Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

The edge spectrum of the saturation number for small paths

Ronald J. Gould ${ }^{\text {a }}$, Wenliang Tang ${ }^{\text {b }}$, Erling Wei ${ }^{\text {c }}$, Cun-Quan Zhang ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA, 30322, USA
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV, 26506-6310, USA
${ }^{\text {c }}$ Department of Mathematics, Renmin University of China, Beijing, 100872, China

A R T I C L E INFO

Article history:

Received 13 October 2010
Accepted 10 January 2012
Available online 3 February 2012

Keywords:

Edge spectrum
Saturation number
Extremal number
Path

Abstract

Let H be a simple graph. A graph G is called an H-saturated graph if H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. Denote by $\operatorname{SAT}(n, H)$ the set of all H-saturated graphs G with order n. Then the saturation number sat (n, H) is defined as $\min _{G \in S A T(n, H)}|E(G)|$, and the extremal number $\operatorname{ex}(n, H)$ is defined as $\max _{G \in S A T(n, H)}|E(G)|$. A natural question is that of whether we can find an H-saturated graph with m edges for any $\operatorname{sat}(n, H) \leq m \leq e x(n, H)$. The set of all possible values m is called the edge spectrum for H-saturated graphs. In this paper we investigate the edge spectrum for P_{i}-saturated graphs, where $2 \leq i \leq 6$. It is trivial for the case of P_{2} that the saturated graph must be an empty graph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and notation

In this paper we only consider graphs without loops or multiple edges. For terms not defined here see [3]. For a graph G we use G to represent the vertex set $V(G)$ and the edge set $E(G)$ when the meaning is clear from the context. Furthermore, $|V(G)|=n$, unless otherwise specified. Also, K_{p} denotes the complete graph on p vertices. A graph G is termed an (n, m) graph if $|V(G)|=n$ and $|E(G)|=m$.

A fixed graph G is called an H-saturated graph if the graph H is not a subgraph of G, but adding any missing edge to G will produce a copy of H. The collection of all H-saturated graphs of order n is denoted by $\operatorname{SAT}(n, H)$, and the saturation number, denoted as sat (n, H), is the minimum number of edges of a graph in the set $\operatorname{SAT}(n, H)$. The graphs in $\operatorname{SAT}(n, H)$ with the minimum number of edges will be denoted by $\operatorname{SAT}(n, H)$. The saturation number was introduced by Erdős, Hajnal, and Moon in [4] in which the authors proved sat $\left(n, K_{p}\right)=\binom{p-2}{2}+(n-p+2)(p-2)$ and $\underline{S A T}\left(n, K_{p}\right)=\left\{K_{p-2} \vee \bar{K}_{n-p+2}\right\}$, where \checkmark is the standard graph joining operation. The maximum number of edges of a graph from $\operatorname{SAT}(n, H)$ is the well known Turán extremal number (see [9]), and is usually denoted by $e x(n, H)$. The parameters sat (n, H) and $e x(n, H)$ have been investigated for a range of graphs H. Generalizations to hypergraphs also exist (see [7]).

A natural aim is to find, if possible, an H-saturated graph with m edges for any integer m between the saturation number and extremal number. Barefoot et al. [2] studied the edge spectrum of K_{3}-saturated graphs and proved the following result.

Theorem 1.1 ([2]). Let $n \geq 5$ and m be nonnegative integers. There is an $(n, m) K_{3}$-saturated graph if and only if $2 n-5 \leq m \leq$ $\left\lfloor(n-1)^{2} / 4\right\rfloor+1$ or $m=k(n-k)$ for some positive integer k.

Theorem 1.1 says that a K_{3}-saturated graph is either a complete bipartite graph or its size falls in the given range and all values in this range are possible.

[^0]$\mathrm{n}=2 \mathrm{k}$
$\mathrm{m}=\mathrm{k}$ od. \cdots....
$m=k+1 \operatorname{lob}_{0}^{\infty} \cdots \cdot{ }_{0}^{o}$

$$
\mathrm{n}=2 \mathrm{k}+1
$$
$$
m=k+2 \text { o! } \cdots \cdots \text { o }
$$
$$
\mathrm{m}=\mathrm{k}+3
$$
 $\mathrm{m}=\mathrm{n}-1$

Or $m=n$

Fig. 1. Description of P_{4}-saturated graphs.

