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a b s t r a c t

Let G be a non-trivial graph and k ∈ Z+. A vertex-coloring k-edge-weighting is an
assignment f : E(G) → {1, . . . , k} such that the induced labeling f : V (G) → Z+, where
f (v) =

∑
e∈E(v)f (e) is a proper vertex coloring of G. It is proved in this paper that

every 4-edge-connected graph with chromatic number at most 4 admits a vertex-coloring
3-edge-weighting.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For technical reasons, all graphs considered in this paper are connected multigraphs with parallel edges but no loop. A
graph with two vertices and m parallel edges is denoted by mK2.

Let G be a graph. A vertex-coloring k-edge-weighting of G is an assignment f : E(G) → {1, . . . , k} such that the induced
labeling f : V (G) → Z+, where f (v) =

∑
e∈E(v)f (e), is a proper vertex coloring of G (see [1,2,3,6,11], or a comprehensive

survey paper [9]).
In [6], Karoński, Luczak and Thomason conjectured (the 1-2-3-conjecture) that every graph other than mK2 admits a vertex

coloring 3-edge-weighting. It is proved in [5] that every graph other than mK2 admits a vertex-coloring 5-edge-weighting.
It also proved in [6] that every 3-colorable graph other than mK2 admits a vertex-coloring 3-edge-weighting; and in [7]
that every 4-colorable graph other than mK2 admits a vertex-coloring 4-edge-weighting. In this paper, we extend some of
these results by verifying the 1-2-3-conjecture for some graphs G with χ (G) ≤ 4.

Theorem 1.1. Every 4-edge-connected 4-colorable multigraph G admits a vertex-coloring 3-edge-weighting.

1.1. Notation and terminology

We follow [4] and [12] for terms and notation.
A circuit is a connected 2-regular graph.
Let H1 and H2 be two subgraphs of a graph G. The symmetric difference of H1 and H2, denoted by H1△H2, is the

subgraph of G induced by the set of edges [E(H1) ∪ E(H2)] \ [E(H1) ∩ E(H2)].
Let G be a graph. The set of odd vertices of G is denoted by O(G). Let U be a subset of V (G) with even order. A spanning

subgraph Q is called T -join of G (with respected to U) if O(Q ) = U .
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2. Proof of the main theorem

2.1. Sketch of an outline of the proof

Let β : V (G) → Z4 be a 4-coloring of G. We are to find a vertex-coloring 3-edge-weighting f such that f (v) ≡ β(v)
(mod 4) for every vertex v.

A necessary condition of β is
∑

v∈V (G)β(v) ≡ 0 (mod 2) since∑
v∈V (G)

f (v) ≡ 2
∑
e∈E(G)

f (e) ≡ 0 (mod 2).

Let

Wµ = {v ∈ V (G) : β(v) − dG(v) ≡ µ (mod 4)}.

The first step of the proof is to find a T -join Q with O(Q ) = W1 ∪ W3. Define g : E(Q ) → {2}, and β ′
: V (G) → Z4 such

that

β ′(x) ≡

{
β(x) − 2 if x ∈ W1 ∪ W3
β(x) otherwise

}
(mod 4).

It will be proved that, in the subgraph G − E(Q ), dG−E(Q )(v) ≡ β ′(v) or β ′(v) + 2 (mod 4) for every v ∈ V (G).
In the second step, Lemma 2.2 is applied to find another edge-weight f0 : E(G) − E(Q ) → {1, 3} such that, for every

v ∈ V (G),

β ′(v) ≡

∑
e∈E(v)−E(Q )

f0(e) (mod 4).

Thus, the combination of g and f0 yields a vertex-coloring 3-edge-weighting of G.
By Tutte and Nash-Williams Theorem [8,10], a 4-edge-connected graph contains a pair of edge-disjoint spanning

trees T1, T2. The subset Q is to be found in G − T2, and the weight f0 is assigned in E(G) − E(Q ). We notice that a
straightforward application of Tutte–Nash-Williams Theorem is not sufficient due to a parity requirement for |Q |. Thus,
Tutte–Nash-Williams Theorem is extended in Lemma 2.1 in order to meet the requirements of Lemma 2.2 in the second
step of the proof.

