in G.

Let $P_{1}, P_{2}, \ldots, P_{k+2}$ be a set of disjoint good paths of G. Let G^{\prime} be the graph obtained by contracting P_{i} to a new vertex v_{i} for all $i \in\{1,2, \ldots, k+2\}$. The subgraph Q of G^{\prime} induced by $v_{i}(1 \leq i \leq k+2)$ is a K_{k+2}-clique and corresponds to a K_{k+2}-minor in G.

3.2.3.

We claim that $\left|L_{i} \cap L_{j}-L_{h}\right| \leq 1$ for every $\{h, i, j\}=\{1,2,3\}$.
For otherwise, we may assume $\left|L_{1} \cap L_{2}-L_{3}\right| \geq 2$. Let $B \subseteq L_{1} \cap L_{2}-L_{3}$ with $|B|=2$. Since $G-B$ is k-connected, there exist k disjoint good paths from L_{3} to $L_{1} \cup L_{2}-B$, that implies that there exist $(k+2)$ mutually disjoint good paths in G. This contradicts 3.2.2.

By Lemma 3.2 and 3.2.2, we have the following structure of G.

3.2.4.

There exists a vertex set $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-W$, and a subset $X_{i} \subseteq Y_{i}$, for $1 \leq i \leq n$ such that
(a) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \leq k+1$,
(b) for any i with $1 \leq i \leq n$, no vertex in $Y_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cup Y_{i}\right)$ and $Y_{i} \cap\left(\cup_{j=1}^{3} L_{j}\right) \subseteq X_{i}$, and
(c) every good path P in $G-W$ has an edge with both ends in Y_{i} for some i.

Let $M=\left(L_{1} \cap L_{2}\right) \cup\left(L_{2} \cap L_{3}\right) \cup\left(L_{3} \cap L_{1}\right)$, and choose W and $Y_{1}, X_{1}, \ldots, Y_{n}, X_{n}$ such that $|W|$ is as large as possible. Without loss of generality, we can assume that $Y_{i} \neq \emptyset$ for any $i \in\{1,2, \ldots, n\}$. By the definition of W, M and 3.2.4(c), we have the following immediate observations.
3.2.5.
(a) $M \subseteq W$ by 3.2.4(c).
(b) $\left|L_{1} \cup L_{2} \cup L_{3}\right|=\left|L_{1}\right|+\left|L_{2}\right|+\left|L_{3}\right|-|M|-\left|L_{1} \cap L_{2} \cap L_{3}\right|$ by definition of M.
(c) $|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right| \leq 3$ by the assumption $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3 k-3$.
(d) $\left|L_{1} \cap L_{2} \cap L_{3}\right| \leq 1$ by (c) and $L_{1} \cap L_{2} \cap L_{3} \subseteq M$.
(e) $\left|L_{i} \cup L_{j}\right| \geq k+2$ for $1 \leq i<j \leq 3$.3.2.5(e) is proved as follows: By 3.2.3 and 3.2.5(d), we have

$$
\begin{aligned}
\left|L_{i} \cup L_{j}\right| & =\left|L_{i}\right|+\left|L_{j}\right|-\left|L_{i} \cap L_{j}\right| \\
& =2 k-\left(\left|L_{i} \cap L_{j} \cap L_{h}\right|+\left|\left(L_{i} \cap L_{j}\right)-L_{h}\right|\right) \\
& \geq 2 k-2=k+2+(k-4) \geq k+2
\end{aligned}
$$

where $\{i, j, h\}=\{1,2,3\}$.
The following claim (f) follows from the assumption 3.2.4(b).
(f) $W \cup X_{1} \cup \cdots \cup X_{n} \supseteq L_{1} \cup L_{2} \cup L_{3}$, and $|W|+\sum_{i=1}^{n}\left|X_{i}\right| \geq\left|L_{1} \cup L_{2} \cup L_{3}\right|$.
3.2.6.

By 3.2.5(c) and 3.2.5(d), there are only nine cases (illustrated in Figs. 1-9).

Fig. 1. (2, 0).

Fig. 4. (1, 0).

Fig. 7. (2, 0).

Fig. 2. (1, 1).

Fig. 3. (3, 0).

Fig. 5. (2, 1).

Fig. 6. (0, 0).

Fig. 8. (3, 0).

Fig. 9. $(3,0)$.

Legend for Figs. 1-9. $(i, j): i=|M|, j=\left|L_{1} \cap L_{2} \cap L_{3}\right|$.

Note that Figs. 7-9 are impossible by 3.2.3.
3.2.7.

We claim that $n \geq k-3$, and if the equality holds then $W=M$ and $\left|L_{1} \cap L_{2} \cap L_{3}\right|$ $=1$ and $L_{1} \cup L_{2} \cup L_{3}=W \cup X_{1} \cup \cdots \cup X_{n}$.