Later Amin [1] extended this result from K_{3}-saturated graphs to any complete graph K_{p} in her Ph.D. thesis, which is the starting point of this paper. In Section 2, we present the known results on saturation numbers and extremal numbers for paths, and then investigate the properties of connected P_{5}-saturated graphs and connected P_{6}-saturated graphs. In Sections 3 and 4 we shall give a complete characterization of the edge spectrum for P_{5}-saturated graphs and P_{6}-saturated graphs respectively.

2. Known results

In [6] Kászonyi and Tuza proved several general results concerning saturated graphs including an upper bound for sat (n, H) for any connected graph H by constructing an H-saturated graph.

Theorem 2.1 ([6]). Saturation numbers for paths:
(a) For $n \geq 3$, sat $\left(n, P_{3}\right)=\lfloor n / 2\rfloor$.
(b) For $n \geq 4$, sat $\left(n, P_{4}\right)= \begin{cases}n / 2 & \text { if } n \text { is even, } \\ (n+3) / 2 & \text { if } n \text { is odd. }\end{cases}$
(c) For $n \geq 5$, sat $\left(n, P_{5}\right)=\left\lceil\frac{5 n-4}{6}\right\rceil$.
(d) Let $a_{k}=\left\{\begin{array}{ll}3 \cdot 2^{t-1}-2 & \text { if } k=2 t, \\ 4 \cdot 2^{t-1}-2 & \text { if } k=2 t+1\end{array}\right.$. If $n \geq a_{k}$ and $k \geq 6$, then $\operatorname{sat}\left(n, P_{k}\right)=n-\left\lfloor\frac{n}{a_{k}}\right\rfloor$.

In this paper, we will mainly consider the cases of P_{5} and P_{6}. By Theorem 2.1 we have sat $\left(n, P_{6}\right)=\lceil 9 n / 10\rceil$ for any $n \geq 10$.

Next let us recall a result concerning the Turán extremal number, which was proved by Faudree and Schelp [5] in 1975.

Theorem 2.2 ([5]). If G is a graph with $|V(G)|=k t+r, 0 \leq r<k$, containing no path on $k+1$ vertices, then $|E(G)| \leq$ $t\binom{k}{2}+\binom{r}{2}$ with equality if and only if G is either $\left(t K_{k}\right) \cup K_{r}$ or $\left((t-l-1) K_{k}\right) \cup\left(K_{(k-1) / 2} \vee \bar{K}_{(k+1) / 2+l k+r}\right)$ for some $l, 0 \leq l<t$, where k is odd, $t>0$, and $r=(k \pm 1) / 2$.

Corollary 2.3 ([8]). For all integer $n, n \geq 3$,
(a) $e x\left(n, P_{4}\right)= \begin{cases}n & n \equiv 0(\bmod 3) \\ n-1 & n \equiv 1,2(\bmod 3)\end{cases}$
(b) ex $\left(n, P_{5}\right)= \begin{cases}3 n / 2 & n \equiv 0(\bmod 4) \\ 3 n / 2-2 & n \equiv 2(\bmod 4) \\ 3(n-1) / 2 & n \equiv 1,3(\bmod 4)\end{cases}$
(c) $e x\left(n, P_{6}\right)= \begin{cases}2 n & n \equiv 0(\bmod 5) \\ 2 n-2 & n \equiv 1,4(\bmod 5) \\ 2 n-3 & n \equiv 2,3(\bmod 5) .\end{cases}$

Considering the fact that for any P_{3}-saturated graph G, no two edges can be incident to each other and G contains at most one isolated vertex, therefore, sat $\left(n, P_{3}\right)=\operatorname{ex}\left(n, P_{3}\right)=\lfloor n / 2\rfloor$. As for the case of P_{4}-saturated graphs, the following figures clearly show how we can evolve a P_{4}-saturated graph with the least edges to one with the most edges.

From the Fig. 1 we can evolve a P_{4}-saturated graph, a perfect matching or a matching union a triangle to one with $n-1$ edges for any integer n. In addition, when $n=3 p$ we can take $G=p K_{3}$ and find one more P_{4}-saturated graph of size n.