2.2. Lemmas

Lemma 2.1. If G is a 4-edge-connected non-bipartite graph, then E(G) has a partition {T1, T2, F} such that each Ti is a spanning
tree and T1 + F contains an odd-circuit.

Lemma 2.2. Let H be a graph and let βH : V (H) → Z4 be a mapping. Assume that
(i) H is connected;
(ii) βH (v) ≡ dH (v) (mod 2) for each vertex v ∈ V (H);
(iii)

∑
v∈V (H)βH (v) ≡ 2|E(H)| (mod 4).

Then there exists a mapping fH : E(H) → {1, 3} such that for each vertex x ∈ V (H),

fH (x) =

∑
e∈E(x)

fH (e) ≡ βH (x) (mod 4). (1)

See Section 3 for proofs of both lemmas.

2.3. Proof of Theorem 1.1

We pay only attention to graphs with chromatic number χ = 4 since it was proved in [6] that every multigraph G with
χ (G) ≤ 3 admits a vertex-coloring 3-edge-weighting.
I. Since χ (G) = 4, there exists a vertex partition {V0, V1, V2, V3} of V (G) such that each Vi is an independent set, i = 0, 1,
2 and 3. Renaming them if necessary, we can assume that |V1| + |V3| is even. Define β : V (G) → {0, 1, 2, 3} such that
β(v) = i if v ∈ Vi. Then∑

x∈V (G)

β(x) = |V1| + 2|V2| + 3|V3| ≡ |V1| + |V3| ≡ 0 (mod 2). (2)

Our goal is to find an edge-weighting f : E(G) → {1, 2, 3} such that∑
e∈E(x)

f (e) ≡ β(x) (mod 4) (3)

for every vertex x.
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II. By Lemma 2.1, E(G) has a partition {T1, T2, F} where each Ti is a spanning tree and F + T1 contains an odd circuit Ce.
III. Let

U = {x ∈ V (G)| dG(x) ≡ β(x) + 1 (mod 2)}.

We have that

|U| ≡ 0 (mod 2) (4)

since, by (2),

0 ≡ 2|E(G)| =

∑
x∈V (G)

dG(x) ≡ |U| +

∑
x∈V (G)

β(x) ≡ |U| (mod 2).

Let Q1 be a T -join with O(Q1) = U contained in the spanning tree T1, and let Q2 = Q1 △ Ce, which is also a T -join with
O(Q2) = U and is contained in T1 + F .
IV. For each i = 1, 2, define gi : E(G) → {0, 2} such that

gi(e) =

{
2 e ∈ E(Qi)
0 e ̸∈ E(Qi).

(5)

Let Gi = G \ E(Qi)
In the remaining part of the paper, we are to find a mapping fi : E(Gi) → {1, 3} for i ∈ {1, 2} such that either f1 + g1 or

f2 + g2 is a vertex coloring 3-edge-weighting of G. In order to apply Lemma 2.2 here, three conditions of the lemma will
be verified one-by-one in the next subsection.
V. Let β ′

: V (G) → Z4 such that

β ′(x) ≡

{
β(x) − 2 if x ∈ U
β(x) if x ∈ V (G) \ U

}
(mod 4). (6)

Since E(Qi) ⊆ E(T1 ∪ Ce), for each i = 1, 2, the subgraph Gi = G \ E(Qi) contains the spanning tree T2. So Gi is connected
and satisfies Condition (i) of Lemma 2.2.

Then

β ′(x) ≡

{
β(x) − 2 ≡ dG(x) − 1 ≡ dGi (x) if x ∈ U
β(x) ≡ dG(x) ≡ dGi (x) if x ∈ V (G) \ U

}
(mod 4).