Since $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3 k-3$ and $|W| \leq k+1$ (by 3.2.4(a)), we have $n \geq 1$. By 3.2.4(a), 3.2.5(a), (b), (d) and (f), we have

$$
\begin{aligned}
2(k+1) & \geq 2\left(|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor\right) \geq 2|W|+\sum_{1 \leq i \leq n}\left|X_{i}\right|-n \\
& \geq|W|+\left|L_{1} \cup L_{2} \cup L_{3}\right|-n \geq|M|+\left|L_{1} \cup L_{2} \cup L_{3}\right|-n \\
& =\left|L_{1}\right|+\left|L_{2}\right|+\left|L_{3}\right|-\left|L_{1} \cap L_{2} \cap L_{3}\right|-n \geq 3 k-1-n .
\end{aligned}
$$

Thus,

$$
n \geq k-3
$$

and if the equality holds then

$$
|W|=|M| \quad \text { and } \quad\left|L_{1} \cap L_{2} \cap L_{3}\right|=1
$$

and $\quad|W|+\sum_{1 \leq i \leq n}\left|X_{i}\right|=\left|L_{1} \cup L_{2} \cup L_{3}\right|$.

3.2.8.

We claim that $X_{i} \neq \emptyset$ for all i.
Suppose that $X_{i}=\emptyset$ for some i. Then, since Y_{i} is not empty, W is a cutset and its cardinality is at most $k+1$ (by 3.2.4(a) and (b)). This contradicts that G is ($k+2$)-connected.

3.2.9.

We claim that $\left|X_{i}\right|$ is odd for all i.

Suppose that $\left|X_{1}\right|$ is even, then by 3.2.8, $\left|X_{1}\right| \geq 2$. Assume $v \in X_{1}$, let $W^{*}=$ $W \cup\{v\}, Y_{1}^{*}=Y_{1}-v, X_{1}^{*}=X_{1}-v$ and $X_{i}^{*}=X_{i}, Y_{i}^{*}=Y_{i}$ for $2 \leq i \leq n$. Hence, the partition $\left\{W^{*}, X_{1}^{*}, \ldots, X_{n}^{*}, Y_{1}^{*}, \ldots, Y_{n}^{*}\right\}$ of $V(G)$ satisfies 3.2.4(a)-(c), contradicting the choice that $|W|$ is as large as possible.

3.2.10.

Definition of $A_{i}(\mathbf{f o r} i=1,2,3)$.
Let $G^{\prime \prime}$ be the subgraph obtained from $G-W$ by deleting all edges contained in any Y_{j}. Let A_{i} be the union of the vertex subsets of all components of $G^{\prime \prime}$ containing some vertex of L_{i} for each $i \in\{1,2,3\}$.

3.2.11.

Properties of $\left\{A_{1}, A_{2}, A_{3}\right\}$.
Properties of $\left\{A_{1}, A_{2}, A_{3}\right\}$ are to be studied in this subsection. The first property is immediate by 3.2.4 and the definition of A_{i}.
(a) $L_{i}-W \subseteq A_{i} \subseteq V(G)-W$ for $i=1,2,3$.

Note that each $Y_{j}-X_{j}$ is an independent set of $G^{\prime \prime}$, and by 3.2.4(b), we have the following properties.
(b) $A_{i} \subseteq X_{1} \cup \cdots \cup X_{n}$ for $i=1,2,3$.
(c) A_{1}, A_{2}, A_{3} are disjoint by the definition of A_{i} and 3.2.4(c).
(d) Every path of $G-W$ from A_{i} to $A_{i^{*}}$ has at least two vertices in X_{j} for some j and for $1 \leq i, i^{*} \leq 3$ with $i \neq i^{*}$.

Proof of (d). Suppose there exists a path P from $v \in A_{1}$ to $u \in A_{2}$ in $G-W$. By the definition of A_{1}, A_{2}, we can take two disjoint paths Q and R such that Q is a path from some vertex $x \in L_{1}$ to v in $G-W$ and R is a path from some vertex $y \in L_{2}$ to u in $G-W$. Both Q and R have no edges with both ends in Y_{j} for any j. Then we have a path S from x to y by using P, Q, R. Since S is a good path by 3.2.4(c), S has an edge $e=x_{1} y_{1} \in Y_{j}$ for some j. Note that $e \notin E(Q)$ and $e \notin E(R)$. This implies $e \in E(P)$ and $x_{1}, y_{1} \in V(P)$. Note that, by 3.2.11(b), both v and u belong to $X_{1} \cup \cdots \cup X_{n}$. By 3.2.4(b), the part of P from v to x_{1} must contain a vertex from X_{j}, and likewise the part of P from y_{1} to u.
(e) $\left|A_{i}\right| \leq k+1-|W|$ for $1 \leq i \leq 3$.