Fig. 2. Two possible structures for a connected P_{5}-saturated graph.

3. Edge spectra of \boldsymbol{P}_{5}-saturated graphs

If G is a P_{5}-saturated graph with order less than 5, then G must be a complete graph. Furthermore, the order of the union of any two components of G must be at least 5 since otherwise we can add an edge joining those two components and have no copies of P_{5} in the resulting graphs. Therefore the structure of every component of a P_{5}-saturated graph becomes important and we have the following lemma concerning it.

Lemma 3.1. If H is a connected P_{5}-saturated graph with order at least 5 , then each block of H is a clique of order 2 or 3.
Proof. If H is 2-connected, i.e. H consists of only one block, H cannot be a complete graph since H is P_{5}-saturated graph. Hence we may take two vertices u and v with $u v \notin E(H)$. There is no circuit with length more than 4 since otherwise a subgraph P_{5} will be found. Therefore, we can find a circuit of length 4 . Considering that $n \geq 5$, there is a vertex w connecting to some vertex on this circuit and forming a path P_{5}. Thus H cannot be 2-connected.

Let B be a block of H, then the order of B must be less than 4 since otherwise we may find a circuit of length at least 4 within block B, which forms a P_{5} with any one edge outside B. Thus the order of each block in H is either 3 or 2 , as we desired.

Let H be a connected P_{5}-saturated graph. It is trivial for the case $|V(H)| \leq 4$ that H must be a complete graph. Hence we may assume that $|V(H)| \geq 5$. If H contains two triangles T_{1} and T_{2}, which are connected by a path Q, then a path of order at least 5 is naturally contained as a subgraph. Hence H contains at most one triangle. Therefore, by Lemma 3.1 either G is a tree or a graph obtained by adding exactly one edge to a star (see Fig. 2). Then we get the following lemmas.

Lemma 3.2. If H is a component of a P_{5}-saturated graph other than K_{4}, then the size of H is either $n^{\prime}-1$ or n^{\prime}, where $n^{\prime}=|V(H)|$.
Let G be a P_{5}-saturated graph and S_{μ}^{+}be a graph obtained from the star S_{μ} by adding one edge. If we denote by α_{1} the number of acyclic components of G, by α_{2} the number of S_{μ}^{+}'s, and by α_{3} the number of $K_{4}^{\prime} s$ in G, then by applying the above lemma we have the next lemma immediately.

Lemma 3.3. If $G \in \operatorname{SAT}\left(n, P_{5}\right)$, then $|E(G)|=n-\alpha_{1}+2 \alpha_{3}$, where α_{1}, α_{3} are defined above.
The key idea of our method is constructing a new P_{5}-saturated graph from an existing smaller P_{5}-saturated graph. Our main result on P_{5} is heavily dependent on the following lemmas.

Lemma 3.4. Let $m \geq n \geq 5$. There is an (n, m) graph G in $S A T\left(n, P_{5}\right)$ if and only if there exists an $(n+4, m+6)$ graph G^{\prime} in $\operatorname{SAT}\left(n+4, P_{5}\right)$.
Proof. It is trivial that $G \in \operatorname{SAT}\left(n, P_{5}\right)$ implies $G^{\prime}=G \cup K_{4} \in S A T\left(n+4, P_{5}\right)$, where \cup is the graph union operation and $V\left(G^{\prime}\right)=V(G) \cup V\left(K_{4}\right), E\left(G^{\prime}\right)=E(G) \cup E\left(K_{4}\right)$. For the necessity, we assume that $G^{\prime \prime}$ is an $(n+4, m+6)$ graph in $\operatorname{SAT}\left(n+4, P_{5}\right)$. If there exists a component K_{4} in $G^{\prime \prime}$, then $G=G^{\prime \prime}-K_{4}$ will be an (n, m) graph in $\operatorname{SAT}\left(n, P_{5}\right)$. Hence, we may suppose that $G^{\prime \prime}$ contains no K_{4} 's, i.e. $\alpha_{3}=0$. By Lemma 3.3, $m+6=\left|E\left(G^{\prime \prime}\right)\right|=\left|V\left(G^{\prime \prime}\right)\right|-\alpha_{1} \leq\left|V\left(G^{\prime \prime}\right)\right|=n+4$, contradicting that $m \geq n$.

