Vertex-coloring 3-edge-weighting of some graphs

Yezhou Wu ${ }^{\text {a }}$, Cun-Quan Zhang ${ }^{\text {b }}$, Bao-Xuan Zhu ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Ocean College, Zhejiang University, Hangzhou, 310027, Zhejiang, China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States
${ }^{\text {c }}$ School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

ARTICLE INFO

Article history:

Received 19 April 2016
Received in revised form 3 August 2016
Accepted 5 August 2016

Keywords:

1-2-3-conjecture
Vertex-coloring 3-edge-weighting
Spanning trees

Abstract

Let G be a non-trivial graph and $k \in \mathbb{Z}^{+}$. A vertex-coloring k-edge-weighting is an assignment $f: E(G) \rightarrow\{1, \ldots, k\}$ such that the induced labeling $f: V(G) \rightarrow \mathbb{Z}^{+}$, where $f(v)=\sum_{e \in E(v)} f(e)$ is a proper vertex coloring of G. It is proved in this paper that every 4-edge-connected graph with chromatic number at most 4 admits a vertex-coloring 3-edge-weighting.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For technical reasons, all graphs considered in this paper are connected multigraphs with parallel edges but no loop. A graph with two vertices and m parallel edges is denoted by $m K_{2}$.

Let G be a graph. A vertex-coloring k-edge-weighting of G is an assignment $f: E(G) \rightarrow\{1, \ldots, k\}$ such that the induced labeling $f: V(G) \rightarrow \mathbb{Z}^{+}$, where $f(v)=\sum_{e \in E(v)} f(e)$, is a proper vertex coloring of G (see $[1,2,3,6,11]$, or a comprehensive survey paper [9]).

In [6], Karoński, Luczak and Thomason conjectured (the 1-2-3-conjecture) that every graph other than $m K_{2}$ admits a vertex coloring 3-edge-weighting. It is proved in [5] that every graph other than $m K_{2}$ admits a vertex-coloring 5-edge-weighting. It also proved in [6] that every 3-colorable graph other than $m K_{2}$ admits a vertex-coloring 3-edge-weighting; and in [7] that every 4-colorable graph other than $m K_{2}$ admits a vertex-coloring 4-edge-weighting. In this paper, we extend some of these results by verifying the 1-2-3-conjecture for some graphs G with $\chi(G) \leq 4$.

Theorem 1.1. Every 4-edge-connected 4-colorable multigraph G admits a vertex-coloring 3-edge-weighting.

1.1. Notation and terminology

We follow [4] and [12] for terms and notation.
A circuit is a connected 2 -regular graph.
Let H_{1} and H_{2} be two subgraphs of a graph G. The symmetric difference of H_{1} and H_{2}, denoted by $H_{1} \Delta H_{2}$, is the subgraph of G induced by the set of edges $\left[E\left(H_{1}\right) \cup E\left(H_{2}\right)\right] \backslash\left[E\left(H_{1}\right) \cap E\left(H_{2}\right)\right]$.

Let G be a graph. The set of odd vertices of G is denoted by $O(G)$. Let U be a subset of $V(G)$ with even order. A spanning subgraph Q is called T-join of G (with respected to U) if $O(Q)=U$.

[^0]
2. Proof of the main theorem

2.1. Sketch of an outline of the proof

Let $\beta: V(G) \rightarrow Z_{4}$ be a 4-coloring of G. We are to find a vertex-coloring 3-edge-weighting f such that $f(v) \equiv \beta(v)$ $(\bmod 4)$ for every vertex v.