Proof of (e). Suppose $\left|A_{1}\right| \geq k+2-|W|$. It is obvious that $|W| \leq k+1$ (by 3.2.4(a)). Hence, $A_{1} \neq \emptyset$. We also have that $L_{2} \cup L_{3}-W \neq \emptyset$ since $\left|L_{2} \cup L_{3}\right| \geq k+2$ (by 3.2.5(e)) and $|W| \leq k+1$ (by 3.2.4(a)).

Since $\left|L_{2} \cup L_{3}\right| \geq k+2$ (by 3.2.5(e)), we have that $\left|L_{2} \cup L_{3}-W\right| \geq k+2-|W|$. Note that $G-W$ is $(k+2-|W|)$-connected; there are $(k+2-|W|)$ disjoint paths from A_{1} to $L_{2} \cup L_{3}-W$ neither of which is empty. By 3.2.11(d), every path P_{j} contains at least two vertices of X_{i} for some i. Hence, $\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq k+2-|W|$. This is a contradiction to 3.2.4(a). The other cases follow in a similar way.
3.2.12.

We claim that $|W| \leq 3$.
This claim is to be proved in two steps in this subsection. First we show that
(a) $\sum_{i=1}^{3}\left|L_{i} \cap W\right| \leq|W|+3$.

Note that $\sum_{i=1}^{3}\left|L_{i} \cap W\right| \leq|W|+|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right|$. Hence, $\sum_{i=1}^{3}\left|L_{i} \cap W\right| \leq$ $|W|+3$ since $|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right| \leq 3$ by 3.2.5(c).
(b) By 3.2.11(a), (e) and 3.2.12(a), we have the following inequality:

$$
\begin{aligned}
3 k & =\sum_{i=1}^{3}\left|L_{i}\right| \leq \sum_{i=1}^{3}\left(\left|A_{i}\right|+\left|L_{i} \cap W\right|\right) \leq 3(k+1-|W|)+|W|+3 \\
& =3 k+6-2|W| .
\end{aligned}
$$

Hence, $|W| \leq 3$.

3.2.13.

We claim that, for $1 \leq j \leq n$, if $\left|W \cup X_{j}\right|<(k+2)$ then $X_{j}=Y_{j}$.
Suppose that $X_{j} \neq Y_{j}$. Note that G is $(k+2)$-connected and by 3.2.4(b), $W \cup X_{j}$ is a vertex-cut separating $Y_{j}-X_{j}$ and $V(G)-Y_{j}-W$ neither of which is empty since $n \geq 2$ (by 3.2.7). It follows that $\left|W \cup X_{j}\right| \geq(k+2)$, as required.

3.2.14.

We claim that, for $1 \leq j \leq n$, if $\left|X_{j}\right| \leq 3$ then $X_{j}=Y_{j}$.
By 3.2.13, it is obvious that $X_{j}=Y_{j}$ if $\left|X_{j}\right| \leq 3$ since $|W| \leq 3$ (by 3.2.12) and $k \geq 5$.

3.2.15.

Let $Z=\left(X_{1} \cup \cdots \cup X_{n}\right)-\left(L_{1} \cup L_{2} \cup L_{3}\right)$.
3.2.16.

Some vertex-cuts of G.
Suppose that $X_{i} \cap L_{j} \neq \emptyset$ for some $i \in\{1,2, \ldots, n\}, j \in\{1,2,3\}$. By 3.2.4(c), 3.2.11(a) and (d), any path joining $X_{i} \cap L_{j}$ and $L_{1} \cup L_{2} \cup L_{3}-W-L_{j}$ must use a vertex of W or Z or $X_{i} \Delta L_{j}$. Therefore, $\left(X_{i} \Delta L_{j}\right) \cup W \cup Z$ is a cutset of G separating $X_{i} \cap L_{j}$ from $L_{1} \cup L_{2} \cup L_{3}-W-L_{j}$.
3.2.17.

We claim that $\left|X_{i}\right| \geq 3$ for $1 \leq i \leq n$.
This claim is to be proved in several steps in this subsection.
(a) First we show that, for $1 \leq i \leq 3,1 \leq j \leq n$, if $\left|X_{j}\right|=1$, then $A_{i} \cap X_{j}=\emptyset$.