So far we have figured out P_{5}-saturated graphs with $m \geq n$. The next lemma will tell us more information about P_{5}-saturated graphs with fewer edges.

Lemma 3.5. Let n be an integer that is at least 5 and $\left\lceil\frac{5 n-4}{6}\right\rceil \leq m \leq n-1$. There exists a P_{5}-saturated (n, m) graph.
Proof. If $n=5$, then $\left\lceil\frac{5 n-4}{6}\right\rceil=n-1=4$ and we take $G=K_{2} \cup K_{3} \in \operatorname{SAT}\left(n, P_{5}\right)$. Next we assume that $n>5$ and write $n=6 k+i$, where $0 \leq i \leq 5$.

First we construct a P_{5}-saturated graph of size $m=\left\lceil\frac{5 n-4}{6}\right\rceil$. Let $T_{a, b}$ be a graph obtained from two stars S_{a} and S_{b} by adding an edge joining the two centers (see Fig. 2). We can construct the following graphs: $k T_{2,2},(k-1) T_{2,2} \cup T_{2,3}, k T_{2,2} \cup$ $K_{2},(k-1) T_{2,2} \cup T_{2,3} \cup K_{2},(k-1) T_{2,2} \cup T_{3,3} \cup K_{2},(k-1) T_{2,2} \cup T_{4,3} \cup K_{2}$ in line with the i-values. For example, we can take $G=T_{2,2} \cup T_{4,3} \cup K_{2}$ if $n=17$.

Then for the values of $m \in\left(\left\lceil\frac{5 n-4}{6}\right\rceil, n\right)$, we can build a P_{5}-saturated (n, m) graph by the following process starting with saturated graphs with $\left\lceil\frac{5 n-4}{6}\right\rceil$ edges: $T_{a, b}+T_{x, y} \Rightarrow T_{x+a+1, y+b+1}$ or $T_{x, y}+K_{2} \Rightarrow T_{x+1, y+1}$. This process is shown in Fig. 3. At the end of this process we shall get a P_{5}-saturated with $n-1$ edges, namely $T_{a, n-a-2}$.

Fig. 3. The evolution of P_{5}-saturated trees.
Now we are ready to give the edge spectra of P_{5}-saturated graphs and present one of the main theorems. The interval $[A, B]=\left[\operatorname{sat}\left(n, P_{5}\right)\right.$ ex $\left.\left(n, P_{5}\right)\right]$ can be obtained from Theorem 2.1 and Corollary 2.3. We want to determine whether this interval is the spectrum of P_{5}-or are there any missing values within this interval?

It is worth noting here that at each induction process stage we jump four steps. First we give the results for four initial values of n, which are listed in the table, and then apply the induction process to get results for the next four n values.

Theorem 3.1. Let $n \geq 5$ and sat $\left(n, P_{5}\right) \leq m \leq e x\left(n, P_{5}\right)$ be integers. There exists an (n, m) graph $G \in \operatorname{SAT}\left(n, P_{5}\right)$ if and only if $n=1,2(\bmod 4)$, or

$$
m \notin \begin{cases}\left\{\frac{3 n-5}{2}\right\} & \text { if } n \equiv 3(\bmod 4) \\ \left\{\frac{3 n}{2}-3, \frac{3 n}{2}-2, \frac{3 n}{2}-1\right\} & \text { if } n \equiv 0(\bmod 4)\end{cases}
$$

Proof. The proof of this result follows from Lemma 3.1 through Lemma 3.5 and the next table, by induction on n.

n	[$A, B]$	SAT (n, P_{5})	n	$[A, B]$	SAT $\left(n, P_{5}\right)$
5	[4, 6]	4: $K_{3} \cup K_{2}$	6	[5, 7]	5: $T_{2,2}$
		5: S_{4}^{+}			6: $2 K_{3}$
		6: $K_{4} \cup K_{1}$			7: $K_{4} \cup K_{2}$
7	[6, 9]	6: $T_{2,3}$	8	[6, 12]	6: $T_{2,2} \cup K_{2}$
		7: $2 K_{3}$			7: $T_{3,3}$
		8: \emptyset			8: $K_{3} \cup S_{4}^{+}$
		9: $K_{4} \cup K_{3}$			9-11: \emptyset
					12: $2 K_{4}$

