Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Vertex-coloring 3-edge-weighting of some graphs

Yezhou Wu^a, Cun-Quan Zhang^b, Bao-Xuan Zhu^{c,*}

^a Ocean College, Zhejiang University, Hangzhou, 310027, Zhejiang, China

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States

^c School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

ARTICLE INFO

Article history: Received 19 April 2016 Received in revised form 3 August 2016 Accepted 5 August 2016

Keywords: 1-2-3-conjecture Vertex-coloring 3-edge-weighting Spanning trees

ABSTRACT

Let *G* be a non-trivial graph and $k \in \mathbb{Z}^+$. A vertex-coloring *k*-edge-weighting is an assignment $f : E(G) \to \{1, \ldots, k\}$ such that the induced labeling $f : V(G) \to \mathbb{Z}^+$, where $f(v) = \sum_{e \in E(v)} f(e)$ is a proper vertex coloring of *G*. It is proved in this paper that every 4-edge-connected graph with chromatic number at most 4 admits a vertex-coloring 3-edge-weighting.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For technical reasons, all graphs considered in this paper are connected multigraphs with parallel edges but no loop. A graph with two vertices and m parallel edges is denoted by mK_2 .

Let *G* be a graph. A vertex-coloring *k*-edge-weighting of *G* is an assignment $f : E(G) \rightarrow \{1, ..., k\}$ such that the induced labeling $f : V(G) \rightarrow \mathbb{Z}^+$, where $f(v) = \sum_{e \in E(v)} f(e)$, is a proper vertex coloring of *G* (see [1,2,3,6,11], or a comprehensive survey paper [9]).

In [6], Karoński, Luczak and Thomason conjectured (*the* 1-2-3-*conjecture*) *that every graph other than* mK_2 *admits a vertex coloring* 3-*edge-weighting*. It is proved in [5] that every graph other than mK_2 admits a vertex-coloring 5-edge-weighting. It also proved in [6] that every 3-colorable graph other than mK_2 admits a vertex-coloring 3-edge-weighting; and in [7] that every 4-colorable graph other than mK_2 admits a vertex-coloring 4-edge-weighting. In this paper, we extend some of these results by verifying the 1-2-3-conjecture for some graphs G with $\chi(G) \leq 4$.

Theorem 1.1. Every 4-edge-connected 4-colorable multigraph G admits a vertex-coloring 3-edge-weighting.

1.1. Notation and terminology

We follow [4] and [12] for terms and notation.

A circuit is a connected 2-regular graph.

Let H_1 and H_2 be two subgraphs of a graph G. The symmetric difference of H_1 and H_2 , denoted by $H_1 \triangle H_2$, is the subgraph of G induced by the set of edges $[E(H_1) \cup E(H_2)] \setminus [E(H_1) \cap E(H_2)]$.

Let *G* be a graph. The set of odd vertices of *G* is denoted by O(G). Let *U* be a subset of V(G) with even order. A spanning subgraph *Q* is called *T*-join of *G* (with respected to *U*) if O(Q) = U.

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.08.011 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: yezhouwu@zju.edu.cn (Y. Wu), cqzhang@mail.wvu.edu (C.-Q. Zhang), bxzhu@jsnu.edu.cn (B.-X. Zhu).

2. Proof of the main theorem

2.1. Sketch of an outline of the proof

Let β : $V(G) \rightarrow Z_4$ be a 4-coloring of *G*. We are to find a vertex-coloring 3-edge-weighting *f* such that $f(v) \equiv \beta(v)$ (mod 4) for every vertex *v*.

A necessary condition of β is $\sum_{v \in V(G)} \beta(v) \equiv 0 \pmod{2}$ since

$$\sum_{v \in V(G)} f(v) \equiv 2 \sum_{e \in E(G)} f(e) \equiv 0 \pmod{2}.$$

Let

$$W_{\mu} = \{ v \in V(G) : \beta(v) - d_G(v) \equiv \mu \pmod{4} \}.$$

The first step of the proof is to find a *T*-join *Q* with $O(Q) = W_1 \cup W_3$. Define $g : E(Q) \rightarrow \{2\}$, and $\beta' : V(G) \rightarrow Z_4$ such that

$$\beta'(x) \equiv \begin{cases} \beta(x) - 2 & \text{if } x \in W_1 \cup W_3 \\ \beta(x) & \text{otherwise} \end{cases} \pmod{4}.$$

It will be proved that, in the subgraph G - E(Q), $d_{G-E(Q)}(v) \equiv \beta'(v)$ or $\beta'(v) + 2 \pmod{4}$ for every $v \in V(G)$.