A necessary condition of β is $\sum_{v \in V(G)} \beta(v) \equiv 0(\bmod 2)$ since

$$
\sum_{v \in V(G)} f(v) \equiv 2 \sum_{e \in E(G)} f(e) \equiv 0 \quad(\bmod 2)
$$

Let

$$
W_{\mu}=\left\{v \in V(G): \beta(v)-d_{G}(v) \equiv \mu \quad(\bmod 4)\right\}
$$

The first step of the proof is to find a T-join Q with $O(Q)=W_{1} \cup W_{3}$. Define $g: E(Q) \rightarrow\{2\}$, and $\beta^{\prime}: V(G) \rightarrow Z_{4}$ such that

$$
\beta^{\prime}(x) \equiv\left\{\begin{array}{ll}
\beta(x)-2 & \text { if } x \in W_{1} \cup W_{3} \\
\beta(x) & \text { otherwise }
\end{array}\right\} \quad(\bmod 4)
$$

It will be proved that, in the subgraph $G-E(Q), d_{G-E(Q)}(v) \equiv \beta^{\prime}(v)$ or $\beta^{\prime}(v)+2(\bmod 4)$ for every $v \in V(G)$.
In the second step, Lemma 2.2 is applied to find another edge-weight $f_{0}: E(G)-E(Q) \rightarrow\{1,3\}$ such that, for every $v \in V(G)$,

$$
\beta^{\prime}(v) \equiv \sum_{e \in E(v)-E(Q)} f_{0}(e) \quad(\bmod 4)
$$

Thus, the combination of g and f_{0} yields a vertex-coloring 3-edge-weighting of G.
By Tutte and Nash-Williams Theorem $[8,10]$, a 4-edge-connected graph contains a pair of edge-disjoint spanning trees T_{1}, T_{2}. The subset Q is to be found in $G-T_{2}$, and the weight f_{0} is assigned in $E(G)-E(Q)$. We notice that a straightforward application of Tutte-Nash-Williams Theorem is not sufficient due to a parity requirement for $|Q|$. Thus, Tutte-Nash-Williams Theorem is extended in Lemma 2.1 in order to meet the requirements of Lemma 2.2 in the second step of the proof.

2.2. Lemmas

Lemma 2.1. If G is a 4-edge-connected non-bipartite graph, then $E(G)$ has a partition $\left\{T_{1}, T_{2}, F\right\}$ such that each T_{i} is a spanning tree and $T_{1}+F$ contains an odd-circuit.

Lemma 2.2. Let H be a graph and let $\beta_{H}: V(H) \rightarrow Z_{4}$ be a mapping. Assume that
(i) H is connected;
(ii) $\beta_{H}(v) \equiv d_{H}(v)(\bmod 2)$ for each vertex $v \in V(H)$;
(iii) $\sum_{v \in V(H)} \beta_{H}(v) \equiv 2|E(H)|(\bmod 4)$.

Then there exists a mapping $f_{H}: E(H) \rightarrow\{1,3\}$ such that for each vertex $x \in V(H)$,

$$
\begin{equation*}
f_{H}(x)=\sum_{e \in E(x)} f_{H}(e) \equiv \beta_{H}(x) \quad(\bmod 4) \tag{1}
\end{equation*}
$$

See Section 3 for proofs of both lemmas.

2.3. Proof of Theorem 1.1

We pay only attention to graphs with chromatic number $\chi=4$ since it was proved in [6] that every multigraph G with $\chi(G) \leq 3$ admits a vertex-coloring 3-edge-weighting.
I. Since $\chi(G)=4$, there exists a vertex partition $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ of $V(G)$ such that each V_{i} is an independent set, $i=0,1$, 2 and 3. Renaming them if necessary, we can assume that $\left|V_{1}\right|+\left|V_{3}\right|$ is even. Define $\beta: V(G) \rightarrow\{0,1,2,3\}$ such that $\beta(v)=i$ if $v \in V_{i}$. Then

$$
\begin{equation*}
\sum_{x \in V(G)} \beta(x)=\left|V_{1}\right|+2\left|V_{2}\right|+3\left|V_{3}\right| \equiv\left|V_{1}\right|+\left|V_{3}\right| \equiv 0 \quad(\bmod 2) \tag{2}
\end{equation*}
$$