In the above table, the symbol ' \emptyset^{\prime} stands for no $(n, m) P_{5}$-saturated graph existing and $A=\operatorname{sat}\left(n, P_{5}\right), B=e x\left(n, P_{5}\right)$. The nonexistence of P_{5}-saturated graphs comes from Lemma 3.3 by counting the edges.

The initial results for $n=5,6,7,8$ are listed in the above table. By the induction hypothesis, suppose that we have the result for n; then we shall apply Lemma 3.4 to get a result for $n+4$. Once we have determined all possible P_{5}-saturated graphs with n vertices, we can also determine the P_{5}-saturated graphs with $n+4$ vertices according to Lemma 3.4. Therefore we can cover the interval $\left[\operatorname{sat}\left(n, P_{5}\right)+6\right.$, ex $\left.\left(n, P_{5}\right)+6\right]$ which is exactly the interval $\left[\operatorname{sat}\left(n, P_{5}\right)+6, e x\left(n+4, P_{5}\right)\right]$. In order to finish the argument that we can determine all integers between $\operatorname{sat}\left(n+4, P_{5}\right)$ and $e x\left(n+4, P_{5}\right)$, we also need to deal with the subinterval [$\operatorname{sat}\left(n+4, P_{5}\right)$, sat $\left.\left(n, P_{5}\right)+5\right]$, which is fortunately covered by Lemma 3.5 since $\operatorname{sat}\left(n, P_{5}\right)+5 \leq(n+4)-1$ for any integer $n \geq 9$.

4. Edge spectra of $\boldsymbol{P}_{\mathbf{6}}$-saturated graphs

If G is a P_{6}-saturated graph with order less than 6 , then G must be a complete graph. Furthermore, the order of the union of any two components of G must be at least 6 . Let B_{n} denote the book graph, the union of n triangles sharing one edge. A θ-graph is the union of three internally disjoint (simple) paths that have the same two distinct end vertices. As we did for the case of P_{5}-saturated graph, we shall pay attention to each connected component of G.

Lemma 4.1. Let H be a (2)-connected P_{6}-saturated graph of order at least (6). Then H must be a book.
Proof. Let C be the longest circuit in H. The length of C must be less than 5 since otherwise P_{6} would be found in a subgraph obtained from C and any other edge touching it. On the other hand, the length of C cannot be less than 4 since H is 2 -connected and every vertex outside of the circuit C is connected to C by two edge-disjoint paths. Therefore C is a circuit of length 4 and we define $C=u x v y$ with $e=u v \notin E(H)$ the missing edge in H, since otherwise this K_{4} plus any other vertex would contain a larger circuit in H.

Fig. 4. The local structure of H_{v}.

B_{4}

F_{4}

T_{4}

$\mathrm{T}_{4}{ }^{\prime}$

$\mathrm{T}_{2,2,2}$

Fig. 5. All possible structures for connected P_{6}-saturated graphs.
Considering the fact that every edge in H must have an endpoint in C, then the vertex set $H_{C}=H-C$ is an independent set. Take $w \in H_{C}$; then w is adjacent to at least two vertices in C from the fact that H is 2-connected, and w cannot be connected to two consecutive vertices in C since otherwise we can find a circuit larger than C. Thus w is connected to either u and v or x and y. Since we need to avoid the appearance of P_{6}, all vertices from H_{C} must be connected to either u and v or x and y.
C cannot be an induced 4-circuit since no matter how we connect H_{C} to C, we can add a new edge-either e or f-back to H. Thus $f=x y \in E(H)$, and all vertices in H_{C} must connect to x and y. Therefore the resulting graph is a book graph with common edge $f=x y$.

Lemma 4.2. If H is a connected P_{6}-saturated graph with cut vertices, then each block of H must be a clique. Furthermore, if H_{1} and H_{2} are two blocks in H, then $\left|V\left(H_{1}\right)\right|+\left|V\left(H_{2}\right)\right| \leq 6$.

