
European Journal of Combinatorics 26 (2005) 293–308

www.elsevier.com/locate/ejc

On the structure ofk-connected graphs without
Kk-minor

Ken-ichi Kawarabayashia, Rong Luob, Jianbing Niub,
Cun-Quan Zhangb

aGraduate School of Information Sciences (GSIS), Tohoku University, Aramaki aza Aoba 09, Aoba-ku Sendai,
Miyagi 980-8579, Japan

bDepartment of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

Received 25 July 2002; accepted 26 January 2004
Available online 21 July 2004

Abstract

SupposeG is ak-connected graph that does not containKk as a minor. What doesG look like?
This question is motivated by Hadwiger’s conjecture (Vierteljahrsschr. Naturforsch. Ges. Z¨urich 88
(1943) 133) and a deep result of Robertson and Seymour (J. Combin. Theory Ser. B. 89 (2003) 43).

It is easy to see that such a graph cannot contain a(k−1)-clique, but could contain a(k−2)-clique,
asKk−5 + G′, whereG′ is a 5-connected planar graph, shows. In this paper, however, we will prove
that such a graph cannot contain three “nearly” disjoint(k − 2)-cliques. This theorem generalizes
some early results by Robertson et al. (Combinatorica 13 (1993) 279) and Kawarabayashi and Toft
(Combinatorica (in press)).
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction and notation

Hadwiger’s conjecture from 1943 suggests afar-reaching generalization of the Four
Color Problem, and it is perhaps the most interesting conjecture in graph theory.
Hadwiger’s conjecture states the following.

Conjecture 1.1 ([5]). For all k ≥ 1, every k-chromatic graph has the complete graph Kk

on k vertices as a minor.
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For k = 1, 2, 3, it is easy to prove, and fork = 4, Hadwiger himself [5] and Dirac [4]
proved it. Fork = 5, however, it seems extremely difficult. In 1937, Wagner [22] proved
that the casek = 5 is equivalent to the Four Color theorem. So, assuming the Four Color
theorem [1, 2, 14], the casek = 5 in Hadwiger’s conjecture holds. In 1993, Robertson,
Seymour and Thomas [17] proved that a minimal counterexample to the casek = 6 is a
graphG which has a vertexv suchthatG − v is planar. Hence, assuming the Four Color
theorem, the casek = 6 of Hadwiger’s conjecture holds. This result is the deepest in this
research area. So far, the casesk ≥ 7 areopen.

Motivated by Hadwiger’s conjecture, the following question is drawn attention to by
many researchers.

Question 1.2. What do Kk-minor-free graphs look like?

One approach is to consider the maximal size of graphs not havingKk as a minor.
Wagner [23] showed that a sufficiently large chromatic number (which depends only onk)
guarantees aKk as a minor, and Mader [11] showed that a sufficiently large average degree
will do. Kostochka [10], and Thomason [19], independently, proved thatk

√
logk is the

correct order for the average degree because random graphs having noKk-minor may have
average degree of orderk

√
logk. (Recently, Thomason [20] gave a more exact “extremal”

function.)
Another approach is due to Robertson and Seymour [15]. They considered how to

construct graphs with noKk-minor. If G contains a setX with at mostk − 5 vertices such
thatG − X is planar,G does not containKk as a minor since planar graphs cannot contain
K5 as a minor. Similarly, ifG contains a setX with at mostk − 7 vertices such thatG − X
can be drawn in the projective plane, then clearlyG does not containKk as a minor. (Since
the projective plane cannot containK7 as a minor.) Or ifG contains a set with at mostk −8
vertices such thatG − X can be drawn in the torus, then clearlyG does not containKk as
a minor. (Again, the torus cannot containK8 as a minor.) These observations together with
the concept “clique-sum” led Robertson and Seymour to one of their celebrated results of
excluding the complete graph minor, and this is the most important step in their proof of
“Wagner’s conjecture” [16].

Our motivation is the following question.

Question 1.3. What do Kk-minor-free k-connected graphs look like?

It does not seem that random graphs give an answer to this question because, as
Thomason [20] pointed out, extremal graphs are more or less exactly vertex disjoint unions
of suitable dense random graphs. It does not seem that Robertson and Seymour’s excluded
minor theorem gives an answer either, becausetheir characterization does not seem to
guarantee high connectivity. In view of these observations, we still do not know whatKk -
minor-freek-connected graphs look like.

The following question is also motivated by Hadwiger’s conjecture.

Question 1.4. Is it true that a minimal counterexample to Hadwiger’s conjecture for k ≥ 6
has a set X of k − 5 vertices such that G − X is planar?
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This is true for k = 6 as Robertson et al. [17] showed. To consider a minimal
counterexample to Hadwiger’s conjecture, one can prove the following conjecture.

Conjecture 1.5. A minimal counterexample to Hadwiger’s conjecture is k-connected.

This is true fork ≤ 7 as Mader proved in [12]. Note that Toft [21] proved that a
minimal counterexample to Hadwiger’s conjecture isk-edge-connected.This gives a strong
evidence toConjecture 1.5.

Question 1.4andConjecture 1.5lead us to the following question.

Question 1.6. Is it true that a Kk-minor-free k-connected graph for k ≥ 6 has a set X of
k − 5 vertices such that G − X is planar?

