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Abstract

SupposeG is ak-connected graph thaoes not contaify as a minor. What doeS look like?
This question is motivad by Hadwiger's conjecture (Vierteljahrsschr. Naturforsch. Gesch 88
(1943) 133) and a deep result of Robertson and Seymour (J. Combin. Theory Ser. B. 89 (2003) 43).
It is easy to see that such a graph cannot contédin-d)-clique, but could contain@&—2)-clique,
asKy_5 + G’, whereG’ is a 5-onnected planar graph, shows. In this paper, however, we will prove
that such a graph cannot contain three “nearly” disjgint- 2)-cliques. This theorem generalizes
some early results by Robertson et al. (Combinatorica 13 (1993) 279) and Kawarabayashi and Toft
(Combinatorica (in press)).
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction and notation

Hadwiger's conjecture from 1943 suggestfarreaching generalization of the Four
Color Poblem, and it is perhaps the most interesting conjecture in graph theory.
Hadwiger's onjecture states the following.

Conjecture1.1 ([5]). For all k > 1, every k-chromatic graph has the complete graph Kg
on k vertices as a minor.
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Fork = 1,2, 3, itis easy to prove, and f&r = 4, Hadwiger himself$] and Dirac H]
proved it. Fork = 5, however, it seems extremely difficult. In 1937, Wagrizd] proved
that the cas& = 5 is equivalent to the Four Color theorem. So, assuming the Four Color
theorem 1, 2, 14], the casek = 5 in Hadwiger’s conjecture holds. In 1993, Robertson,
Seyrour and Thomasl7] proved that a minimal counterexample to the clase 6 is a
graphG which has a vertex suchthatG — v is planar. Hence, assuming the Four Color
theorem, the case = 6 of Hadwiger’s onjecture holds. This result is the deepest in this
research area. So far, the cakes 7 areopen.

Motivated by Hadwiger's conjecture, the following question is drawn attention to by
many researchers.

Question 1.2. What do Kg-minor-free graphslook like?

One approach is to consider thearimal size of graphs not havini§x as a minor.
Wagner R3] showed hat a sufficiently large chromatic number (which depends onlig)on
guarantees Ky as a minor, and Madel ] showed hat a sufficiently large average degree
will do. Kostodka [10], and Thomason19], independently, proved thét/logk is the
correct order for the average degree because random graphs haWpgmaoor may have
avelge degree of ordér,/logk. (Recently, Thomasor?[] gave a more exct “extremal”
function.)

Another approach is due to Robertson and Seymub: [They considered how to
construct graphs with nKg-minor. If G contains a seX with at mostk — 5 vertices such
thatG — X is planar,G does not contaify as a minor since planar graphs cannot contain
Ks as a minor. Similarly, ifG contains a seX with at mostk — 7 vertices such tha — X
can be drawn in the projective plane, then cle&lgloes not contailiy as a minor. (Since
the projective plane cannot contaify; as a minor.) Or ifG contains a set with at mokt 8
vertices such thak — X can be drawn in the torus, then clea@ydoes not contaily as
a mnor. (Again, the torus cannot contéitgz as a minor.) These observations together with
the concept “cliguetsn” led Robertson and Seymour to one of their celebrated results of
excluding the complete graph minor, and this is the most important step in their proof of
“Wagner’s conjecture”16].

Our motivatia is the fdlowing question.

Question 1.3. What do Kg-minor-free k-connected graphs look like?

It does not seem that random graphs give an answer to this question because, as
Thomason20] pointed out, extremal graphs are more or less exactly vertex disjoint unions
of suitable dense random graphs. It does not seem that Robertson and Seymour’s excluded
minor theorem gives an answer either, becahsd characterization does not seem to
guaantee high connectivity. In view of these observations, we still do not know \Khat
minor-freek-connected graphs look like.

The following question is also motivated by Hadwiger’s conjecture.

Question 1.4. Isit truethat a minimal counterexampleto Hadwiger’sconjecturefor k > 6
hasaset X of k — 5 vertices such that G — X isplanar?
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This is true fork = 6 as Pobertson et al. 7] showeal. To consi@r a minimal
counterexample to Hadwiger’s conjecture, one can prove the following conjecture.

Conjecture 1.5. Aminimal counterexampleto Hadwiger’s conjecture is k-connected.

This is true fork < 7 as Maar poved in [L2. Note that Toft [21] proved that a
minimal counterexample to Hadwiger's conjecturk-isdge-connected. This gives a strong
eviderce toConjecture 1.5

Question 1.4andConjecture 1.9ead us to the filowing question.