Proof. The result is trivial if H is a tree. Let v be the cut vertex and H_{v} be one of nontrivial blocks containing v in H. If $\left|H_{v}\right|=3$, then H_{v} is complete.

Let $\left|H_{v}\right|=4$; it contains a Hamilton circuit since H_{v} is 2-connected. Then H_{v} must be a clique if it is a leaf-block. Hence we may suppose now that H_{v} is not a leaf-block. And every pair of cut vertices contained in H_{v} are not joined by a Hamilton path P_{4} of H_{v} for otherwise, H has a P_{6}. Therefore, H_{v} has precisely two cut vertices u and v (see Fig. 4(a)) which are not next to each other along the 4-cycle of H_{v}. It is also clear that H_{v} is not a 4-cycle, for otherwise, $H+u v$ does not have a P_{6} since H does not. So, $H_{v}=K_{4}-e$ (see Fig. 4(a)). Now we may add a new edge e^{\prime} joining $x \in N(v)-V\left(H_{v}\right)$ and u (see Fig. 4(a)) into H. But $H+e^{\prime}$ does not have P_{6} since H does not. Therefore H_{v} must be a clique.

Now we may assume that $\left|H_{v}\right| \geq 5$. Following the same arguments as were used to prove Lemma 4.1 (but not the corollary of it), we obtain that the structure of H_{v} is a book with common edge e. If $v \in e$, then all edges connecting neighbors of v not in H_{v} to u can be added to H. In the resulting graph, v is not a cut vertex any more. If $v \notin e$, then H has the above structure (see Fig. 4(b)) and contains P_{6} as a subgraph, a contradiction.

According to the above lemmas, any connected P_{6}-saturated graph with order at least 6 is either a book or one of the following types, where B_{n} is the book with n triangles sharing one common edge, F_{n} is obtained from K_{4} by gluing to the center of star S_{n}, T_{n} is the union of n triangles obtained by sharing one common vertex and T_{n}^{\prime} is obtained from T_{n} by adding one more edge; $T_{i, j, k}$ is a rooted three-level tree.

Let G be a P_{6}-saturated graph (Fig. 5). Denote by $a, b, c, \alpha, \beta_{1}, \beta_{2}, \gamma, \delta$ the numbers of components isomorphic to the various structures $K_{3}, K_{4}, K_{5}, F_{i}, T_{j}, T_{j^{\prime}}^{\prime}$, trees and books in G for the remainder of this section. For any graph G, we denote by $r(G)=|E(G)|-|V(G)|$ the rank of G. Thus $r\left(K_{4}\right)=r\left(F_{i}\right)=2, r\left(K_{5}\right)=5$.

Lemma 4.3. Let $m=2 n-4$ and $n \geq 10$ be positive integers. There exists an (n, m) graph in $\operatorname{SAT}\left(n, P_{6}\right)$ if and only if $n \equiv$ $1,3(\bmod 5)$.

Proof. Let $n \equiv 1(\bmod 5)$ and $m=2 n-4$. We can construct an (n, m) graph $G=F_{2} \cup \alpha K_{5}$, where $\alpha=(n-6) / 5$. Then $|V(G)|=5 \alpha+6$ and $|E(G)|=10 \alpha+8=2 n-4$. If $n \equiv 3(\bmod 5)$, we build an (n, m) graph $G=2 K_{4} \cup \alpha K_{5}$, where $\alpha=(n-8) / 5$. Then $|V(G)|=5 \alpha+8$ and $|E(G)|=10 \alpha+12=2 n-4$.