It is easy to see that, for each i = 1, 2, Gi and β ′ satisfy Condition (ii) of Lemma 2.2.
V (G1) = V (G2) = V (G). By (6) and (2) we have that, for each i = 1, 2,∑

x∈V (Gi)=V (G)

β ′(x) ≡

∑
x∈V (G)=V (G)

β(x) ≡ 0 (mod 2). (7)

Furthermore, |E(Q1)| + |E(Q2)| is odd since Ce is a circuit of odd length and

|E(Q1)| + |E(Q2)| ≡ |E(Q1 △ Q2)| = |E(Ce)| ≡ 1 (mod 2).

Hence,

|E(G1)| + |E(G2)| = (|E(G)| − |E(Q1)|) + (|E(G)| − |E(Q2)|)
= 2|E(G)| − (|E(Q1)| + |E(Q2)|)

and is also odd.
By (7), we must have either

∑
x∈V (G1)

β ′(x) ≡ 2|E(G1)| (mod 4) or
∑

x∈V (G2)
β ′(x) ≡ 2|E(G2)| (mod 4).

Without loss of generality, suppose∑
x∈V (G1)

β ′(x) ≡ 2|E(G1)| (mod 4),

which satisfies Condition (iii) of Lemma 2.2, and, therefore, by Lemma 2.2, there is a mapping f1 : E(G1) → {1, 3} such
that

f1(x) =

∑
e∈E(x)∩E(G1)

f1(e) ≡ β ′(x) (mod 4) (8)

for each vertex x ∈ V (G1) = V (G).
VI. Let f : E(G) → {1, 2, 3} such that

f (e) =

{
g1(e) if e ∈ E(Q1)
f1(e) if e ∈ E(G) \ E(Q1) = E(G1).
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By Eqs. (8), (5) and (6), it is not difficult to verify that

f (x) =

∑
e∈E(x)

f (e) ≡ f1(x) + g1(x) ≡

{
β ′(x) if x ̸∈ U
β ′(x) + 2 if x ∈ U

}
≡ β(x) (mod 4).

Therefore, f is a vertex-coloring 3-edge-weighting of G (satisfying Eq. (3)). □

3. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.2. Let f : E(G) → {1, 3} be an arbitrary mapping such that, for each vertex x ∈ V (G), f (x) =∑
e∈E(x)f (e) ≡ d(x) ≡ β(x) (mod 2) since f (e) ≡ 1 (mod 2). So if a vertex x does not satisfy Eq. (1), then f (x) ≡ β(x) + 2

(mod 4) and we call it a bad vertex.
Let U be the set of all bad vertices. And let Ei = {e ∈ E(G) | f (e) = i}, i = 1, 3.
On one hand∑

x∈V (G)

f (x) = 2|E1| + 6|E3| ≡ 2|E1| + 2|E3| = 2|E(G)| (mod 4). (9)

On the other hand∑
x∈V (G)

f (x) ≡

∑
x∈U

(β(x) + 2) +

∑
x∈V (G)\U

β(x)

= 2|U| +

∑
x∈V (G)

β(x) ≡ 2|U| + 2|E(G)| (mod 4). (10)

By combining Eqs. (9) and (10),

2|E(G)| ≡

∑
x∈V (G)

f (x) ≡ 2|U| + 2|E(G)| (mod 4).

Hence,

|U| ≡ 0 (mod 2).

Let u and v be two vertices of U . Since G is connected, there is a path joining u and v. For each edge e in the path
we change f (e) by swapping 1 and 3. It is easy to verify that the number of bad vertices decreases by 2. We repeat the
operation until there are no bad vertices. □

Lemma 2.1 is proved as a corollary of Lemma 3.2.

Definition 3.1. The dynamic density of a graph H is the greatest integer k such that

min
P

{
|E(H/P)|

|V (H/P)| − 1

}
> k (11)

where the minimum is taken over all possible partitions P of the vertex set of H , and H/P is the graph obtained from H
by shrinking each part of P into a single vertex.