Question 1.6. Isit true that a Kg-minor-free k-connected graph for k > 6 hasa set X of
k — 5verticessuch that G — X is planar?

The casé& = 6 is a wél-known conjecture due to Jargensefy,[and still open. If true, this
would imply Hadwiger’s conjecture fde = 6 case by Mader’s resultl]. The cas&k = 7
was onjectured in 8] as well.

Even though the cade= 6 of theQuestion 1.8s still open, Robertson et allf] gave
a result br searchindg-minor.

Theorem 1.7 ([17]). Let G be a simple 6-connected non-apex graph. If G containsthree
4-cliques, say, L1, Lo, L3, suchthat [Li N Lj| <2(1<i < j < 3),then G contains a
Kg asa minor.

Recently, Kawarabayashi and To# [proved the followhg theorem.
Theorem 1.8. Any 7-chromatic graph has K7 or K4 4 asa minor.

This settles the cas@®, 1) of the following conjecture known as th& — 1, 1)-minor
conjecture which is a relaxed rgton of Hadwiger’s conjecture:

Conjecture 1.9 ([3, 24]). For all k > 1, every k-chromatic graph has either a Kg-minor
ora KL%H%]-minor.

In [8], the fdlowing result is the key lemma, and gave a result for searcKipgninor.

Theorem 1.10 ([8]). Let G be a 7-connected graph with at least 19 vertices. Suppose G
containsthree 5-cliques, say, L1, L2, L3, suchthat |[L1 U L2 U L3| > 12, then G contains
a K7-minor.

Our work is notivated byTheorems 1.And1.1Q and the mai result of his paper is
the following theoren whichgeneralizeIheorems 1.and1.10

Theorem 1.11. Let G be a (k + 2)-connected graph where k > 5. If G contains three
k-cliques, say L1, L2, L3, suchthat |[L; U Lo U L3| > 3k — 3, then G containsa K2 as
a minor.

Note that the main theorem is fkr> 5 dnce there are counterexamples to the theorem
whenk = 3 andk = 4 (while it is trivial that the theorem is true fok = 1, 2).
Counterexamples for the case lof= 3 are 5-onnected planar graphsli{eorem 1.11
is true for non-planar graphs by Halin theorer](for see p. 284 of29]) in the case of
k = 3.) Counterexamples for the casekot= 4 are apegs obtained from a 5-connected
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planar graptG’ by adding a vertex adjacent to some vertice&af(Theorem 1.11s true
for non-apex graphs in the case lof= 4 by Theorem 1.7 Menger’s theorem and the
argument as in tha.2.3)

A k-connected graph may contain maky-2)-cliques, but not necessal,-minor. For
exampe, the graptKy_s + G1, whereG1 is a 5-connected planar graph Kg-minor-free
and contains many copies@-—2)-cliques. In this papef,heorem 1.1lwhichgeneralizes
Theorems 1.7and 1.1Q proves that &k-connectedKg-minor-free graph cannot contain
three" nearly” digoint (k — 2)-cliques.

We hope our result would be used to prove some results on 7- and 8-chromatic graphs.
In fact, in [9], Kawarabayashi proved that any 7-chromatic graphiasr K3 5 as a minor
using our result. Maybe one can use this result to prove 8-chromatic c@sejefcture 1.9

There is a conjecture by Seymour and Thomas (private communication with
R. Thomas.)

Conjecture 1.12. For every p > 1, there exists a constant N = N(p) such that every
(p — 2)-connected graphonn > N verticesand at least (p — 2)n — @=2(P=2 4 1 edges
has a K p-minor.

Note that the connectivitgondition and the condition of the order of graphs are
necessary because random graphs havindKganinor may have the average degree
k,/logk, but all these graphs are small. So if a graph is large enough and highly connected,
we do not know any construction of infinite family of counterexamples. This conjecture is
true for p < 9. Forp < 7, these were proved by Madet?. For p = 8, Jargnsen 7]
proved. Very recently, Song and Thomas][proved the cas@ = 9. Notethat all of these
results do not require the connectivity condition in this conjecture.

We hope that our result could give a weaker result since, as far as we know, the only
known extremal graphs at€y_s + Gj, whereG; is a 5-connected planar graph. So this
graph could contain & — 2)-clique. On the other hand, owesult implies that it cannot
contain three early “disjoint” Kx_>. Hence one can prove a weaker bound on the number
of edges.