The casek = 6 is a well-known conjecture due to Jørgensen [7], and still open. If true, this
would imply Hadwiger’s conjecture fork = 6 case by Mader’s result [11]. The casek = 7
was conjectured in [8] as well.

Even though the casek = 6 of theQuestion 1.6is still open, Robertson et al. [17] gave
a result for searchingK6-minor.

Theorem 1.7 ([17]). Let G be a simple 6-connected non-apex graph. If G contains three
4-cliques, say, L1, L2, L3, such that |Li ∩ L j | ≤ 2 (1 ≤ i < j ≤ 3), then G contains a
K6 as a minor.

Recently, Kawarabayashi and Toft [8] proved the following theorem.

Theorem 1.8. Any 7-chromatic graph has K7 or K4,4 as a minor.

This settles the case(6, 1) of the following conjecture known as the(k − 1, 1)-minor
conjecture which is a relaxed version of Hadwiger’s conjecture:

Conjecture 1.9 ([3, 24]). For all k ≥ 1, every k-chromatic graph has either a Kk-minor
or a K� k+1

2 �,� k+1
2 �-minor.

In [8], the following result is the key lemma, and gave a result for searchingK7-minor.

Theorem 1.10 ([8]). Let G be a 7-connected graph with at least 19 vertices. Suppose G
contains three 5-cliques, say, L1, L2, L3, such that |L1 ∪ L2 ∪ L3| ≥ 12, then G contains
a K7-minor.

Our work is motivated byTheorems 1.7and1.10, and the main result of this paper is
the following theorem whichgeneralizesTheorems 1.7and1.10.

Theorem 1.11. Let G be a (k + 2)-connected graph where k ≥ 5. If G contains three
k-cliques, say L1, L2, L3, such that |L1 ∪ L2 ∪ L3| ≥ 3k − 3, then G contains a Kk+2 as
a minor.

Note that the main theorem is fork ≥ 5 since there are counterexamples to the theorem
when k = 3 and k = 4 (while it is trivial that the theorem is true fork = 1, 2).
Counterexamples for the case ofk = 3 are 5-connected planar graphs. (Theorem 1.11
is true for non-planar graphs by Halin theorem ([6], or see p. 284 of [25]) in the case of
k = 3.) Counterexamples for the case ofk = 4 are apexes obtained from a 5-connected
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planar graphG′ by adding a vertex adjacent to some vertices ofG′. (Theorem 1.11is true
for non-apex graphs in the case ofk = 4 by Theorem 1.7, Menger’s theorem and the
argument as in the3.2.3.)

A k-connected graph may contain many(k−2)-cliques, but not necessaryKk-minor. For
example, the graphKk−5 + G1, whereG1 is a 5-connected planar graph, isKk-minor-free
and contains many copies of(k−2)-cliques. In this paper,Theorem 1.11, whichgeneralizes
Theorems 1.7and 1.10, proves that ak-connectedKk -minor-free graph cannot contain
three“nearly” disjoint (k − 2)-cliques.

We hope our result would be used to prove some results on 7- and 8-chromatic graphs.
In fact, in [9], Kawarabayashi proved that any 7-chromatic graph hasK7 or K3,5 as a minor
using our result. Maybe one can use this result to prove 8-chromatic case ofConjecture 1.9.

There is a conjecture by Seymour and Thomas (private communication with
R. Thomas.)

Conjecture 1.12. For every p ≥ 1, there exists a constant N = N(p) such that every
(p − 2)-connected graph on n ≥ N vertices and at least (p − 2)n − (p−1)(p−2)

2 + 1 edges
has a K p-minor.

Note that the connectivitycondition and the condition of the order of graphs are
necessary because random graphs having noKk-minor may have the average degree
k
√

logk, but all these graphs are small. So if a graph is large enough and highly connected,
we do not know any construction of infinite family of counterexamples. This conjecture is
true for p ≤ 9. For p ≤ 7, these were proved by Mader [12]. For p = 8, Jørgensen [7]
proved. Very recently, Song and Thomas [18] proved the casep = 9. Notethat all of these
results do not require the connectivity condition in this conjecture.

We hope that our result could give a weaker result since, as far as we know, the only
known extremal graphs areKk−5 + G1, whereG1 is a 5-connected planar graph. So this
graph could contain a(k − 2)-clique. On the other hand, ourresult implies that it cannot
contain three nearly “disjoint” Kk−2. Hence one can prove a weaker bound on the number
of edges.

2. Terminology and notations

All graphs considered in this paper are finite, undirected, and without loops or multiple
edges. The complete graph (or, clique, as a subgraph) onn vertices is denoted byKn , and
the complete bipartite graph such that one partite set hasn vertices and the other partite set
hasm vertices is denoted byKn,m . A circuit on n vertices is denoted byCn. A graphH
is a minor of a graphG if H can be obtained fromG by deleting edges and vertices and
contracting edges.

For a vertexx of a subgraphH1 of G, the neighborhood ofx in H1 is denoted by
NH1(x). And, for a vertexv ∈ V (G) and a vertex subset (or a subgraph)Y of G,
dY (x) = |{v ∈ Y : xv ∈ E(G)}|. A graphG is k-chromatic if G is vertex-k-colorable but
not vertex-(k − 1)-colorable. LetV1 andV2 be subsets ofV (G). The symmetric difference
of V1 andV2, denoted byV1�V2, is the set(V1 ∪ V2) − (V1 ∩ V2).
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3. Existence of a Kk+2-minor

The main theorem (Theorem 1.11) is to be proved in this section.