Lemma 3.2. Let G be a non-bipartite subgraph. If the dynamic density of G is at least k, then E(G) has a partition {T1, . . . , Tk, F}

such that
(1) for each i = 1, . . . , k, the subgraph Ti is a spanning tree, while F ̸= ∅,
(2) there is a Ti such that Ti ∪ F contains an odd-circuit.

Lemma 3.2 is a refinement of the following fundamental theorem in graph theory when a graph has some extra edges
beyond several spanning trees.

Lemma 3.3 (Tutte [10] and Nash-Williams [8]). A graph H contains k edge-disjoint spanning trees if and only if

min
P

{
|E(H/P)|

|V (H/P)| − 1

}
≥ k (12)

where the minimum is taken over all possible partitions P of the vertex set of H, and H/P is the graph obtained from H by
shrinking each part of P as a single vertex.

Notice the difference between (11) and (12): the inequality of (11) is strict.



158 Y. Wu et al. / Discrete Mathematics 340 (2017) 154–159

By the definition of dynamic density (Inequality (11)), we have the following observation.

Observations. If G is of dynamic density at least k, then for any proper subgraph H of G, the contracted graph G/H remains
of dynamic density at least k.

Proof of Lemma 3.2. Let G be a counterexample to the lemma. By Lemma 3.3, let T1, . . . , Tk be edge-disjoint spanning
trees of G.

Recursively label E(G) as follows.
Rule (1). Starting from all edges e ∈ E(G) − (

⋃k
i=1E(Ti)),

φ(e) = 0;

Rule (2). For each e′
∈ E(G), if φ(e′) = h and Ti + e′ contains a circuit Ce′ , then every unlabeled edge e′′ of Ce′ is labeled

with φ(e′′) = h + 1.
Let H be the maximum subgraph of G consisting of all labeled edges.

Claim 1. In the contracted graph G/H, each Ti/H is a spanning tree.

Proof. By the maximality of H and by Rule (2) of the labeling, each Ti/H remains acyclic in G/H .

Claim 2.
k⋃

i=1

E(Ti/H) = E(G/H).

Proof. The claim follows by Rule (1) of the labeling.

Claim 3.
H = G

(that is, all edges of G are labeled).

Proof. Assume that H is a proper subgraph of G. Claims 1 and 2 imply that
|E(G/H)|

|V (G/H)| − 1
= k.

This contradicts the observation (that G/H is of dynamic density at least k).
Final step. Let e∗ be the edge of Gwith the smallest label φ such that e∗

+Ti contains an odd circuit, for some i ∈ {1, . . . , k}.
Such edge e∗ exists since G is not bipartite. Let φ(e∗) = q.

Note that the integer q is an index for a given partition X = {T1, . . . , Tk, F} of G. Denote it by ωX . Among all such
partitions of G, choose the one X with the smallest ωX .

If ωX = 0, then G is not a counterexample. Hence, assume ωX = q ≥ 1.
Let {e0, . . . , eq} be the sequence of edges such that

e∗
= eq

and, for each λ = q − 1, q − 2, . . . , 1, 0,

φ(eλ) = λ,

and eλ+1 is an edge contained in the circuit of Tiλ + eλ, for some iλ ∈ {1, . . . , k}.
Let

T ′

i0 = Ti0 + e0 − e1, T ′

j = Tj if j ∈ {1, . . . , k} − {i0} and F ′
= F − e0 + e1.

In the new partition X ′
= {T ′

1, . . . , T
′

k, F
′
}, it is easy to see, by Rule (2) of labeling, that the index ωX ′ is reduced since

each φ(ei) is now reduced by 1 if i = 2, . . . , q. Furthermore, the circuit contained in eq + T ′

iq−1
remains of odd length. This

contradicts the choice of X that ωX is smallest, and therefore, completes the proof of the lemma.
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