2. Terminology and notations

All graphs considered in this paper areitén undirected, and without loops or multiple
edges. The complete graph (or, clique, as a subgraph)entices is denoted bi,, and
the complete bipartite graph such that one partite sehlvagtices and the other partite set
hasm vertices is denoted bk m. A circuit onn vertices is denoted b¢,. A graphH
is aminor of a graphG if H can be obtained frors by deleting edges and vertices and
contracting edges.

For a vertexx of a subgraphH; of G, the neighborhood ok in Hj is denoted by
NH, (X). And, for a vertexv € V(G) and a vertex subset (or a subgraph)f G,
dy(X) = [{v e Y : xv € E(G)}|. A graphG is k-chromatic if G is vertexk-colorable but
not vertex¢k — 1)-colorable. Letv; andV, be subsets of (G). The synmetric difference
of V; andVs, denoted byV1 AV, is the setVy U Vo) — (V1 N Vo).
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3. Existence of a Ky42-minor
The main theoremltheorem 1.11is to be poved in ths setion.
3.1. H-Wegelemma

The key lemma in our proof is Mader'$t-Wege” theorem which was proved ihJ.

Lemma3.1 ([13]). Let G beagraph, let SC V(G) bean independent set, and k > 0 be
an integer. Then exactly one of the following two statements holds.

(1) There are k paths of G, each with two distinct ends both in S, such that each
v € V(G) — Sisinat most one of the paths.

(2) Thereexistsa vertexset W € V(G) — Sand apartition Y1, ..., Yy of V(G) — (SU
W), and asubset X; € Yj, 1 <i < n, such that

(@) Wl + Y1 nl3IXill <K,

(b) novertexinY; — X; hasa neighbor inV(G) — (W N Y;) and,

(c) every path of G — W with distinct ends both in Shas an edge with both endsin
Y; for somei.

Let Z1, Zo, ..., Zn be subsets of/ (G). A path P of G with endsu, v is said to be
good if there exist distinct, j with 1 <i, j < h suchthatu € Z;j andv € Z;.

As Robertson et al. pointed out irl]], we can deduce the following lemma from
Lemma 3.1

Lemma 3.2 ([17]). Let G be a graph, let Z1, Z5, ..., Zn be subsets of V(G), and let
k > 1 be an integer. Then exactly one of the following two statements holds.

(1) Thereare k mutually digoint good paths of G.
(2) Thereexistsavertexset W € V(G) and a partition Yy, ..., Yy of V(G) — W, and a
subset X; C Y, for 1 <i < nsuchthat

@) W+ X1 l5IXil) <k,

(b) for anyi with1 <i < n,novertexinY; — X; hasaneighbor inV (G) — (WUY;)
andY; N (UTzlzj) C X;, and

(c) every good path P in G — W has an edge with both endsin Y; for somei.

3.2. Proof of the main theorem

Prove by way 6contradiction. Assum& does not contain &2 as a minor, and the
following assertion is obvious by Menger’s theorem.

3.2.1

Thegraph G containsno clique of order (k + 1).

A path P of G with endsu, v is said to begood if there exist distincti, j with
1<i,j<3suchthat e Ljandvelj. LetL=LiULyULs.

322
We claim that there do not exist (k + 2) mutually disjoint good pathsin G.
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Let P1, Py, ..., Pxy2 be a set of disjoingood paths ofG. Let G’ be the graph obtained
by contractingP; to a new vertex; foralli € {1, 2, ...,k + 2}. The subgrapi® of G’
induced byw; (1 <i < k+2)is aKg2-clique and corresponds td&2-minor inG. [

3.2.3.

Weclaimthat [Li N Lj — Ln| < 1for every {h,i, j} ={1,2,3}.

For otherwisewe mayassumglLi N Lo—L3| > 2.LetB C L1 NLy—L3zwith |B| = 2.
SinceG — B is k-connected, there exiktdisjoint good paths fronbz to L1 U L, — B,
that implies that there exigk + 2) mutually disjointgood paths inG. This @mntradicts
322 O

By Lemma 3.2and3.2.2 we ha the fdlowing structure of G.

3.2.4.
Thereexistsavertex set W € V(G) and apartition Yy, ..., Y, of V(G) — W, and a
subset X; € Y;, for 1 <i < nsuch that

@) Wl + X gonl3IXill <k+1,

(b) for anyi with1 <i < n,novertexinY; — X; hasaneighbor in V(G) — (WUY))
and Yi N (u?zle) C X;, and

(c) every good path P in G — W hasan edge with both endsin Y; for somei.