3.1. H -Wege lemma

The key lemma in our proof is Mader’s “H -Wege” theorem which was proved in [13].

Lemma 3.1 ([13]). Let G be a graph, let S ⊆ V (G) be an independent set, and k ≥ 0 be
an integer. Then exactly one of the following two statements holds.

(1) There are k paths of G, each with two distinct ends both in S, such that each
v ∈ V (G) − S is in at most one of the paths.

(2) There exists a vertex set W ⊆ V (G) − S and a partition Y1, . . . , Yn of V (G) − (S ∪
W ), and a subset Xi ⊆ Yi , 1 ≤ i ≤ n, such that

(a) |W | +∑
1≤i≤n�1

2|Xi |� < k,
(b) no vertex in Yi − Xi has a neighbor in V (G) − (W ∩ Yi ) and,
(c) every path of G − W with distinct ends both in S has an edge with both ends in

Yi for some i .

Let Z1, Z2, . . . , Zh be subsets ofV (G). A path P of G with endsu, v is said to be
good if there exist distincti, j with 1 ≤ i, j ≤ h suchthatu ∈ Zi andv ∈ Z j .

As Robertson et al. pointed out in [17], we can deduce the following lemma from
Lemma 3.1.

Lemma 3.2 ([17]). Let G be a graph, let Z1, Z2, . . . , Zh be subsets of V (G), and let
k ≥ 1 be an integer. Then exactly one of the following two statements holds.

(1) There are k mutually disjoint good paths of G.
(2) There exists a vertex set W ⊆ V (G) and a partition Y1, . . . , Yn of V (G) − W, and a

subset Xi ⊆ Yi , for 1 ≤ i ≤ n such that

(a) |W | +∑
1≤i≤n�1

2|Xi |� < k,
(b) for any i with 1 ≤ i ≤ n, no vertex in Yi − Xi has a neighbor in V (G)−(W ∪Yi )

and Yi ∩ (∪h
j=1Z j ) ⊆ Xi , and

(c) every good path P in G − W has an edge with both ends in Yi for some i .

3.2. Proof of the main theorem

Prove by way of contradiction. AssumeG does not contain aKk+2 as a minor, and the
following assertion is obvious by Menger’s theorem.

3.2.1.
The graph G contains no clique of order (k + 1).
A path P of G with endsu, v is said to begood if there exist distincti, j with

1 ≤ i, j ≤ 3 such thatu ∈ Li andv ∈ L j . Let L = L1 ∪ L2 ∪ L3.

3.2.2.
We claim that there do not exist (k + 2) mutually disjoint good paths in G.



298 K.-i. Kawarabayashi et al. / European Journal of Combinatorics 26 (2005) 293–308

Let P1, P2, . . . , Pk+2 be a set of disjointgood paths ofG. Let G′ be the graph obtained
by contractingPi to a new vertexvi for all i ∈ {1, 2, . . . , k + 2}. The subgraphQ of G′
induced byvi (1 ≤ i ≤ k +2) is aKk+2-clique and corresponds to aKk+2-minor inG. �

3.2.3.
We claim that |Li ∩ L j − Lh | ≤ 1 for every {h, i, j} = {1, 2, 3}.
For otherwise, we mayassume|L1 ∩ L2−L3| ≥ 2. LetB ⊆ L1 ∩ L2−L3 with |B| = 2.

SinceG − B is k-connected, there existk disjoint good paths fromL3 to L1 ∪ L2 − B,
that implies that there exist(k + 2) mutually disjointgood paths inG. This contradicts
3.2.2. �

By Lemma 3.2and3.2.2, we have the following structure ofG.

3.2.4.
There exists a vertex set W ⊆ V (G) and a partition Y1, . . . , Yn of V (G) − W , and a

subset Xi ⊆ Yi , for 1 ≤ i ≤ n such that

(a) |W | +∑
1≤i≤n�1

2|Xi |� ≤ k + 1,

(b) for any i with 1 ≤ i ≤ n, no vertex in Yi − Xi has a neighbor in V (G)− (W ∪ Yi )

and Yi ∩ (∪3
j=1L j ) ⊆ Xi , and

(c) every good path P in G − W has an edge with both ends in Yi for some i .

Let M = (L1 ∩ L2) ∪ (L2 ∩ L3) ∪ (L3 ∩ L1), and chooseW andY1, X1, . . . , Yn, Xn

suchthat|W | is as large as possible. Without loss of generality, we can assume thatYi �= ∅
for any i ∈ {1, 2, . . . , n}. By thedefinition of W, M and3.2.4(c), we have the following
immediate observations.

3.2.5.
(a) M ⊆ W by 3.2.4(c).

(b) |L1 ∪ L2 ∪ L3| = |L1| + |L2| + |L3| − |M| − |L1 ∩ L2 ∩ L3| by definition of M.

(c) |M| + |L1 ∩ L2 ∩ L3| ≤ 3 by the assumption|L1 ∪ L2 ∪ L3| ≥ 3k − 3.