Suppose $A_{1} \cap X_{j} \neq \emptyset$. Let $X_{j}=\{v\}$ and $N=N_{G}(v)$. Since G is $(k+2)$ connected, $|N| \geq k+2$. Hence $|N-W| \geq k+2-|W|$. Note that $\left|A_{1}\right| \leq k+1-|W|$
by 3.2.11(e); this implies $N-A_{1}-W \neq \emptyset$. Take a vertex $x \in N-A_{1}-W$. Since $\left|X_{j}\right|=1$, we have $X_{j}=Y_{j}=\{v\}$ by 3.2.14. Note that $x v \in E(G), x$ is in A_{1} by the definition of A_{1}, a contradiction. Hence $A_{1} \cap X_{j}=\emptyset$.
(b) Second we show that, for $1 \leq i \leq 3,1 \leq j \leq n$, if $\left|X_{j}\right|=1$, then $A_{i} \cap N_{G}\left(X_{j}\right)$ $=\emptyset$.

Suppose that $\left|X_{1}\right|=1$ and $x \in A_{1} \cap N_{G}\left(X_{1}\right)$. Hence, by 3.2.11(b), $x \in X_{i}$ for some $i \neq 1$. Since $\left|X_{1}\right|=1$, by the definition of A_{1} (defined in 3.2.10), $X_{1} \subseteq A_{1}$. This contradicts 3.2.17(a) since $\left|X_{1}\right|=1$.
(c) Since $\left|X_{i}\right|$ is odd for each i (by 3.2.9), let m be an integer such that $m \leq n$ with $\left|X_{i}\right|=1$ for $1 \leq i \leq m \leq n$ and $\left|X_{j}\right| \geq 3$ for $m+1 \leq j \leq n$.

By the definition of A_{i} and 3.2.5, we have

$$
\begin{equation*}
\sum_{i=1}^{3}\left|A_{i}\right| \geq\left|L_{1} \cup L_{2} \cup L_{3}\right|-|W|=3 k-|M|-\left|L_{1} \cap L_{2} \cap L_{3}\right|-|W| \tag{I}
\end{equation*}
$$

Also, by 3.2.4(a),

$$
\begin{align*}
& \sum_{m+1 \leq j \leq n}\left|X_{j}\right| \leq 3 \sum_{m+1 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \leq 3 \sum_{1 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \\
& \quad \leq 3(k+1-|W|) . \tag{II}
\end{align*}
$$

Assume $X=X_{1} \cup X_{2} \cup \cdots \cup X_{m}$ and $N=N_{G}(X)$. Then we can get the following.
(i) $N \subseteq W \cup X_{m+1} \cup \cdots \cup X_{n}$ by 3.2.4(b) and 3.2.14.
(ii) $N \cap A_{1}=N \cap A_{2}=N \cap A_{3}=\emptyset$ by 3.2.17(b).
(iii) $|N| \geq k+2$ since N separates X from $A_{1} \cup A_{2} \cup A_{3}$ (by 3.2.17(a) and (b)) and G is $(k+2)$-connected.

Hence, we have

$$
\begin{equation*}
|N|+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \leq|W|+\sum_{i=m+1}^{n}\left|X_{i}\right| \tag{III}
\end{equation*}
$$

By (iii), (I)-(III) we have

$$
\begin{aligned}
& (k+2)+\left(3 k-|M|-\left|L_{1} \cap L_{2} \cap L_{3}\right|-|W|\right) \leq|W|+3(k+1-|W|) \\
& \quad=3 k+3-2|W| .
\end{aligned}
$$

Hence,

$$
|W| \leq 1+|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right|-k
$$

By 3.2.5(a),

$$
|W| \leq 1+|W|+\left|L_{1} \cap L_{2} \cap L_{3}\right|-k
$$

That is, by $3.2 .5(\mathrm{~d})$,

$$
k \leq 1+\left|L_{1} \cap L_{2} \cap L_{3}\right| \leq 2
$$

This contradicts $k \geq 5$ and completes the proof of 3.2.17.
3.2.18.

We prove some inequalities for $|Z|$.
(i)

$$
|Z| \leq 3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|,
$$

and the equality holds if and only if $\left|X_{j}\right|=3$ for every $j \in\{1,2, \ldots, n\}$.
(ii)

$$
|Z| \leq 3+|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right|-2|W|,
$$

and the equality holds if and only if $\left|X_{j}\right|=3$ for every $j \in\{1,2, \ldots, n\}$ and $W \subseteq L_{1} \cup L_{2} \cup L_{3}$.

Let $s=|Z|$. Then, by 3.2.5(f),

$$
\left|X_{1} \cup \cdots \cup X_{n}\right|=s+\left|L_{1} \cup L_{2} \cup L_{3}-W\right| .
$$

But, by 3.2.17, $\left|X_{j}\right| \leq 3\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor$ for $1 \leq j \leq n$, and therefore

$$
3 \sum_{1 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \geq \sum_{1 \leq j \leq n}\left|X_{j}\right| \geq s+\left|L_{1} \cup L_{2} \cup L_{3}-W\right|,
$$

with equality if and only if $\left|X_{j}\right|=3$ for any $j \in\{1,2, \ldots, n\}$. By 3.2.4(a), we have

$$
3(k+1-|W|) \geq s+\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

That is,

$$
s \leq 3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|,
$$

and the equality holds if and only if $\left|X_{j}\right|=3$ for any $j \in\{1,2, \ldots, n\}$. This completes the proof of 3.2.18(i).