LetM = (L1 N Ly)U(L2 N L3)U(Lsz N L), and chooseN andYy, X1,..., Ya, Xn
suchthat|W| is as large as possible. Without loss of generality, we can assumsg tjal
foranyi € {1, 2, ..., n}. By theddinition of W, M and3.2.4c), we have th folowing
immediate observations.

3.2.5.
(&8 M € W by 3.2.4c).
(b) ILiUL2ULg| =|L1| 4 |L2| + |L3| = [M] — |[L1 N L2 N L] by définition of M.
(¢) IM|+ L1 N L2 N L3|] < 3 bythe assumptiofL1 U Lo U L3| > 3k — 3.
(d) |lLy1NnLyNnL3g<lby(c)andL; N Lo N L3z S M.
() ILiuLj]l >k+2for1 <i < j < 3.3.2.5e) is proved as follows: Bg.2.3and
3.2.5d), we have
ILi ULl =ILil+ILjl —=ILi N Ljl
=2k—(ILi N Lj N Lpl+I(Li N Lj)—LnD
>2k—2=k+2+ k-4 >k+2
wherefi, j,h} ={1,2,3}. O
The following claim (f) follows from the assumptid2.4b).
(f) WUXqU---UXp2LiULyULgand [W|+ 3" X > |L1ULaULg|.

3.2.6.
By 3.2.5c) and3.2.5d), there are only nine cases (illustratedHigs. 1-9).
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s D

Fig. 1. (2, 0). Fig. 2. (1, 1). Fig. 3. (3, 0).

% 000

Fig. 4. (1, 0). Fig. 5. (2, 1). Fig. 6. (0, 0).
Fig. 7. (2, 0). Fig. 8. (3, 0). Fig. 9. (3, 0).
Legend for Figs. 1-9(i, j) : i = |M|, j =|L1 N Ly N L3|.

Note thatFigs. 79 are impossible bg.2.3

3.2.7.

Weclaim that n > k—3,and if theequality holdsthen W = M and |[L; N L2 N Lg|
=JlandL1ULULz3=WUX1U---UXp.

Since|L1 U Lo U L3l > 3k — 3 and|W| < k+ 1 (by 3.2.4a)), we haven > 1. By
3.2.4a),3.2.5a), (b), (d) and (f), we have

2(k+1>22(|W|+ > L%|xiu) > 2W[+ Y IXi|—n

1<i<n 1<izn
> |W|+|LiULUL3zl—n>|M|+|L1ULaUL3z|—n
= |La| +|L2| + L3l = L1 N L2 N L3 —n>3k—1-n.
Thus,
n>k-3
and if the equality holds then

IW| = M| and [lL1N LN L3 =1
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and W]+ Y [Xi|=|L1UL2ULs].

1<i<n

3.2.8.

Weclaim that X; # ¢ for all i.

Suppose thaX; = ¢ for somei. Then, sinceY; is not empty,W is a cutset and its
cardinality is at most+1 (by3.2.4a) and (b)). This contradicts th@tis (k+2)-connected.

3.2.9.

Weclaim that | Xj| isodd for all i.

Suppose thaiXj| is even, then by3.2.8 |X1| > 2. Assumev € Xj, let W* =
WU LY =Y —v, X] = Xg—vandX = Xj,Y* =Y for2 <i < n. Herce,
the partition{W*, Xi, ..., X3, Y7, ..., Y} of V(G) satisfies3.2.4a)—(c), contradicting
the choice thafW/| is as large as possible[]

3.2.10.

Definition of A; (fori =1, 2, 3).

Let G” be the subgraph obtained fra&— W by deleting all edges contained in a¥iy.
Let Aj be the union of the vertex subsets of all components’6tontaining some vertex
of L;j foreachi € {1, 2, 3}.

3.2.11.

Propertiesof {A1, Az, As}.

Properties of{ A1, Ay, Az} are to be studied in this subsection. The first property is
immediate by8.2.4and the definition of; .

@ Li—WCA CV(G) —Wfori=1223.

Note that eaclYj — Xj is an indgpendent set 06", andby 3.2.4b), we have the

following properties.

(b) Al € XqU---UXpfori =1,2,3.

(c) A1, Ao, Az aredigoint by the definition ofA; and3.2.4c).