(d) |L1 ∩ L2 ∩ L3| ≤ 1 by (c) andL1 ∩ L2 ∩ L3 ⊆ M.

(e) |Li ∪ L j | ≥ k + 2 for 1 ≤ i < j ≤ 3. 3.2.5(e) is proved as follows: By3.2.3and
3.2.5(d), we have

|Li ∪ L j | = |Li | + |L j | − |Li ∩ L j |
= 2k − (|Li ∩ L j ∩ Lh | + |(Li ∩ L j ) − Lh |)
≥ 2k − 2 = k + 2 + (k − 4) ≥ k + 2

where{i, j, h} = {1, 2, 3}. �
The following claim (f) follows from the assumption3.2.4(b).

(f) W ∪ X1 ∪ · · · ∪ Xn ⊇ L1 ∪ L2 ∪ L3, and |W | +∑n
i=1 |Xi | ≥ |L1 ∪ L2 ∪ L3|.

3.2.6.
By 3.2.5(c) and3.2.5(d), there are only nine cases (illustrated inFigs. 1–9).
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Fig. 1. (2, 0). Fig. 2. (1, 1). Fig. 3. (3, 0).

Fig. 4. (1, 0). Fig. 5. (2, 1). Fig. 6. (0, 0).

Fig. 7. (2, 0). Fig. 8. (3, 0). Fig. 9. (3, 0).

Legend for Figs. 1–9.(i, j) : i = |M|, j = |L1 ∩ L2 ∩ L3|.

Note thatFigs. 7–9 are impossible by3.2.3.

3.2.7.
We claim that n ≥ k −3,and if the equality holds then W = M and |L1 ∩ L2 ∩ L3|

= 1 and L1 ∪ L2 ∪ L3 = W ∪ X1 ∪ · · · ∪ Xn .
Since|L1 ∪ L2 ∪ L3| ≥ 3k − 3 and|W | ≤ k + 1 (by 3.2.4(a)), we haven ≥ 1. By

3.2.4(a),3.2.5(a), (b), (d) and (f), we have

2(k + 1) ≥ 2

(
|W | +

∑
1≤i≤n

�1
2|Xi |�

)
≥ 2|W | +

∑
1≤i≤n

|Xi | − n

≥ |W | + |L1 ∪ L2 ∪ L3| − n ≥ |M| + |L1 ∪ L2 ∪ L3| − n

= |L1| + |L2| + |L3| − |L1 ∩ L2 ∩ L3| − n ≥ 3k − 1 − n.

Thus,

n ≥ k − 3

and if the equality holds then

|W | = |M| and |L1 ∩ L2 ∩ L3| = 1
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and |W | +
∑

1≤i≤n

|Xi | = |L1 ∪ L2 ∪ L3|.

3.2.8.
We claim that Xi �= ∅ for all i .
Suppose thatXi = ∅ for somei . Then, sinceYi is not empty,W is a cutset and its

cardinality is at mostk+1 (by3.2.4(a) and (b)). This contradicts thatG is (k+2)-connected.

3.2.9.
We claim that |Xi | is odd for all i .
Suppose that|X1| is even, then by3.2.8, |X1| ≥ 2. Assumev ∈ X1, let W∗ =

W ∪ {v}, Y ∗
1 = Y1 − v, X∗

1 = X1 − v and X∗
i = Xi , Y ∗

i = Yi for 2 ≤ i ≤ n. Hence,
the partition{W∗, X∗

1, . . . , X∗
n , Y ∗

1 , . . . , Y ∗
n } of V (G) satisfies3.2.4(a)–(c), contradicting

the choice that|W | is as large as possible.�

3.2.10.
Definition of Ai (for i = 1, 2, 3).
Let G′′ be the subgraph obtained fromG − W by deleting all edges contained in anyY j .

Let Ai be the union of the vertex subsets of all components ofG′′ containing some vertex
of Li for eachi ∈ {1, 2, 3}.
3.2.11.

Properties of {A1, A2, A3}.
Properties of{A1, A2, A3} are to be studied in this subsection. The first property is

immediate by3.2.4and the definition ofAi .

(a) Li − W ⊆ Ai ⊆ V (G) − W for i = 1, 2, 3.
Note that eachY j − X j is an independent set ofG′′, andby 3.2.4(b), we have the

following properties.
(b) Ai ⊆ X1 ∪ · · · ∪ Xn for i = 1, 2, 3.
(c) A1, A2, A3 are disjoint by the definition ofAi and3.2.4(c).
(d) Every path of G − W from Ai to Ai∗ has at least two vertices in X j for some j

and for 1 ≤ i , i∗ ≤ 3 with i �= i∗.
Proof of (d). Suppose there exists a pathP from v ∈ A1 to u ∈ A2 in G − W . By

the definition ofA1, A2, wecan take two disjoint pathsQ andR suchthatQ is a path
from some vertexx ∈ L1 to v in G − W andR is a pathfrom some vertexy ∈ L2
to u in G − W . Both Q and R have no edges with both ends inY j for any j . Then
we have a pathS from x to y by usingP, Q, R. SinceS is a good path by3.2.4(c),
S has an edgee = x1y1 ∈ Y j for some j . Note thate /∈ E(Q) ande /∈ E(R). This
impliese ∈ E(P) andx1, y1 ∈ V (P). Note that, by3.2.11(b), bothv andu belong
to X1 ∪ · · · ∪ Xn. By 3.2.4(b), the part ofP from v to x1 must contain a vertex from
X j , andlikewise the part ofP from y1 to u. �

(e) |Ai | ≤ k + 1 − |W | for 1 ≤ i ≤ 3.
Proof of (e). Suppose|A1| ≥ k + 2 − |W |. It is obvious that|W | ≤ k + 1 (by

3.2.4(a)). Hence,A1 �= ∅. We also have thatL2∪L3−W �= ∅ since|L2∪L3| ≥ k+2
(by 3.2.5(e)) and|W | ≤ k + 1 (by3.2.4(a)).
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Since|L2 ∪ L3| ≥ k +2 (by3.2.5(e)), we have that|L2 ∪ L3 − W | ≥ k +2−|W |.
Note thatG−W is (k+2−|W |)-connected; there are(k+2−|W |) disjoint paths from
A1 to L2 ∪ L3 − W neither ofwhich is empty. By3.2.11(d), every pathPj contains
at least two vertices ofXi for somei . Hence,

∑
1≤i≤n�1

2|Xi |� ≥ k + 2 − |W |. This
is a contradiction to3.2.4(a). The other cases follow in a similar way.�

3.2.12.
We claim that |W | ≤ 3.
This claim is to be proved in two steps in this subsection. First we show that

(a)
∑3

i=1 |Li ∩ W | ≤ |W | + 3.
Note that

∑3
i=1 |Li ∩ W | ≤ |W |+|M|+|L1 ∩ L2 ∩ L3|. Hence,

∑3
i=1 |Li ∩ W | ≤

|W | + 3 since|M| + |L1 ∩ L2 ∩ L3| ≤ 3 by3.2.5(c). �
(b) By 3.2.11(a), (e) and3.2.12(a), we have the following inequality:

3k =
3∑

i=1

|Li | ≤
3∑

i=1

(|Ai | + |Li ∩ W |) ≤ 3(k + 1 − |W |) + |W | + 3

= 3k + 6 − 2|W |.
Hence,|W | ≤ 3. �

3.2.13.
We claim that, for 1 ≤ j ≤ n, if |W ∪ X j | < (k + 2) then X j = Y j .
Suppose thatX j �= Y j . Note thatG is (k + 2)-connected and by3.2.4(b), W ∪ X j is a

vertex-cut separatingY j − X j andV (G) − Y j − W neither of which is empty sincen ≥ 2
(by 3.2.7). It follows that|W ∪ X j | ≥ (k + 2), as required. �

3.2.14.
We claim that, for 1 ≤ j ≤ n, if |X j | ≤ 3 then X j = Y j .
By 3.2.13, it is obvious thatX j = Y j if |X j | ≤ 3 since|W | ≤ 3 (by3.2.12) andk ≥ 5.

3.2.15.
Let Z = (X1 ∪ · · · ∪ Xn) − (L1 ∪ L2 ∪ L3).

3.2.16.
Some vertex-cuts of G.
Suppose thatXi ∩ L j �= ∅ for somei ∈ {1, 2, . . . , n}, j ∈ {1, 2, 3}. By 3.2.4(c),

3.2.11(a) and (d), any path joiningXi ∩ L j andL1 ∪ L2 ∪ L3 − W − L j must use a vertex
of W or Z or Xi�L j . Therefore,(Xi�L j ) ∪ W ∪ Z is a cutset of G separating Xi ∩ L j

from L1 ∪ L2 ∪ L3 − W − L j .

3.2.17.
We claim that |Xi | ≥ 3 for 1 ≤ i ≤ n.
This claim is to be proved in several steps in this subsection.

(a) First weshow that,for 1 ≤ i ≤ 3, 1 ≤ j ≤ n, if |X j | = 1, then Ai ∩ X j = ∅.
SupposeA1 ∩ X j �= ∅. Let X j = {v} and N = NG (v). Since G is(k + 2)-

connected,|N | ≥ k +2. Hence|N −W | ≥ k +2−|W |. Note that|A1| ≤ k +1−|W |
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by 3.2.11(e); thisimplies N − A1 − W �= ∅. Take a vertexx ∈ N − A1 − W . Since
|X j | = 1, we haveX j = Y j = {v} by 3.2.14. Note that xv ∈ E(G), x is in A1 by
the definition ofA1, a contradiction. HenceA1 ∩ X j = ∅. �

(b) Second we show that,for 1 ≤ i ≤ 3, 1 ≤ j ≤ n, if |X j | = 1, then Ai ∩ NG (X j )

= ∅.
Suppose that|X1| = 1 andx ∈ A1 ∩ NG (X1). Hence, by3.2.11(b), x ∈ Xi for

somei �= 1. Since|X1| = 1, by the definition ofA1 (defined in3.2.10), X1 ⊆ A1.
This contradicts3.2.17(a) since|X1| = 1. �

(c) Since|Xi | is odd for eachi (by 3.2.9), let m be an integer such thatm ≤ n with
|Xi | = 1 for 1 ≤ i ≤ m ≤ n and|X j | ≥ 3 for m + 1 ≤ j ≤ n.