In the second step, Lemma 2.2 is applied to find another edge-weight $f_0 : E(G) - E(Q) \rightarrow \{1, 3\}$ such that, for every $v \in V(G)$,

$$\beta'(v) \equiv \sum_{e \in E(v) - E(Q)} f_0(e) \pmod{4}.$$

Thus, the combination of g and f_0 yields a vertex-coloring 3-edge-weighting of G.

By Tutte and Nash-Williams Theorem [8,10], a 4-edge-connected graph contains a pair of edge-disjoint spanning trees T_1 , T_2 . The subset Q is to be found in $G - T_2$, and the weight f_0 is assigned in E(G) - E(Q). We notice that a straightforward application of Tutte–Nash-Williams Theorem is not sufficient due to a parity requirement for |Q|. Thus, Tutte–Nash-Williams Theorem is extended in Lemma 2.1 in order to meet the requirements of Lemma 2.2 in the second step of the proof.

2.2. Lemmas

Lemma 2.1. If *G* is a 4-edge-connected non-bipartite graph, then E(G) has a partition $\{T_1, T_2, F\}$ such that each T_i is a spanning tree and $T_1 + F$ contains an odd-circuit.

Lemma 2.2. Let *H* be a graph and let $\beta_H : V(H) \rightarrow Z_4$ be a mapping. Assume that

(i) *H* is connected; (ii) $\beta_H(v) \equiv d_H(v) \pmod{2}$ for each vertex $v \in V(H)$; (iii) $\sum_{v \in V(H)} \beta_H(v) \equiv 2|E(H)| \pmod{4}$. Then there exists a mapping $f_H : E(H) \rightarrow \{1, 3\}$ such that for each vertex $x \in V(H)$,

$$f_H(x) = \sum_{e \in E(x)} f_H(e) \equiv \beta_H(x) \pmod{4}.$$
(1)

See Section 3 for proofs of both lemmas.

2.3. Proof of Theorem 1.1

We pay only attention to graphs with chromatic number $\chi = 4$ since it was proved in [6] that every multigraph *G* with $\chi(G) \leq 3$ admits a vertex-coloring 3-edge-weighting.

I. Since $\chi(G) = 4$, there exists a vertex partition { V_0 , V_1 , V_2 , V_3 } of V(G) such that each V_i is an independent set, i = 0, 1, 2 and 3. Renaming them if necessary, we can assume that $|V_1| + |V_3|$ is even. Define $\beta : V(G) \rightarrow \{0, 1, 2, 3\}$ such that $\beta(v) = i$ if $v \in V_i$. Then

$$\sum_{x \in V(G)} \beta(x) = |V_1| + 2|V_2| + 3|V_3| \equiv |V_1| + |V_3| \equiv 0 \pmod{2}.$$
(2)

Our goal is to find an edge-weighting $f : E(G) \rightarrow \{1, 2, 3\}$ such that

$$\sum_{e \in E(x)} f(e) \equiv \beta(x) \pmod{4}$$
(3)

for every vertex x.

$$U = \{ x \in V(G) | d_G(x) \equiv \beta(x) + 1 \pmod{2} \}.$$

We have that

$$|U| \equiv 0 \pmod{2}$$

since, by (2),

$$0 \equiv 2|E(G)| = \sum_{x \in V(G)} d_G(x) \equiv |U| + \sum_{x \in V(G)} \beta(x) \equiv |U| \pmod{2}.$$

Let Q_1 be a *T*-join with $O(Q_1) = U$ contained in the spanning tree T_1 , and let $Q_2 = Q_1 \triangle C_e$, which is also a *T*-join with $O(Q_2) = U$ and is contained in $T_1 + F$.