(d) Every path of G — W from A; to Aj- hasat least two verticesin X; for some |
andfor 1 <i,i* <3withi #i*,

Proof of (d). Suppose there exists a p&tliromv € Ajtou € A2in G — W. By
the definition ofA;, Az, wecan take two disjoint path® andR suchthatQ is a path
from some vertex € L;tov in G — W andR is a pathfrom some vertey € Lo
touin G — W. Both Q and R have no edges with both endsYi for any j. Then
we have a patl$ from x to y by usingP, Q, R. SinceSis agood path by3.2.4c),
Shas an edge = x1y1 € Yj for somej. Note hate ¢ E(Q) ande ¢ E(R). This
impliese € E(P) andxy, y1 € V(P). Note hat, by3.2.1Xb), bothv andu belong
to Xq U--- U Xp. By 3.2.4D), the part ofP from v to x; must contain a vertex from
Xj, andlikewise he part ofP fromy; tou. O

(e |Al<k+1—|W|forl<i <3.

Proof of (e). Suppos¢As| > k + 2 — |W]|. It is obvious thatjW| < k + 1 (by
3.2.4a)). Hence A1 # (. We also have thdt,UL3—W # @ since|LoUL3s| > k+2
(by 3.2.5e)) and/W| < k + 1 (by 3.2.4a)).
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Since|LoUL3| > k+2 (by3.2.5e)), we have that. ULz —W| > k+2—|W]|.
Note thatG—W is (k+2—|W/|)-connected; there atk+2—|W)|) disjoint paths from
Apto Lo U Lz — W neither ofwhich is empty. By3.2.1Xd), every pathP; contains
at least two vertices oX; for somei. Heme,zlsisnL%|Xi || > k42— |W]|. This
is a ontradiction ta3.2.4a). The other cases follow in a similar way]

3.2.12.
Weclaim that |W| < 3.
This claim is to be proved in two steps in this subsection. First we show that

(@ Y2 1L N W] < [W|+3.
Note thaty"> ; |Li NW| < |W|+|M|+|L1 N LaN La|. Herce, Y2, [Li nW]| <
|W| 4+ 3 sincelM| +|Ly N L2 N L3 <3by3.2.5c). O
(b) By 3.2.1%a), (e) and3.2.14a), we have the following inequality:
3 3
3k=Y ILil <> (AI+ILi N W) <3(k+1—|W)+|W|+3
i=1 i=1
=3k+6—2/W|.

Hence,|W| < 3. O

3.2.13.

Weclaim that, for 1 < j <n,if WU Xj| < (k+ 2) then Xj =Y.

Suppose thaK; # Yj. Note hatG is (k + 2)-connected and b$.2.4b), W U X; is a
vertexcut separating; — X;j andV(G) — Y; — W neither of wlich is empty sincen > 2
(by 3.2.7). It follows that|W U Xj| = (k + 2), as rgjuired. O

3.2.14.
Weclaim that, for 1 < j <n, if |Xj| < 3then Xj =Y;.
By 3.2.13 it is obvious thatX; = Yj if | Xj| < 3 sincelW| < 3 (by3.2.13 andk > 5.

3.2.15.
Let Z=(X1U---UXp) —(L1UL2UL3).

3.2.16.

Some vertex-cutsof G.

Suppose thaiXi N Lj # ¥ for somei € {1,2,...,n},j € {1,2, 3}. By 3.2.4c),
3.2.1%a) and (d), any path joinin¥j N Lj andL; UL,U Lz —W — Lj must ug a vertex
of Wor Z or XjALj. Therdore, (XjALj) UWU Z isacutset of G separating Xj N L;
fromLiULoULs —W—1Lj.

3.2.17.
Weclaimthat | Xj| > 3for 1 <i <n.
This claim is to be proved in several steps in this subsection.

(a) Firstweshow thatfor 1 <i <3,1<j <n,if [Xj| =1,then A N X; = 4.
SupposeA; N Xj # ¥. Let X; = {v} andN = Ng(v). Since G is(k + 2)-
connected|,N| > k+2. HencgN —W| > k+2—|W|. Note hat|A1| < k+1—|W]|
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by 3.2.1%e); thisimpliesN — A; — W # (. Take avertex € N — A1 — W. Since
|Xjl = 1, we haveXj = Yj = {v} by 3.2.14 Note hatxv € E(G), X is in A by
the definition ofA;, a @ntradiction. Hencé\y N X; = 9. O

(b) Second we show thafior 1 <i < 3,1 < j <n,if [Xj| = 1,then Ai N Nc(Xj)
=0.