Our goal is to find an edge-weighting $f: E(G) \rightarrow\{1,2,3\}$ such that

$$
\begin{equation*}
\sum_{e \in E(x)} f(e) \equiv \beta(x) \quad(\bmod 4) \tag{3}
\end{equation*}
$$

for every vertex x.
II. By Lemma 2.1, $E(G)$ has a partition $\left\{T_{1}, T_{2}, F\right\}$ where each T_{i} is a spanning tree and $F+T_{1}$ contains an odd circuit C_{e}.
III. Let

$$
U=\left\{x \in V(G) \mid d_{G}(x) \equiv \beta(x)+1 \quad(\bmod 2)\right\}
$$

We have that

$$
\begin{equation*}
|U| \equiv 0 \quad(\bmod 2) \tag{4}
\end{equation*}
$$

since, by (2),

$$
0 \equiv 2|E(G)|=\sum_{x \in V(G)} d_{G}(x) \equiv|U|+\sum_{x \in V(G)} \beta(x) \equiv|U| \quad(\bmod 2)
$$

Let Q_{1} be a T-join with $O\left(Q_{1}\right)=U$ contained in the spanning tree T_{1}, and let $Q_{2}=Q_{1} \triangle C_{e}$, which is also a T-join with $O\left(Q_{2}\right)=U$ and is contained in $T_{1}+F$.
IV. For each $i=1,2$, define $g_{i}: E(G) \rightarrow\{0,2\}$ such that

$$
g_{i}(e)= \begin{cases}2 & e \in E\left(Q_{i}\right) \tag{5}\\ 0 & e \notin E\left(Q_{i}\right)\end{cases}
$$

Let $G_{i}=G \backslash E\left(Q_{i}\right)$
In the remaining part of the paper, we are to find a mapping $f_{i}: E\left(G_{i}\right) \rightarrow\{1,3\}$ for $i \in\{1,2\}$ such that either $f_{1}+g_{1}$ or $f_{2}+g_{2}$ is a vertex coloring 3-edge-weighting of G. In order to apply Lemma 2.2 here, three conditions of the lemma will be verified one-by-one in the next subsection.
V. Let $\beta^{\prime}: V(G) \rightarrow Z_{4}$ such that

$$
\beta^{\prime}(x) \equiv\left\{\begin{array}{lr}
\beta(x)-2 & \text { if } x \in U \tag{6}\\
\beta(x) & \text { if } x \in V(G) \backslash U
\end{array}\right\} \quad(\bmod 4)
$$

Since $E\left(Q_{i}\right) \subseteq E\left(T_{1} \cup C_{e}\right)$, for each $i=1,2$, the subgraph $G_{i}=G \backslash E\left(Q_{i}\right)$ contains the spanning tree T_{2}. So G_{i} is connected and satisfies Condition (i) of Lemma 2.2.

Then

$$
\beta^{\prime}(x) \equiv\left\{\begin{array}{rlr}
\beta(x)-2 & \equiv d_{G}(x)-1 & \equiv d_{G_{G}}(x) \\
\beta(x) & \equiv d_{G}(x) & \equiv d_{G_{i}}(x)
\end{array} \quad \text { if } x \in V(G) \backslash U\right\}, ~(\bmod 4)
$$

It is easy to see that, for each $i=1,2, G_{i}$ and β^{\prime} satisfy Condition (ii) of Lemma 2.2.
$V\left(G_{1}\right)=V\left(G_{2}\right)=V(G)$. By (6) and (2) we have that, for each $i=1,2$,

$$
\begin{equation*}
\sum_{x \in V\left(G_{i}\right)=V(G)} \beta^{\prime}(x) \equiv \sum_{x \in V(G)=V(G)} \beta(x) \equiv 0 \quad(\bmod 2) \tag{7}
\end{equation*}
$$

Furthermore, $\left|E\left(Q_{1}\right)\right|+\left|E\left(Q_{2}\right)\right|$ is odd since C_{e} is a circuit of odd length and

$$
\left|E\left(Q_{1}\right)\right|+\left|E\left(Q_{2}\right)\right| \equiv\left|E\left(Q_{1} \triangle Q_{2}\right)\right|=\left|E\left(C_{e}\right)\right| \equiv 1 \quad(\bmod 2)
$$