Note that, by 3.2.5(b), we have

$$
\begin{aligned}
& \left|\left(L_{1} \cup L_{2} \cup L_{3}-W\right)\right| \geq\left|L_{1} \cup L_{2} \cup L_{3}\right|-|W|=3 k-|M| \\
& \quad-\left|L_{1} \cap L_{2} \cap L_{3}\right|-|W|,
\end{aligned}
$$

and the equality holds if and only if $W \subseteq L_{1} \cup L_{2} \cup L_{3}$. Hence, by 3.2.18(i),

$$
\begin{aligned}
s \leq & 3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right| \leq 3 k+3-3|W| \\
& -\left(3 k-|M|-\left|L_{1} \cap L_{2} \cap L_{3}\right|-|W|\right) \\
= & 3+|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right|-2|W|,
\end{aligned}
$$

and the equality holds if and only if $W \subseteq L_{1} \cup L_{2} \cup L_{3}$ and $\left|X_{j}\right|=3$ for every $j \in\{1,2, \ldots, n\}$. This completes the proof of 3.2.18(ii).

3.2.19.

(i) $\left|A_{i} \cap X_{j}\right|<\frac{1}{2}\left|X_{j}\right|$ for $1 \leq j \leq n$ and $1 \leq i \leq 3$.

Suppose that $\left|A_{1} \cap X_{1}\right| \geq \frac{1}{2}\left|X_{1}\right|$. Since $X_{1} \neq \emptyset$ by 3.2.8, there exists a vertex $v \in A_{1} \cap X_{1}$. Since $\left|L_{2} \cup L_{3}-W\right| \geq\left|L_{2} \cup L_{3}\right|-|W| \geq k+2-|W|$ by 3.2.5(e), and
$G-W$ is $(k+2-|W|)$-connected, there are $(k+2-|W|)$ paths of $G-W$ between
A_{1} and $L_{2} \cup L_{3}-W$, disjoint except possibly for v. Choose them with no internal vertex in A_{1}. By 3.2.11(d), each has at least two vertices in X_{j} for some $j \neq 1$, but at most $\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor$ of them have two vertices in X_{j} for each $j \neq 1$. Note that by 3.2.4(a), we have

$$
\sum_{2 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \leq k+1-|W|-\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor
$$

Thus, at least $1+\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor$ of them have two vertices in X_{1}. But each has only one vertex in A_{1}, and so has a vertex in X_{1} which does not belong to A_{1}, and all these vertices in $X_{1}-A_{1}$ are different. Hence $\left|X_{1}-A_{1}\right| \geq 1+\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor$, a contradiction.
(ii) $\left|L_{i} \cap X_{j}\right|<\frac{1}{2}\left|X_{j}\right|$ for $1 \leq j \leq n$ and $1 \leq i \leq 3$ by3.2.11(a) and3.2.19(i).

3.2.20.

(i) We claim that if $v \in A_{i} \cap X_{j}$ for some $i \in\{1,2,3\}$ and some $j \in\{1,2, \ldots, n\}$, then $d_{Y_{j}-A_{i}}(v) \geq 2$, and the equality holds if and only if $d_{G}(v)=k+2, W \cup A_{i} \subseteq$ $N_{G}(v) \cup\{v\}$ and $\left|A_{i}\right|=k+1-|W|$.

By the definition of A_{i} 3.2.10, we have

$$
N_{G}(v)-\left(Y_{j}-A_{i}\right) \subseteq A_{i} \cup W-\{v\} .
$$

Since G is $(k+2)$-connected and $\left|A_{i}\right| \leq k+1-|W|$ (by 3.2.11(e)), we have:

$$
\begin{aligned}
& \left|N_{G}(v) \cap\left(Y_{j}-A_{i}\right)\right| \geq(k+2)-\left|A_{i} \cup W-\{v\}\right| \geq(k+2) \\
& \quad-(k+1-|W|+|W|-1)=2
\end{aligned}
$$

and the equality holds if and only if $d(v)=k+2, W \cup A_{i} \subseteq N_{G}(v) \cup\{v\}$ and $\left|A_{i}\right|=k+1-|W|$.
(ii) We claim that if $v \in A_{i} \cap X_{j}$ and $\left|X_{j}\right|=3$ for some $i \in\{1,2,3\}$ and some $j \in\{1,2, \ldots, n\}$, then $d_{X_{j}}(v)=2, W \cup A_{i} \subseteq N_{G}(v) \cup\{v\}$ and $A_{i}=k+1-|W|$.