Suppose thatX;| = 1 andx € A1 N Ng(X1). Herce, by3.2.11b), x € X; for
somei # 1. Since|X1| = 1, by the definition ofA; (defined in3.2.10, X1 C As.
This contradict8.2.19a) since X1| = 1. O

(c) Since|X;| is odd for each (by 3.2.9, let m be an integer such that < n with
[Xi|] =1forl1<i <m<nand|Xj|>3form+1<j<n.
By the definition ofA; and3.2.5 we have

3
D 1A= L1ULaULgl — W =3k— M| —|L1 N L2 N L3l — W] ()

i=1
Also, by 3.2.4a),

DTOIXi=3 )0 13X =3 ) 151Xl

m+l<j<n m+1<j<n 1<j=n

< 3(k+1—|W). (1
AssumeX = X1 U XaU---U XmandN = Ng (X). Then wecan get the following.

(i) NCWUXme1U---U X, by 3.2.4b) and3.2.14
(i) NN Ai=NN A =N N Az =¢by3.2.17b).
(i) IN| > k+ 2 sinceN separateX from A; U A2 U Az (by 3.2.17a) and (b)) and
G is (k + 2)-connected.

Hence, we have
n
IN|+ Azl + [Azl + [As| < W[+ D [Xil. ()
i=m+1
By (iii), ()—(111) we have
kK+2)+ @Bk—|M|—|L1 N Ly N L3l = |W]) < |W|+3K+1—|W)

= 3k+3—2|W|.
Hence,
IW| <1+ |M|+|L1 N LN La|—k
By 3.2.5a),

W[ <1+ |W|+]|L1 N Lz2N Lgl—k
That is, by3.2.5d),
k<l+|Li1NnLxNnLg <2
This contradict& > 5 and comfetes theproof 0f3.2.17 O
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3.2.18.
We prove someinequalitiesfor | Z]|.

(i)
|Z| <3k+3—-3W|—|L1ULyULz—W]|,
and the equality holdsif and only if | Xj| = 3for every j € {1,2,...,n}.
(ii)
|Z] <3+ M|+ |L1 N L2 N La| —2|W|,

and the equality holds if and only if |Xj| = 3 for every j € {1,2,...,n} and
WC LiUL2ULas.

Lets = |Z|. Then, by3.2.5f),
[ XrU---UXp|=s+|L1UL2ULz—W].
But, by3.2.17 | Xj| < 3L%|Xj |] for 1 < j < n, and theefore
3 ) 13Xl = D IXjl=s+|LiuLlaULs— W],
1<j=n 1<j<n
with equality if and only if| Xj | = 3 foranyj € {1, 2, ..., n}. By 3.2.4a), we have
3k+1—|W|)>s+|LiUL,ULz—W]|.
That is,
s<3k+3-3W|—|L1ULyUL3z—W]|,
and the equality holds if and only fX;| = 3 for anyj € {1, 2,..., n}. This ompletes
the pioof of 3.2.18i).
Note that, by3.2.5b), we have
[(LiUL2ULz=W)| > [L1UL2U Lg| — [W|=3k— M|
—ILi N Lz N L] =W,
and the equality holds if and onlyW € L1 U L> U L3. Herce, by3.2.18i),
s<3k+3—3/W|—|LiULyULz—W]|<3k+3—3W|
—@Bk—[M|—|L1 N Lz N Lg| = [W])
=3+ M|+ |L1 N Lx N L3l —2|W|,

and the equality holds if and only W < L1 U Lo U Lz and |[Xj| = 3 for every
j €{1,2,...,n}. This mmpletes the proof d3.2.1&ii). O

3.2.19.
@) IA N Xj| <3Xjlforl<j<nandl<i<3.
Suppose thatA; N Xq| > %|X1|. SinceX1 # ¥ by 3.2.8 there exits a vertex
v e Ap N Xj.SincelLoULz—W]| > |LoUL3|—|W| > k+2—|W| by 3.2.5e), and
G — Wi s (k+ 2 — |W|)-connected, there af& + 2 — |W|) paths ofG — W between
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Az andLy U L3 — W, digoint exceptpossibly forv. Choose them with no internal
vertexinA;z. By 3.2.1Xd), each has at least two verticesi for somej # 1, but at
mostL%|Xj || of them have tw vertices inXj for eachj # 1. Notethat by3.2.4a),
we have

37 LEIXG1) < k1 (W] — [3]Xal].

2<j=n

Thus, at least ¥ L%|X1|J of them have tw vertices inX;. But each has only one
vertex inA1, and schas a vertex irK; whichdoes not belong té1, and all hese ver-
ticesinX1 — A are different. HenceXy — A1| > 1 + L%|X1|J, a ontradiction. [

(i) 1L N Xl < %|Xj [forl<j<nandl<i < 3by3.2.1%a)and3.2.19i).