IV. For each i = 1, 2, define $g_i : E(G) \rightarrow \{0, 2\}$ such that

$$g_i(e) = \begin{cases} 2 & e \in E(Q_i) \\ 0 & e \notin E(Q_i). \end{cases}$$
(5)

(4)

Let $G_i = G \setminus E(Q_i)$

In the remaining part of the paper, we are to find a mapping $f_i : E(G_i) \to \{1, 3\}$ for $i \in \{1, 2\}$ such that either $f_1 + g_1$ or $f_2 + g_2$ is a vertex coloring 3-edge-weighting of *G*. In order to apply Lemma 2.2 here, three conditions of the lemma will be verified one-by-one in the next subsection.

V. Let $\beta' : V(G) \to Z_4$ such that

$$\beta'(x) \equiv \begin{cases} \beta(x) - 2 & \text{if } x \in U \\ \beta(x) & \text{if } x \in V(G) \setminus U \end{cases} \pmod{4}.$$
(6)

Since $E(Q_i) \subseteq E(T_1 \cup C_e)$, for each i = 1, 2, the subgraph $G_i = G \setminus E(Q_i)$ contains the spanning tree T_2 . So G_i is connected and satisfies Condition (i) of Lemma 2.2.

Then

$$\beta'(x) \equiv \begin{cases} \beta(x) - 2 \equiv d_G(x) - 1 \equiv d_{G_i}(x) & \text{if } x \in U \\ \beta(x) \equiv d_G(x) \equiv d_{G_i}(x) & \text{if } x \in V(G) \setminus U \end{cases} \pmod{4}.$$

It is easy to see that, for each $i = 1, 2, G_i$ and β' satisfy Condition (ii) of Lemma 2.2. $V(G_1) = V(G_2) = V(G)$. By (6) and (2) we have that, for each i = 1, 2,

$$\sum_{x \in V(G_i) = V(G)} \beta'(x) \equiv \sum_{x \in V(G) = V(G)} \beta(x) \equiv 0 \pmod{2}.$$
(7)

Furthermore, $|E(Q_1)| + |E(Q_2)|$ is odd since C_e is a circuit of odd length and

$$|E(Q_1)| + |E(Q_2)| \equiv |E(Q_1 \triangle Q_2)| = |E(C_e)| \equiv 1 \pmod{2}.$$

Hence,

$$E(G_1)| + |E(G_2)| = (|E(G)| - |E(Q_1)|) + (|E(G)| - |E(Q_2)|)$$

= 2|E(G)| - (|E(Q_1)| + |E(Q_2)|)

and is also odd.

By (7), we must have either $\sum_{x \in V(G_1)} \beta'(x) \equiv 2|E(G_1)| \pmod{4}$ or $\sum_{x \in V(G_2)} \beta'(x) \equiv 2|E(G_2)| \pmod{4}$. Without loss of generality, suppose

$$\sum_{x\in V(G_1)}\beta'(x)\equiv 2|E(G_1)|\pmod{4},$$

which satisfies Condition (iii) of Lemma 2.2, and, therefore, by Lemma 2.2, there is a mapping $f_1 : E(G_1) \rightarrow \{1, 3\}$ such that

$$f_1(x) = \sum_{e \in E(x) \cap E(G_1)} f_1(e) \equiv \beta'(x) \pmod{4}$$
(8)

for each vertex $x \in V(G_1) = V(G)$. **VI.** Let $f : E(G) \rightarrow \{1, 2, 3\}$ such that

$$f(e) = \begin{cases} g_1(e) & \text{if } e \in E(Q_1) \\ f_1(e) & \text{if } e \in E(G) \setminus E(Q_1) = E(G_1). \end{cases}$$

By Eqs. (8), (5) and (6), it is not difficult to verify that

$$f(x) = \sum_{e \in E(x)} f(e) \equiv f_1(x) + g_1(x) \equiv \begin{cases} \beta'(x) & \text{if } x \notin U \\ \beta'(x) + 2 & \text{if } x \in U \end{cases} \equiv \beta(x) \pmod{4}.$$

Therefore, f is a vertex-coloring 3-edge-weighting of G (satisfying Eq. (3)). \Box

3. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.2. Let $f : E(G) \to \{1, 3\}$ be an arbitrary mapping such that, for each vertex $x \in V(G)$, $f(x) = \sum_{e \in E(x)} f(e) \equiv d(x) \equiv \beta(x) \pmod{2}$ since $f(e) \equiv 1 \pmod{2}$. So if a vertex x does not satisfy Eq. (1), then $f(x) \equiv \beta(x) + 2 \pmod{4}$ and we call it a bad vertex.