By the definition ofAi and3.2.5, we have

3∑
i=1

|Ai | ≥ |L1 ∪ L2 ∪ L3| − |W | = 3k − |M| − |L1 ∩ L2 ∩ L3| − |W |. (I)

Also, by3.2.4(a),∑
m+1≤ j≤n

|X j | ≤ 3
∑

m+1≤ j≤n

�1
2|X j |� ≤ 3

∑
1≤ j≤n

�1
2|X j |�

≤ 3(k + 1 − |W |). (II)

AssumeX = X1 ∪ X2 ∪ · · · ∪ Xm andN = NG (X). Then wecan get the following.

(i) N ⊆ W ∪ Xm+1 ∪ · · · ∪ Xn by 3.2.4(b) and3.2.14.
(ii) N ∩ A1 = N ∩ A2 = N ∩ A3 = ∅ by 3.2.17(b).
(iii) |N | ≥ k + 2 sinceN separatesX from A1 ∪ A2 ∪ A3 (by 3.2.17(a) and (b)) and

G is (k + 2)-connected.

Hence, we have

|N | + |A1| + |A2| + |A3| ≤ |W | +
n∑

i=m+1

|Xi |. (III)

By (iii), (I)–(III) we have

(k + 2) + (3k − |M| − |L1 ∩ L2 ∩ L3| − |W |) ≤ |W | + 3(k + 1 − |W |)
= 3k + 3 − 2|W |.

Hence,

|W | ≤ 1 + |M| + |L1 ∩ L2 ∩ L3| − k.

By 3.2.5(a),

|W | ≤ 1 + |W | + |L1 ∩ L2 ∩ L3| − k.

That is, by3.2.5(d),

k ≤ 1 + |L1 ∩ L2 ∩ L3| ≤ 2.

This contradictsk ≥ 5 and completes theproof of3.2.17. �
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3.2.18.
We prove some inequalities for |Z |.
(i)

|Z | ≤ 3k + 3 − 3|W | − |L1 ∪ L2 ∪ L3 − W |,
and the equality holds if and only if |X j | = 3 for every j ∈ {1, 2, . . . , n}.

(ii)

|Z | ≤ 3 + |M| + |L1 ∩ L2 ∩ L3| − 2|W |,
and the equality holds if and only if |X j | = 3 for every j ∈ {1, 2, . . . , n} and
W ⊆ L1 ∪ L2 ∪ L3.

Let s = |Z |. Then, by3.2.5(f),

|X1 ∪ · · · ∪ Xn | = s + |L1 ∪ L2 ∪ L3 − W |.
But, by3.2.17, |X j | ≤ 3�1

2|X j |� for 1 ≤ j ≤ n, and therefore

3
∑

1≤ j≤n

�1
2|X j |� ≥

∑
1≤ j≤n

|X j | ≥ s + |L1 ∪ L2 ∪ L3 − W |,

with equality if and only if|X j | = 3 for any j ∈ {1, 2, . . . , n}. By 3.2.4(a), we have

3(k + 1 − |W |) ≥ s + |L1 ∪ L2 ∪ L3 − W |.
That is,

s ≤ 3k + 3 − 3|W | − |L1 ∪ L2 ∪ L3 − W |,
and the equality holds if and only if|X j | = 3 for any j ∈ {1, 2, . . . , n}. This completes
the proof of 3.2.18(i).

Note that, by3.2.5(b), we have

|(L1 ∪ L2 ∪ L3 − W )| ≥ |L1 ∪ L2 ∪ L3| − |W | = 3k − |M|
− |L1 ∩ L2 ∩ L3| − |W |,

and the equality holds if and only ifW ⊆ L1 ∪ L2 ∪ L3. Hence, by3.2.18(i),

s ≤ 3k + 3 − 3|W | − |L1 ∪ L2 ∪ L3 − W | ≤ 3k + 3 − 3|W |
− (3k − |M| − |L1 ∩ L2 ∩ L3| − |W |)

= 3 + |M| + |L1 ∩ L2 ∩ L3| − 2|W |,
and the equality holds if and only ifW ⊆ L1 ∪ L2 ∪ L3 and |X j | = 3 for every
j ∈ {1, 2, . . . , n}. This completes the proof of3.2.18(ii). �

3.2.19.
(i) |Ai ∩ X j | < 1

2|X j | for 1 ≤ j ≤ n and 1 ≤ i ≤ 3.
Suppose that|A1 ∩ X1| ≥ 1

2|X1|. SinceX1 �= ∅ by 3.2.8, there exists a vertex
v ∈ A1 ∩ X1. Since|L2∪ L3−W | ≥ |L2∪ L3|−|W | ≥ k +2−|W | by 3.2.5(e), and
G − W is (k + 2−|W |)-connected, there are(k + 2−|W |) paths ofG − W between
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A1 andL2 ∪ L3 − W , disjoint exceptpossibly forv. Choose them with no internal
vertex inA1. By 3.2.11(d), each has at least two vertices inX j for somej �= 1, but at
most�1

2|X j |� of them have two vertices inX j for eachj �= 1. Notethat by3.2.4(a),
we have∑

2≤ j≤n

�1
2|X j |� ≤ k + 1 − |W | − �1

2|X1|�.