Note that $\left|X_{j}\right|=3$. By 3.2.14, we have $Y_{j}=X_{j}$, and therefore,

$$
d_{Y_{j}-A_{i}}(v)=d_{X_{j}-A_{i}}(v) \leq 2 .
$$

On the other hand, by $3.2 .20(\mathrm{i})$, we have $d_{Y_{j}-A_{i}}(v) \geq 2$. Hence $d_{Y_{j}-A_{i}}(v)=2$. By 3.2.20(i) again, we are done.

3.2.21.

We claim that if $\left|X_{j}\right|=3$ for some $j \in\{1,2, \ldots, n\}$ then $Z \cap X_{j}=\emptyset$.
For otherwise, we may assume $Z \cap X_{i} \neq \emptyset$, and let $x \in Z \cap X_{i}$. First we claim $x \in A_{j}$ for some $j \in\{1,2,3\}$. For otherwise, suppose $x \notin A_{1} \cup A_{2} \cup A_{3}$. Since $\left|X_{i}\right|=3$, we have $X_{j}=Y_{j}$ by 3.2.14, and by the definition of $A_{i} 3.2 .10$, we have $N_{G}(x) \subseteq W \cup Z \cup\left(X_{j}-\{x\}\right)$. Note that, by 3.2.18(ii), 3.2.12, we have

$$
\begin{aligned}
& |W|+|Z|+\left|X_{j}-\{x\}\right| \leq|W|+\left(3+|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right|-2|W|\right)+2 \\
& \quad=5+|M|+\left|L_{1} \cap L_{2} \cap L_{3}\right|-|W| .
\end{aligned}
$$

Note that $|M| \leq|W|$ and $\left|L_{1} \cap L_{2} \cap L_{3}\right| \leq 1$ by 3.2.5(a) and 3.2.5(d). Hence, we have $\left|N_{G}(x)\right| \leq 6$. This contradicts that G is $(k+2)$-connected where $k \geq 5$.

Hence, without loss of generality, we may assume $x \in A_{1}$. By 3.2.20(ii), $W \cup A_{1} \subseteq$ $N_{G}(x) \cup\{x\}$. Note that $L_{1} \subseteq A_{1} \cup W$ by 3.2.11(a). Hence, $L_{1} \subseteq N_{G}(x) \cup\{x\}$, since $x \in Z$, we have $x \notin L_{1}$. So $\{x\} \cup L_{1}$ induces a K_{k+1}-clique. This contradicts 3.2.1.

3.2.22.

We claim that if $\left|X_{j}\right|=3$ for some j then
(1) $\left|X_{j} \cap A_{i}\right|=1$ for each $i \in\{1,2,3\}$.
(2) X_{j} induces a clique of G.

By 3.2.21, $X_{j} \cap Z=\emptyset$, (1) follows by 3.2.19(i). (2) is an immediate corollary of 3.2.20(ii).
3.2.23.

We claim that there exists some $j \in\{1,2, \ldots, n\}$ such that $\left|X_{j}\right| \geq 5$.
By 3.2.17, we may assume $\left|X_{j}\right|=3$ for all $j \in\{1,2, \ldots, n\}$. Hence, we have $X_{j}=Y_{j}$ by 3.2.14. There are two cases: $|Z| \neq 0$ and $|Z|=0$.
Case $1 .|Z| \neq 0$. Since $Z \subseteq X_{1} \cup X_{2} \cup \cdots \cup X_{n}$ by the definition of Z, there exists X_{j} such that $X_{j} \cap Z \neq \emptyset$. This contradicts 3.2.21.
Case 2. $|Z|=0$. By 3.2.22, we have $\left|A_{i} \cap X_{j}\right|=\left|L_{i} \cap X_{j}\right|=1$, and X_{j} induces a clique of G. Let $v_{i j} \in L_{i} \cap X_{j}$ for $i \in\{1,2,3\}$ and $j \in\{1,2, \ldots, n\}$. Furthermore, by 3.2.20(ii), $\left(W \cup A_{1} \cup\left\{v_{2 j}, v_{3 j}\right\}\right) \subseteq N_{G}\left(v_{1 j}\right)$, hence, by contracting $L_{2}-W, L_{3}-W$ to a new vertex v, u respectively, then $L_{1} \cup\{v, u\}$ induces a K_{k+2} minor. This is a contradiction.

3.2.24.

We claim that $\left|X_{j}\right| \geq 5$ for any $j \in\{1,2, \ldots, n\}$.
For otherwise, by 3.2.17, we may assume $\left|X_{1}\right|=3$. By 3.2.22(1), $\left|A_{i} \cap X_{1}\right|=1$ for each $i \in\{1,2,3\}$. Hence, by 3.2.20(ii), $\left|A_{i}\right|=k+1-|W|$ for each $i \in\{1,2,3\}$.