Hence,

$$
\begin{aligned}
\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| & =\left(|E(G)|-\left|E\left(Q_{1}\right)\right|\right)+\left(|E(G)|-\left|E\left(Q_{2}\right)\right|\right) \\
& =2|E(G)|-\left(\left|E\left(Q_{1}\right)\right|+\left|E\left(Q_{2}\right)\right|\right)
\end{aligned}
$$

and is also odd.
By (7), we must have either $\sum_{x \in V\left(G_{1}\right)} \beta^{\prime}(x) \equiv 2\left|E\left(G_{1}\right)\right|(\bmod 4)$ or $\sum_{x \in V\left(G_{2}\right)} \beta^{\prime}(x) \equiv 2\left|E\left(G_{2}\right)\right|(\bmod 4)$.
Without loss of generality, suppose

$$
\sum_{x \in V\left(G_{1}\right)} \beta^{\prime}(x) \equiv 2\left|E\left(G_{1}\right)\right| \quad(\bmod 4)
$$

which satisfies Condition (iii) of Lemma 2.2, and, therefore, by Lemma 2.2, there is a mapping $f_{1}: E\left(G_{1}\right) \rightarrow\{1,3\}$ such that

$$
\begin{equation*}
f_{1}(x)=\sum_{e \in E(x) \cap E\left(G_{1}\right)} f_{1}(e) \equiv \beta^{\prime}(x) \quad(\bmod 4) \tag{8}
\end{equation*}
$$

for each vertex $x \in V\left(G_{1}\right)=V(G)$.
VI. Let $f: E(G) \rightarrow\{1,2,3\}$ such that

$$
f(e)=\left\{\begin{array}{lr}
g_{1}(e) & \text { if } e \in E\left(Q_{1}\right) \\
f_{1}(e) & \text { if } e \in E(G) \backslash E\left(Q_{1}\right)=E\left(G_{1}\right)
\end{array}\right.
$$

By Eqs. (8), (5) and (6), it is not difficult to verify that

$$
f(x)=\sum_{e \in E(x)} f(e) \equiv f_{1}(x)+g_{1}(x) \equiv\left\{\begin{array}{ll}
\beta^{\prime}(x) & \text { if } x \notin U \\
\beta^{\prime}(x)+2 & \text { if } x \in U
\end{array}\right\} \equiv \beta(x) \quad(\bmod 4)
$$

Therefore, f is a vertex-coloring 3-edge-weighting of G (satisfying Eq. (3)).

3. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.2. Let $f: E(G) \rightarrow\{1,3\}$ be an arbitrary mapping such that, for each vertex $x \in V(G), f(x)=$ $\sum_{e \in E(x)} f(e) \equiv d(x) \equiv \beta(x)(\bmod 2)$ since $f(e) \equiv 1(\bmod 2)$. So if a vertex x does not satisfy Eq. (1), then $f(x) \equiv \beta(x)+2$ $(\bmod 4)$ and we call it a bad vertex.

Let U be the set of all bad vertices. And let $E_{i}=\{e \in E(G) \mid f(e)=i\}, i=1,3$.
On one hand

$$
\begin{equation*}
\sum_{x \in V(G)} f(x)=2\left|E_{1}\right|+6\left|E_{3}\right| \equiv 2\left|E_{1}\right|+2\left|E_{3}\right|=2|E(G)| \quad(\bmod 4) \tag{9}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\sum_{x \in V(G)} f(x) & \equiv \sum_{x \in U}(\beta(x)+2)+\sum_{x \in V(G) \backslash U} \beta(x) \\
& =2|U|+\sum_{x \in V(G)} \beta(x) \equiv 2|U|+2|E(G)| \quad(\bmod 4) \tag{10}
\end{align*}
$$

By combining Eqs. (9) and (10),

$$
2|E(G)| \equiv \sum_{x \in V(G)} f(x) \equiv 2|U|+2|E(G)| \quad(\bmod 4)
$$

Hence,

$$
|U| \equiv 0 \quad(\bmod 2)
$$

Let u and v be two vertices of U. Since G is connected, there is a path joining u and v. For each edge e in the path we change $f(e)$ by swapping 1 and 3 . It is easy to verify that the number of bad vertices decreases by 2 . We repeat the operation until there are no bad vertices.