Thus, at least 1+ �1
2|X1|� of them have two vertices inX1. But each has only one

vertex inA1, and sohas a vertex inX1 whichdoes not belong toA1, and all these ver-
tices inX1− A1 are different. Hence|X1− A1| ≥ 1 + �1

2|X1|�, a contradiction. �
(ii) |Li ∩ X j | < 1

2|X j | for 1 ≤ j ≤ n and 1 ≤ i ≤ 3 by3.2.11(a) and3.2.19(i).

3.2.20.
(i) We claim that if v ∈ Ai ∩ X j for some i ∈ {1, 2, 3} and some j ∈ {1, 2, . . . , n},

then dY j −Ai (v) ≥ 2,and the equality holds if and only if dG(v) = k +2, W ∪ Ai ⊆
NG (v) ∪ {v} and |Ai | = k + 1 − |W |.

By the definition ofAi 3.2.10, we have

NG (v) − (Y j − Ai ) ⊆ Ai ∪ W − {v}.
SinceG is (k + 2)-connected and|Ai | ≤ k + 1 − |W | (by 3.2.11(e)), we have:

|NG (v) ∩ (Y j − Ai )| ≥ (k + 2) − |Ai ∪ W − {v}| ≥ (k + 2)

− (k + 1 − |W | + |W | − 1) = 2

and the equality holds if and only ifd(v) = k + 2, W ∪ Ai ⊆ NG (v) ∪ {v} and
|Ai | = k + 1 − |W |.

(ii) We claim thatif v ∈ Ai ∩ X j and |X j | = 3 for some i ∈ {1, 2, 3} and some
j ∈ {1, 2, . . . , n}, then dX j (v) = 2, W ∪ Ai ⊆ NG (v) ∪ {v} and Ai = k + 1− |W |.

Note that|X j | = 3. By 3.2.14, we haveY j = X j , and therefore,

dY j −Ai (v) = dX j −Ai (v) ≤ 2.

On the other hand, by3.2.20(i), we havedY j −Ai (v) ≥ 2. HencedY j−Ai (v) = 2. By
3.2.20(i) again, we are done.

3.2.21.
We claim that if |X j | = 3 for some j ∈ {1, 2, . . . , n} then Z ∩ X j = ∅.
For otherwise, we mayassumeZ ∩ Xi �= ∅, and letx ∈ Z ∩ Xi . First weclaim

x ∈ A j for some j ∈ {1, 2, 3}. For otherwise, supposex /∈ A1 ∪ A2 ∪ A3. Since
|Xi | = 3, we haveX j = Y j by 3.2.14, and by the definition of Ai 3.2.10, we have
NG (x) ⊆ W ∪ Z ∪ (X j − {x}). Note that, by3.2.18(ii), 3.2.12, we have

|W | + |Z | + |X j − {x}| ≤ |W | + (3 + |M| + |L1 ∩ L2 ∩ L3| − 2|W |) + 2

= 5 + |M| + |L1 ∩ L2 ∩ L3| − |W |.
Note that|M| ≤ |W | and|L1 ∩ L2 ∩ L3| ≤ 1 by 3.2.5(a) and3.2.5(d). Hence, we have
|NG (x)| ≤ 6. This contradicts thatG is (k + 2)-connected wherek ≥ 5.
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Hence, without loss of generality, we may assumex ∈ A1. By 3.2.20(ii), W ∪ A1 ⊆
NG (x)∪{x}. Note thatL1 ⊆ A1∪W by 3.2.11(a). Hence,L1 ⊆ NG (x)∪{x}, sincex ∈ Z ,
we havex /∈ L1. So{x} ∪ L1 induces aKk+1-clique. This contradicts3.2.1.

3.2.22.
We claim that if |X j | = 3 for some j then

(1) |X j ∩ Ai | = 1 for each i ∈ {1, 2, 3}.
(2) X j induces a clique of G.

By 3.2.21, X j ∩ Z = ∅, (1) follows by 3.2.19(i). (2) is an immediate corollary of
3.2.20(ii).

3.2.23.
We claim that there exists some j ∈ {1, 2, . . . , n} such that |X j | ≥ 5.
By 3.2.17, we mayassume|X j | = 3 for all j ∈ {1, 2, . . . , n}. Hence, we haveX j = Y j

by 3.2.14. There are two cases:|Z | �= 0 and|Z | = 0.

Case 1. |Z | �= 0. SinceZ ⊆ X1 ∪ X2 ∪ · · · ∪ Xn by the definition ofZ , thereexists X j

suchthat X j ∩ Z �= ∅. This contradicts3.2.21.

Case 2. |Z | = 0. By 3.2.22, we have|Ai ∩ X j | = |Li ∩ X j | = 1, andX j induces a clique
of G. Letvi j ∈ Li ∩ X j for i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , n}. Furthermore, by3.2.20(ii),
(W ∪ A1 ∪ {v2 j , v3 j }) ⊆ NG (v1 j ), hence, by contractingL2 − W, L3 − W to a new vertex
v, u respectively, thenL1 ∪ {v, u} induces aKk+2 minor. This is a contradiction.