Let *U* be the set of all bad vertices. And let $E_i = \{e \in E(G) \mid f(e) = i\}, i = 1, 3$. On one hand

$$\sum_{\mathbf{x}\in V(G)} f(\mathbf{x}) = 2|E_1| + 6|E_3| \equiv 2|E_1| + 2|E_3| = 2|E(G)| \pmod{4}.$$
(9)

On the other hand

$$\sum_{x \in V(G)} f(x) \equiv \sum_{x \in U} (\beta(x) + 2) + \sum_{x \in V(G) \setminus U} \beta(x)$$

= 2|U| + $\sum_{x \in V(G)} \beta(x) \equiv 2|U| + 2|E(G)| \pmod{4}.$ (10)

By combining Eqs. (9) and (10),

$$2|E(G)| \equiv \sum_{x \in V(G)} f(x) \equiv 2|U| + 2|E(G)| \pmod{4}.$$

Hence,

 $|U| \equiv 0 \pmod{2}.$

Let *u* and *v* be two vertices of *U*. Since *G* is connected, there is a path joining *u* and *v*. For each edge *e* in the path we change f(e) by swapping 1 and 3. It is easy to verify that the number of bad vertices decreases by 2. We repeat the operation until there are no bad vertices. \Box

Lemma 2.1 is proved as a corollary of Lemma 3.2.

Definition 3.1. The dynamic density of a graph *H* is the greatest integer *k* such that

$$\min_{\mathcal{P}} \left\{ \frac{|E(H/\mathcal{P})|}{|V(H/\mathcal{P})| - 1} \right\} > k \tag{11}$$

where the minimum is taken over all possible partitions \mathcal{P} of the vertex set of H, and H/\mathcal{P} is the graph obtained from H by shrinking each part of \mathcal{P} into a single vertex.

Lemma 3.2. Let *G* be a non-bipartite subgraph. If the dynamic density of *G* is at least *k*, then E(G) has a partition $\{T_1, \ldots, T_k, F\}$ such that

- (1) for each i = 1, ..., k, the subgraph T_i is a spanning tree, while $F \neq \emptyset$,
- (2) there is a T_i such that $T_i \cup F$ contains an odd-circuit.

Lemma 3.2 is a refinement of the following fundamental theorem in graph theory when a graph has some extra edges beyond several spanning trees.

Lemma 3.3 (Tutte [10] and Nash-Williams [8]). A graph H contains k edge-disjoint spanning trees if and only if

$$\min_{\mathcal{P}}\left\{\frac{|E(H/\mathcal{P})|}{|V(H/\mathcal{P})|-1}\right\} \ge k \tag{12}$$

where the minimum is taken over all possible partitions \mathcal{P} of the vertex set of H, and H/\mathcal{P} is the graph obtained from H by shrinking each part of \mathcal{P} as a single vertex.

Notice the difference between (11) and (12): the inequality of (11) is *strict*.

By the definition of dynamic density (Inequality (11)), we have the following observation.

Observations. If G is of dynamic density at least k, then for any proper subgraph H of G, the contracted graph G/H remains of dynamic density at least k.

Proof of Lemma 3.2. Let *G* be a counterexample to the lemma. By Lemma 3.3, let T_1, \ldots, T_k be edge-disjoint spanning trees of *G*.

Recursively label E(G) as follows.

Rule (1). Starting from all edges $e \in E(G) - (\bigcup_{i=1}^{k} E(T_i))$,

 $\phi(e)=0;$

Rule (2). For each $e' \in E(G)$, if $\phi(e') = h$ and $T_i + e'$ contains a circuit $C_{e'}$, then every unlabeled edge e'' of $C_{e'}$ is labeled with $\phi(e'') = h + 1$.

Let *H* be the maximum subgraph of *G* consisting of all labeled edges.

Claim 1. In the contracted graph G/H, each T_i/H is a spanning tree.