3.2.20.

(i) Weclaimthat if v € Aj N Xj for somei € {1,2,3} andsome j € {1,2,...,n},
then dviji (v) > 2,and theequality holdsif and only if dg (v) = k+2, WUA; C
Ng(v) U{v}and |Ai| = k+1— |W|.

By the definition ofA; 3.2.1Q we have
N (v) — (Yj — Ai)) € AL UW — {v}.
SinceG is (k + 2)-connected anfAj| < k + 1 — |W| (by 3.2.1%e)), we have:
INc() N (Yj —A)| > (K+2) —|AUW—{v}| > (K+2)
—k+1-|W+W-1D=2
and the equality holds if and only d(v) = k+ 2, WU A; € Ng(v) U {v} and
Al =k+1—|W|.

(i) We claim thatif v € Aj N Xj and |Xj| = 3 for somei e {1,2, 3} and some

je{l2....n}thendy;(v) =2 WUA € Ng(v)U{v}and A =k+1—|W|.

Note that|Xj| = 3. By 3.2.14 we haveYj = Xj, and theefore,
defAi (v) = de - ) < 2.

On the otfer hand, by3.2.2{i), we havedy,_ (v) > 2. Hencedy,_a, (v) = 2. By
3.2.2@i) again, we are done.

3.2.21.

Weclaim that if [Xj| = 3for some j € {1,2,...,njthenZ N X; =@.

For otherwisewe mayassumeZ N X; # @, and letx € Z N X;. First weclaim
X € Aj for somej e {1,2,3)}. For otherwise, suppose ¢ A; U A U Az. Since
[Xi| = 3, we haveX; = Yj by 3.2.14 and by the definition of Aj 3.2.1Q we have
NG (X) € WU Z U (Xj — {x}). Note hat, by3.2.18&ii), 3.2.12 we have

W[+ [Z] + X — {xX}| = IW[+ @+ [M[+[L1 N L2 N La| —2|W[) + 2
=54+ |M|+ L1 N LzxN L3|— W]

Note that|M| < |[W| and|L1 N Ly N Lg| < 1 by3.2.5a) and3.2.5d). Hence, we have
NG (X)| < 6. This contradicts thds is (k + 2)-connected wherk > 5.
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Hence, without loss of generality, we may assumne Aj. By 3.2.2@i), WU A; C
Ng (X)U{x}. Note hatL; € AJUW by 3.2.1Xa). Hencel; € Ng(x)U{x}, sincex € Z,
we havex ¢ L1. So{x} U L; induces &41-clique. This contradict8.2.1

3.2.22.
Weclaim that if | X;| = 3 for some j then

(1) IXj N Aj| =1for eachi € {1, 2, 3}.
(2) Xj inducesacliqueof G.

By 3.2.21 Xj n Z = ¢, (1) follows by 3.2.19i). (2) is an immediate corollary of
3.2.24i).

3.2.23.

Weclaim that thereexistssome j € {1, 2, ..., n} such that |Xj| > 5.

By 3.2.17 we mayassumg Xj| = 3forall j € {1, 2,..., n}. Herce, we haveXj = Y;
by 3.2.14 There arewo cases{Z| # 0 and|Z| = 0.

Case 1. |Z| # 0. SinceZ € X1 U Xa U --- U X, by the definition ofZ, thereexids X
suchthatX; N Z # @. This contradicts3.2.21

Case2.|Z| = 0. By3.2.22 we havg A N Xj| = |[Li N Xj| =1, andX; induces a clique
of G. Letvjj € Li N Xjfori € {1,2,3}andj € {1, 2, ..., n}. Furthermore, by.2.2(i),
(WU A1 U {v2j, v3j}) € Ng(v1j), herce, by contracting., — W, Lz — W to a new vertex
v, U respectively, theib.1 U {v, u} induces &2 minor. This is a contradiction.

3.2.24.
Weclaim that | Xj| > 5for any j € {1,2,...,n}.
For otherwise, by.2.17 we mayassume X;| = 3. By 3.2.241), |Ai N X3| = 1 for
eachi € {1, 2, 3}. Herce, by3.2.2dii), |Ai| = k+ 1 — |W| for eachi € {1, 2, 3}.
Furthemore, by3.2.11b) and (c), we have
|Z] > |A1] + [A2] + |Ag| — [L1U L2 U Lg — W[ = (3k + 3 — 3|W))
—|L1ULoULz—W]|.
However, by3.2.1gi), we have
|Z| =3k+3—-3/W|—|LiULaULz—W,]|.