3.2.24.
We claim that |X j | ≥ 5 for any j ∈ {1, 2, . . . , n}.
For otherwise, by3.2.17, we mayassume|X1| = 3. By 3.2.22(1), |Ai ∩ X1| = 1 for

eachi ∈ {1, 2, 3}. Hence, by3.2.20(ii), |Ai | = k + 1 − |W | for eachi ∈ {1, 2, 3}.
Furthermore, by3.2.11(b) and (c), we have

|Z | ≥ |A1| + |A2| + |A3| − |L1 ∪ L2 ∪ L3 − W | = (3k + 3 − 3|W |)
− |L1 ∪ L2 ∪ L3 − W |.

However, by3.2.18(i), we have

|Z | = 3k + 3 − 3|W | − |L1 ∪ L2 ∪ L3 − W |.
The equality of3.2.18(i) implies that|Xi | = 3 for all i ∈ {1, 2, . . . , n}. This contradicts

3.2.23. �

3.2.25.
We show some inequalities for n.
By 3.2.24and (3.2.4)(a),

5n ≤
∑

1≤ j≤n

|X j | ≤ 2 ∗ (k + 1 − |W |) + n = 2k + 2 + n − 2|W |. (IV)

The inequality (IV) can be simplified as

2n ≤ k + 1 − |W |. (V)
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Note that the equality of (IV) (and (V)), as well)implies that|Xi | = 5 for everyi .

3.2.26.
We claim that n = k − 3.
For otherwise, sincen ≥ k − 3 by 3.2.7, we mayassume thatn ≥ k − 2. By (V), we

have

2k − 4 ≤ 2n ≤ k + 1 − |W |. (VI)

That is,

k ≤ 5 − |W |.
Note thatk ≥ 5. Hence,|W | = 0 andk = 5, and all equalities of (VI) hold, that is
n = k − 2 = 3. By (IV), we have

15 ≤
∑

1≤ j≤n

|X j | ≤ 2k + 2 + n − 2|W | = 15.

Therefore, the only possibility is{5, 5, 5} = {|X1|, |X2|, |X3|}. Note that |X1| + |X2| +
|X3| = |L1| + |L2| + |L3| and|W | = 0 which implies |Li ∩ L j | = 0 for 1 ≤ i < j ≤ 3.
Hence,|Z | = 0. By 3.2.19, |Li ∩ X1| < 1

2|X1| for 1 ≤ i ≤ 3. Without loss of generality,
we assume|L1 ∩ X1| = 2. By 3.2.16, (X1�L1) ∪ W ∪ Z = (X1�L1) is a cutset ofG
separatingX1 ∩ L1 from L2 ∪ L3, and|X1�L1| = 3+ 3 = 6 = k + 1. It contradicts that
G is (k + 2)-connected.

3.2.27.
The final step of the proof.
By 3.2.26, n = k − 3. By 3.2.7, we have

W = M and |L1 ∩ L2 ∩ L3| = 1 and L1 ∪ L2 ∪ L3 = W ∪ X1 ∪ · · · ∪ Xn .

Hence,

|W | ≥ 1 and Z = ∅. (VII)

By (V) of 3.2.25, we have

2k − 6 = 2n ≤ k + 1 − |W |.
That is,

k ≤ 7 − |W |. (VIII)

Note that|W | ≥ 3 is impossible becausek ≥ 5. Therefore, there are only two cases:
|W | = 2 and|W | = 1 (by (VII ) and (VIII )).

Case 1. |W | = 2. In this case,|W | = |M| = 2, |L1 ∩ L2 ∩ L3| = 1 (illustrated inFig. 5),
k = 5 andn = k − 3 = 2. Furthermore, the equality of (V) of 3.2.25implies that

|X1| = |X2| = 5.
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Without loss of generality, we assumeW ⊆ L1 and|L1 ∩ X1| = 2. By3.2.16, (X1�L1)

is a vertex-cut of order at most 6 sinceZ = ∅ andW ⊆ L1. This contradicts thatG is
(k + 2)-connected wherek = 5.

Case 2. |W | = 1. In this case,|W | = |M| = |L1 ∩ L2 ∩ L3| = 1 (illustrated inFig. 2).
Since

Z = ∅ and |Li ∩ W | = |W | = 1

for eachi , we have
n∑

j=1

|X j ||L1 ∪ L2 ∪ L3 − W |
n∑

j=1

|L j − W |3k − 3. (IX)

There are two subcases:k = 6 andk = 5 by (VIII ).

Subcase 1. k = 6. In this subcase,n = 3 by3.2.26. Hence, by (IX), we have

3∑
j=1

|Xi | = 15.

Therefore, the only possibility in this subcase is|X1| = |X2| = |X3| = 5 (by 3.2.24).
Without loss of generality, we assume|L1 ∩ X1| = 2. By 3.2.16, (X1�L1) is a vertex-cut
of order at most 7 sinceZ = ∅ andW ⊆ L1. This contradicts thatG is 8-connected.

Subcase 2. k = 5. In this subcase,n = 2 (by3.2.26). By (IX),

2∑
i=1

|Xi | = |L1 ∪ L2 ∪ L3 − W | = 3k − 3 = 12.

Therefore, the only possibility in this subcase is that|X1| = 5 and|X2| = 7 (by3.2.9and
3.2.24).

Without loss of generality, we assume|L1 ∩ X1| = 2. By 3.2.16, (X1�L1) is a vertex-
cut of order at most 6 sinceZ = ∅ and W ⊆ L1. This contradicts thatG is (k + 2)-
connected wherek = 5.

This completes the proof of this theorem.
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