Furthermore, by 3.2.11(b) and (c), we have

$$
\begin{aligned}
& |Z| \geq\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|=(3 k+3-3|W|) \\
& \quad-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
\end{aligned}
$$

However, by 3.2.18(i), we have

$$
|Z|=3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right| .
$$

The equality of 3.2.18(i) implies that $\left|X_{i}\right|=3$ for all $i \in\{1,2, \ldots, n\}$. This contradicts 3.2.23.

3.2.25.

We show some inequalities for n.

By 3.2.24 and (3.2.4)(a),

$$
\begin{equation*}
5 n \leq \sum_{1 \leq j \leq n}\left|X_{j}\right| \leq 2 *(k+1-|W|)+n=2 k+2+n-2|W| . \tag{IV}
\end{equation*}
$$

The inequality (IV) can be simplified as

$$
\begin{equation*}
2 n \leq k+1-|W| \tag{V}
\end{equation*}
$$

Note that the equality of (IV) (and (V)), as well) implies that $\left|X_{i}\right|=5$ for every i.

3.2.26.

We claim that $n=k-3$.
For otherwise, since $n \geq k-3$ by 3.2.7, we may assume that $n \geq k-2$. By (V), we have

$$
\begin{equation*}
2 k-4 \leq 2 n \leq k+1-|W| . \tag{VI}
\end{equation*}
$$

That is,

$$
k \leq 5-|W|
$$

Note that $k \geq 5$. Hence, $|W|=0$ and $k=5$, and all equalities of (VI) hold, that is $n=k-2=3$. By (IV), we have

$$
15 \leq \sum_{1 \leq j \leq n}\left|X_{j}\right| \leq 2 k+2+n-2|W|=15
$$

Therefore, the only possibility is $\{5,5,5\}=\left\{\left|X_{1}\right|,\left|X_{2}\right|,\left|X_{3}\right|\right\}$. Note that $\left|X_{1}\right|+\left|X_{2}\right|+$ $\left|X_{3}\right|=\left|L_{1}\right|+\left|L_{2}\right|+\left|L_{3}\right|$ and $|W|=0$ which implies $\left|L_{i} \cap L_{j}\right|=0$ for $1 \leq i<j \leq 3$. Hence, $|Z|=0$. By 3.2.19, $\left|L_{i} \cap X_{1}\right|<\frac{1}{2}\left|X_{1}\right|$ for $1 \leq i \leq 3$. Without loss of generality, we assume $\left|L_{1} \cap X_{1}\right|=2$. By 3.2.16, $\left(X_{1} \Delta L_{1}\right) \cup W \cup Z=\left(X_{1} \Delta L_{1}\right)$ is a cutset of G separating $X_{1} \cap L_{1}$ from $L_{2} \cup L_{3}$, and $\left|X_{1} \Delta L_{1}\right|=3+3=6=k+1$. It contradicts that G is $(k+2)$-connected.

3.2.27.

The final step of the proof.

By 3.2.26, $n=k-3$. By 3.2.7, we have

$$
W=M \quad \text { and } \quad\left|L_{1} \cap L_{2} \cap L_{3}\right|=1 \quad \text { and } \quad L_{1} \cup L_{2} \cup L_{3}=W \cup X_{1} \cup \cdots \cup X_{n} .
$$

Hence,

$$
\begin{equation*}
|W| \geq 1 \quad \text { and } \quad Z=\emptyset \tag{VII}
\end{equation*}
$$

By (V) of 3.2.25, we have

$$
2 k-6=2 n \leq k+1-|W| .
$$

That is,

$$
\begin{equation*}
k \leq 7-|W| \tag{VIII}
\end{equation*}
$$

Note that $|W| \geq 3$ is impossible because $k \geq 5$. Therefore, there are only two cases: $|W|=2$ and $|W|=1$ (by (VII) and (VIII)).
Case 1. $|W|=2$. In this case, $|W|=|M|=2,\left|L_{1} \cap L_{2} \cap L_{3}\right|=1$ (illustrated in Fig. 5), $k=5$ and $n=k-3=2$. Furthermore, the equality of (V) of 3.2.25 implies that

$$
\left|X_{1}\right|=\left|X_{2}\right|=5
$$

Without loss of generality, we assume $W \subseteq L_{1}$ and $\left|L_{1} \cap X_{1}\right|=2$. By 3.2.16, $\left(X_{1} \Delta L_{1}\right)$ is a vertex-cut of order at most 6 since $Z=\emptyset$ and $W \subseteq L_{1}$. This contradicts that G is $(k+2)$-connected where $k=5$.