The equality o3.2.18i) implies that| Xj| = 3 foralli € {1, 2, ..., n}. This ontradicts
3.223 O

3.2.25.
We show someinequalitiesfor n.
By 3.2.24and 3.2.4(a),

5n < [Xj| <2x(k+1-|W])+n=2k+24+n-2|W|. v
D IXjl =2 (k 2k + 2 2 (IV)

1<j=n
The inequality (V) can be simplified as
2n <k+1—|W|. V)
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Note that the equality ofl{/) (and {/)), as well)implies that| X;| = 5 for everyi.

3.2.26.

Weclaim that n = k — 3.

For otherwse, sincen > k — 3 by 3.2.7, we mayassume thah > k — 2. By (V), we
have

2k—4<2n<k+1-—|W|. (V1)
That is,
k<5—|W|.

Note thatk > 5. Hence,|W| = 0 andk = 5, and all equalities of\{l) hold, that is
n=k—-2=3.By(V), we have

15< Z IXj| <2k +2+n—2/W| =15

1<j=n

Therefore, the only possibility &5, 5, 5} = {|X1[, | X2[, | X3|}. Note hat|X1| + |X2| +
|Xa| = |L1| + |L2| + |L3| and|W]| = O which inplies|L; N Lj| =0forl<i < j <3.
Hence,|Z| =0.By3.2.19|Lj N X1| < %|X1| for 1 <i < 3. Without loss of generality,
we assumeélLi N X3| = 2. By 3.2.16 (X1AL1)) UW U Z = (X1AL;) is a cutset ofG
separating{s N Lj fromLo U L3, and|X1AL31| = 34+ 3 =6 = k+ 1. It contradicts that
G is (k + 2)-connected.

3.2.27.
Thefinal step of the proof.
By 3.2.26n = k — 3. By 3.2.7 we have

W=M and |[L1NLyNLs =1 and L1ULULz=WUXqU---U Xp.
Hence,

IW|>1 and Z=40. (Vi
By (V) of 3.2.25 we have

2k—6=2n<k+1-—|W|.
That is,

k<7—|W|. (Vi)

Note that|W| > 3 is impossible becaude > 5. Therefore, there are only two cases:
|W| = 2and|W| =1 (by (VII) and {I11)).

Case l.|W| = 2.InthiscaselW| = [M| = 2,|L1 N Lo N L3| = 1 (illustrated inFig. 5),

k = 5andn = k — 3 = 2. Furthermore, the equality o¥/() of 3.2.25implies that

[X1] = |X2| = 5.
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Without loss of generality, we assumé C L1 and|L; N X1| = 2.By3.2.16(X1AL1)
is a vertex-cut of order at most 6 singe= @ andW C L1. This @mntradicts thatG is
(k + 2)-connected wherk = 5.

Case 2. |W| = 1. In this case|W| = [M| = |[L1 N L2 N L3| = 1 (illustrated inFig. 2).
Since

Z=¢ and |LiNW=|W=1

for eachi, we have

n n
> IXjlIL1ULaULs— W > |Lj — W3k — 3. (1X)
j=1 j=1
There are two subcasds= 6 andk = 5 by (VIII).

Subcase 1. k = 6. In this subcasey = 3 by 3.2.26 Herce, by (X), we have

3
Z'X” =15,
j=1

Therefore, the only possibility in this subcasg ¥ | = |X2| = |X3] = 5 (by 3.2.29.
Without loss of generality, we assurfle; N X3| = 2. By 3.2.16 (X1AL1) is a vertex-cut
of order at most 7 sincg = ¥ andW C L;. This mntradicts thaG is 8-connected.

Subcase 2.k = 5. In this subcase) = 2 (by 3.2.2§. By (1X),

2
D IXil=|L1UL2ULz3—W|=3k-3=12
i=1
Therefore, the only possibility in this subcase is thét] = 5 and|Xz| = 7 (by 3.2.9and
3.2.29.

Without loss of generality, we assurfie; N X1| = 2. By 3.2.16 (X1AL1) is a vertex-
cut of order at most 6 sincé = ¢ andW C Lj. This contradicts thaG is (k + 2)-
connected wherk = 5.

This completes the proof of this theorem.
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