Lemma 2.1 is proved as a corollary of Lemma 3.2.
Definition 3.1. The dynamic density of a graph H is the greatest integer k such that

$$
\begin{equation*}
\min _{\mathcal{P}}\left\{\frac{|E(H / \mathcal{P})|}{|V(H / \mathcal{P})|-1}\right\}>k \tag{11}
\end{equation*}
$$

where the minimum is taken over all possible partitions \mathcal{P} of the vertex set of H, and H / \mathcal{P} is the graph obtained from H by shrinking each part of \mathcal{P} into a single vertex.

Lemma 3.2. Let G be a non-bipartite subgraph. If the dynamic density of G is at least k, then $E(G)$ has a partition $\left\{T_{1}, \ldots, T_{k}, F\right\}$ such that
(1) for each $i=1, \ldots, k$, the subgraph T_{i} is a spanning tree, while $F \neq \emptyset$,
(2) there is a T_{i} such that $T_{i} \cup F$ contains an odd-circuit.

Lemma 3.2 is a refinement of the following fundamental theorem in graph theory when a graph has some extra edges beyond several spanning trees.

Lemma 3.3 (Tutte [10] and Nash-Williams [8]). A graph H contains k edge-disjoint spanning trees if and only if

$$
\begin{equation*}
\min _{\mathcal{P}}\left\{\frac{|E(H / \mathcal{P})|}{|V(H / \mathcal{P})|-1}\right\} \geq k \tag{12}
\end{equation*}
$$

where the minimum is taken over all possible partitions \mathcal{P} of the vertex set of H, and H / \mathcal{P} is the graph obtained from H by shrinking each part of \mathcal{P} as a single vertex.

Notice the difference between (11) and (12): the inequality of (11) is strict.

By the definition of dynamic density (Inequality (11)), we have the following observation.
Observations. If G is of dynamic density at least k, then for any proper subgraph H of G, the contracted graph G / H remains of dynamic density at least k.

Proof of Lemma 3.2. Let G be a counterexample to the lemma. By Lemma 3.3, let T_{1}, \ldots, T_{k} be edge-disjoint spanning trees of G.

Recursively label $E(G)$ as follows.
Rule (1). Starting from all edges $e \in E(G)-\left(\bigcup_{i=1}^{k} E\left(T_{i}\right)\right)$,

$$
\phi(e)=0
$$

Rule (2). For each $e^{\prime} \in E(G)$, if $\phi\left(e^{\prime}\right)=h$ and $T_{i}+e^{\prime}$ contains a circuit $C_{e^{\prime}}$, then every unlabeled edge $e^{\prime \prime}$ of $C_{e^{\prime}}$ is labeled with $\phi\left(e^{\prime \prime}\right)=h+1$.

Let H be the maximum subgraph of G consisting of all labeled edges.
Claim 1. In the contracted graph G / H, each T_{i} / H is a spanning tree.
Proof. By the maximality of H and by Rule (2) of the labeling, each T_{i} / H remains acyclic in G / H.
Claim 2.

$$
\bigcup_{i=1}^{k} E\left(T_{i} / H\right)=E(G / H)
$$

Proof. The claim follows by Rule (1) of the labeling.

Claim 3.

$$
H=G
$$

(that is, all edges of G are labeled).
Proof. Assume that H is a proper subgraph of G. Claims 1 and 2 imply that

$$
\frac{|E(G / H)|}{|V(G / H)|-1}=k
$$

This contradicts the observation (that G / H is of dynamic density at least k).
Final step. Let e^{*} be the edge of G with the smallest label ϕ such that $e^{*}+T_{i}$ contains an odd circuit, for some $i \in\{1, \ldots, k\}$. Such edge e^{*} exists since G is not bipartite. Let $\phi\left(e^{*}\right)=q$.