Case 2. $|W|=1$. In this case, $|W|=|M|=\left|L_{1} \cap L_{2} \cap L_{3}\right|=1$ (illustrated in Fig. 2). Since

$$
Z=\emptyset \quad \text { and } \quad\left|L_{i} \cap W\right|=|W|=1
$$

for each i, we have

$$
\begin{equation*}
\sum_{j=1}^{n}\left|X_{j}\right|\left|L_{1} \cup L_{2} \cup L_{3}-W\right| \sum_{j=1}^{n}\left|L_{j}-W\right| 3 k-3 . \tag{IX}
\end{equation*}
$$

There are two subcases: $k=6$ and $k=5$ by (VIII).
Subcase $1 . k=6$. In this subcase, $n=3$ by 3.2.26. Hence, by (IX), we have

$$
\sum_{j=1}^{3}\left|X_{i}\right|=15 .
$$

Therefore, the only possibility in this subcase is $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=5$ (by 3.2.24). Without loss of generality, we assume $\left|L_{1} \cap X_{1}\right|=2$. By 3.2.16, $\left(X_{1} \Delta L_{1}\right)$ is a vertex-cut of order at most 7 since $Z=\emptyset$ and $W \subseteq L_{1}$. This contradicts that G is 8 -connected.
Subcase 2. $k=5$. In this subcase, $n=2$ (by 3.2.26). By (IX),

$$
\sum_{i=1}^{2}\left|X_{i}\right|=\left|L_{1} \cup L_{2} \cup L_{3}-W\right|=3 k-3=12
$$

Therefore, the only possibility in this subcase is that $\left|X_{1}\right|=5$ and $\left|X_{2}\right|=7$ (by 3.2.9 and 3.2.24).

Without loss of generality, we assume $\left|L_{1} \cap X_{1}\right|=2$. By 3.2.16, $\left(X_{1} \Delta L_{1}\right)$ is a vertexcut of order at most 6 since $Z=\emptyset$ and $W \subseteq L_{1}$. This contradicts that G is $(k+2)$ connected where $k=5$.

This completes the proof of this theorem.

Acknowledgements

Part of this work was done while the first author visited West Virginia University. He would like to thank West Virginia University for great hospitality. The first author was partially supported by the Japan Society for the Promotion of Science for Young Scientists. The last author was partially supported by the National Security Agency under Grants MDA904-00-1-0061 and MDA904-01-1-00.

References

[1] K. Appel, W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.
[2] K. Appel, W. Haken, J. Koch, Every planar map is four colorable, Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] G. Chartrand, D.P. Geller, T. Hedetniemi, Graphs with forbidden subgraphs, J. Combin. Theory 10 (1971) 12-41.
[4] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92.
[5] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943) 133-142.
[6] R. Halin, Über einen Satz von K. Wagner zum Vierfarbenproblem, Math. Ann. 153 (1964) 47-62.
[7] L.K. Jørgensen, Contractions to K_{8}, J. Graph Theory 18 (1994) 431-448.
[8] K. Kawarabayashi, B. Toft, Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor, Combinatorica (in press).
[9] K. Kawarabayashi, Minors in 7-chromatic graphs (preprint).
[10] A.V. Kostochka, The minimum Hadwiger number of graphs by their average degree, Metody Diskret. Analiz. 38 (1982) 37-58 (in Russian).
[11] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967) 265-268.
[12] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154-168.
[13] W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. 31 (1978) 387-402.
[14] N. Robertson, D.P. Sanders, P.D. Seymour, R. Thomas, The four-color theorem, J. Combin. Theory Ser. B. 70 (1997) 2-44.
[15] N. Robertson, P.D. Seymour, Graph minors XVI. Excluding a nonplanar graph, J. Combin. Theory Ser. B. 89 (2003) 43-76.
[16] N. Robertson, P. D. Seymour, Graph Minors XX. Wagner's conjecture, J. Combin. Theory Ser. B. (in press).
[17] N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K_{6}-free graphs, Combinatorica 13 (1993) 279-361.
[18] Z. Song, R. Thomas, The extremal function for K_{9}-minor (preprint).
[19] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984) 261-265.
[20] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B. 81 (2001) 318-338.
[21] B. Toft, On separating sets of edges in contraction-critical graphs, Math. Ann. 196 (1972) 129-147.
[22] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570-590.
[23] K. Wagner, Beweis einer Abschwächung der Hadwiger-Vermutung, Math. Ann. 153 (1964) 26-28.
[24] D.R. Woodall, Improper colourings of graphs, in: R. Nelson, R.J. Wilson (Eds.), Graph Colourings, Pitman Research Notes, vol. 218, Longman, 1990, pp. 45-63.
[25] C.Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, 1997.

[^0]: E-mail addresses: k_keniti@dais.is.tohoku.ac.jp (K.-i. Kawarabayashi), luor@math.wvu.edu (R. Luo), niu@math.wvu.edu (J. Niu), cqzhang@math.wvu.edu (C.-Q. Zhang).