Proof. By the maximality of *H* and by Rule (2) of the labeling, each T_i/H remains acyclic in *G/H*.

Claim 2.

$$\bigcup_{i=1}^{k} E(T_i/H) = E(G/H).$$

Proof. The claim follows by Rule (1) of the labeling.

Claim 3.

H = G

(that is, all edges of G are labeled).

Proof. Assume that *H* is a proper subgraph of *G*. Claims 1 and 2 imply that

 $\frac{|E(G/H)|}{|V(G/H)| - 1} = k.$

This contradicts the observation (that G/H is of dynamic density at least k).

Final step. Let e^* be the edge of *G* with the smallest label ϕ such that $e^* + T_i$ contains an odd circuit, for some $i \in \{1, ..., k\}$. Such edge e^* exists since *G* is not bipartite. Let $\phi(e^*) = q$.

Note that the integer q is an index for a given partition $\mathcal{X} = \{T_1, \ldots, T_k, F\}$ of G. Denote it by $\omega_{\mathcal{X}}$. Among all such partitions of G, choose the one \mathcal{X} with the **smallest** $\omega_{\mathcal{X}}$.

If $\omega_{\chi} = 0$, then *G* is not a counterexample. Hence, assume $\omega_{\chi} = q \ge 1$.

Let $\{e_0, \ldots, e_q\}$ be the sequence of edges such that

$$e^* = e_q$$

and, for each $\lambda = q - 1, q - 2, ..., 1, 0$,

$$\phi(e_{\lambda}) = \lambda,$$

and $e_{\lambda+1}$ is an edge contained in the circuit of $T_{i_{\lambda}} + e_{\lambda}$, for some $i_{\lambda} \in \{1, ..., k\}$. Let

 $T'_{i_0} = T_{i_0} + e_0 - e_1, T'_i = T_j \text{ if } j \in \{1, \dots, k\} - \{i_0\} \text{ and } F' = F - e_0 + e_1.$

In the new partition $\mathcal{X}' = \{T'_1, \ldots, T'_k, F'\}$, it is easy to see, by Rule (2) of labeling, that the index $\omega_{\mathcal{X}'}$ is reduced since each $\phi(e_i)$ is now reduced by 1 if $i = 2, \ldots, q$. Furthermore, the circuit contained in $e_q + T'_{i_{q-1}}$ remains of odd length. This contradicts the choice of \mathcal{X} that $\omega_{\mathcal{X}}$ is smallest, and therefore, completes the proof of the lemma.

Acknowledgments

The first author was partially supported by a grant of National Natural Science Foundation of China (No. 11501504) and a grant of Natural Science Foundation of Zhejiang Province (No. Y16A010005). The second author was partially supported by a National Science Foundation grant (DMS-1264800) and National Security Agency grants (H98230-14-1-0154, H98230-16-1-0004). The third author was partially supported by a National Natural Science Foundation of China grant (No. 11571150).

References

- [1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed, Vertex coloring edge partitions, J. Combin. Theory Ser. B 94 (2005) 237-244.
- [2] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, A. Thomason, Vertex-coloring edge-weightings, Combinatorica 27 (2007) 1–12.
- [3] L. Addario-Berry, K. Dalal, B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168–1174.
- [4] J.A. Bondy, U.S.R. Mutry, Graph Theory, Spring, New York, 2008.
- [5] M. Kalkowski, M. Karoński, F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) 347-349.
- [6] M. Karoński, T. Luczak, A. Thomason, Edge weights and vertex colors, J. Combin. Theory Ser. B 91 (2004) 151–157.
- [7] H. Lu, Q. Yu, C.-Q. Zhang, A note on vertex-coloring 2-edge-weighting, European J. Combin. 32 (1) (2011) 21-27.
- [8] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961) 445-450.
- [9] B. Seamone, The 1-2-3 Conjecture and related problems: a Survey, arXiv:1211.5122v1. [math.CO] 21 Nov 2012.
- [10] W.T. Tutte, On the problem of decompositing a graph into n connected factors, J. Lond. Math. Soc. 36 (1961) 221-230.
- [11] T. Wang, Q.-L. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 581–587.
- [12] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.