Note that the integer q is an index for a given partition $\mathcal{X}=\left\{T_{1}, \ldots, T_{k}, F\right\}$ of G. Denote it by $\omega_{\mathcal{X}}$. Among all such partitions of G, choose the one \mathcal{X} with the smallest $\omega_{\mathcal{X}}$.

If $\omega_{\mathcal{X}}=0$, then G is not a counterexample. Hence, assume $\omega_{\mathcal{X}}=q \geq 1$.
Let $\left\{e_{0}, \ldots, e_{q}\right\}$ be the sequence of edges such that

$$
e^{*}=e_{q}
$$

and, for each $\lambda=q-1, q-2, \ldots, 1,0$,

$$
\phi\left(e_{\lambda}\right)=\lambda,
$$

and $e_{\lambda+1}$ is an edge contained in the circuit of $T_{i_{\lambda}}+e_{\lambda}$, for some $i_{\lambda} \in\{1, \ldots, k\}$.
Let

$$
T_{i_{0}}^{\prime}=T_{i_{0}}+e_{0}-e_{1}, T_{j}^{\prime}=T_{j} \text { if } j \in\{1, \ldots, k\}-\left\{i_{0}\right\} \text { and } F^{\prime}=F-e_{0}+e_{1}
$$

In the new partition $\mathcal{X}^{\prime}=\left\{T_{1}^{\prime}, \ldots, T_{k}^{\prime}, F^{\prime}\right\}$, it is easy to see, by Rule (2) of labeling, that the index $\omega_{\mathcal{X}^{\prime}}$ is reduced since each $\phi\left(e_{i}\right)$ is now reduced by 1 if $i=2, \ldots, q$. Furthermore, the circuit contained in $e_{q}+T_{i_{q-1}}^{\prime}$ remains of odd length. This contradicts the choice of \mathcal{X} that $\omega_{\mathcal{X}}$ is smallest, and therefore, completes the proof of the lemma.

Acknowledgments

The first author was partially supported by a grant of National Natural Science Foundation of China (No. 11501504) and a grant of Natural Science Foundation of Zhejiang Province (No. Y16A010005). The second author was partially supported by a National Science Foundation grant (DMS-1264800) and National Security Agency grants (H98230-14-10154, H98230-16-1-0004). The third author was partially supported by a National Natural Science Foundation of China grant (No. 11571150).

References

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed, Vertex coloring edge partitions, J. Combin. Theory Ser. B 94 (2005) $237-244$.
[2] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, A. Thomason, Vertex-coloring edge-weightings, Combinatorica 27 (2007) 1-12.
[3] L. Addario-Berry, K. Dalal, B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168-1174.
[4] J.A. Bondy, U.S.R. Mutry, Graph Theory, Spring, New York, 2008.
[5] M. Kalkowski, M. Karoński, F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) 347-349.
[6] M. Karoński, T. Luczak, A. Thomason, Edge weights and vertex colors, J. Combin. Theory Ser. B 91 (2004) 151-157.
[7] H. Lu, Q. Yu, C.-Q. Zhang, A note on vertex-coloring 2-edge-weighting, European J. Combin. 32 (1) (2011) 21-27.
[8] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961) 445-450.
[9] B. Seamone, The 1-2-3 Conjecture and related problems: a Survey, arXiv:1211.5122v1. [math.CO] 21 Nov 2012.
[10] W.T. Tutte, On the problem of decompositing a graph into n connected factors, J. Lond. Math. Soc. 36 (1961) 221-230.
[11] T. Wang, Q.-L. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 581-587.
[12] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.

[^0]: * Corresponding author.

 E-mail addresses: yezhouwu@zju.edu.cn (Y. Wu), cqzhang@mail.wvu.edu (C.-Q. Zhang), bxzhu@jsnu.edu.cn (B.-X. Zhu).