Next we shall prove by contradiction that there is no (n, m) graph in $\operatorname{SAT}\left(n, P_{6}\right)$ with $m=2 n-4$ if $n \not \equiv 1$, $3(\bmod 5)$. Suppose G is such a graph with components $H_{1}, H_{2}, \ldots, H_{l}$ and $h_{1} \leq h_{2} \leq \cdots \leq h_{l}$, where $h_{i}=\left|H_{i}\right|$. If $h_{1}=1$, then each
component H_{i} would be K_{5} for every $i \neq 1$. Therefore we have $n=1(\bmod 5)$, a contradiction. If $c_{1}=2$, the remaining components of G would be either K_{4}, K_{5}, F_{i} or a book B_{j}. Then we have

$$
n=2+4 b+5 c+\sum_{i=1}^{\alpha}\left|V\left(F_{i}\right)\right|+\sum_{j=1}^{\delta}\left|V\left(B_{j}\right)\right|
$$

and

$$
m=1+6 b+10 c+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|+2\right)+\sum_{j=1}^{\delta}\left(2\left|V\left(B_{j}\right)\right|-3\right)
$$

where $\left|V\left(F_{i}\right)\right|,\left|V\left(B_{j}\right)\right| \geq 6$. Hence $4=2 n-m=3+2 b+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|-2\right)+3 \delta$. Simplifying this we have

$$
2 b+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|-2\right)+3 \delta=1
$$

It is easy to see that there is no integer solution to this equation.
So far we may suppose that $h_{1} \geq 3$, and the remaining components of G are $K_{3}, K_{4}, K_{5}, F_{i}, T_{j}, T_{j^{\prime}}^{\prime}$, trees $T^{(k)}$ and books B_{l}. By counting the number of vertices and edges of each component, we obtain

$$
n=3 a+4 b+5 c+\sum_{i=1}^{\alpha}\left|V\left(F_{i}\right)\right|+\sum_{j=1}^{\beta_{1}}\left|V\left(T_{j}\right)\right|+\sum_{j^{\prime}=1}^{\beta_{2}}\left|V\left(T_{j^{\prime}}^{\prime}\right)\right|+\sum_{k=1}^{\gamma}\left|V\left(T^{(k)}\right)\right|+\sum_{l=1}^{\delta}\left|V\left(B_{l}\right)\right|
$$

and

$$
\begin{aligned}
m= & 3 a+6 b+10 c+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|+2\right)+\sum_{j=1}^{\beta_{1}} \frac{3\left(\left|V\left(T_{j}\right)\right|-1\right)}{2}+\sum_{j^{\prime}=1}^{\beta_{2}}\left(\frac{3\left|V\left(T_{j^{\prime}}^{\prime}\right)\right|}{2}-2\right) \\
& +\sum_{k=1}^{\gamma}\left(\left|V\left(T^{(k)}\right)\right|-1\right)+\sum_{l=1}^{\delta}\left(2\left|V\left(B_{l}\right)\right|-3\right),
\end{aligned}
$$

where $\left|V\left(F_{i}\right)\right|,\left|V\left(T_{j}\right)\right|,\left|V\left(T_{j^{\prime}}^{\prime}\right)\right|,\left|V\left(B_{l}\right)\right| \geq 6$ and $\left|V\left(T^{(k)}\right)\right| \geq 10$. Then we have

$$
4=2 n-m=3 a+2 b+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|-2\right)+\sum_{j=1}^{\beta_{1}} \frac{\left|V\left(T_{j}\right)\right|+3}{2}+\sum_{j^{\prime}=1}^{\beta_{2}}\left(\frac{\left|V\left(T_{j^{\prime}}^{\prime}\right)\right|}{2}+2\right)+\sum_{k=1}^{\gamma}\left(\left|V\left(T^{(k)}\right)\right|+1\right)+3 \delta
$$

which implies that $\beta_{1}=\beta_{2}=\gamma=0$, and $\alpha \leq 1$. Plugging into the above equation we obtain $4=2 b+3(a+\delta)+$ $\alpha(|V(F)|-2)$. The integer solution to this equation is either $\alpha=1,|V(F)|=6, a=b=\delta=0$ or $b=2, a=\delta=\alpha=0$. The first case implies that G is F_{2} with six vertices and eight edges, a contradiction. For the latter case, G is the union of two K_{4} 's and some K_{5} 's, implying that $n=8+5 c$, contradicting the assumption that $n \not \equiv 1,3(\bmod 5)$.

By a similar argument we have the following lemma.
Lemma 4.4. If n is an integer and divisible by (5), then there is no (n, m) graph in $\operatorname{SAT}\left(n, P_{6}\right)$ with $m=2 n-2$ or $m=2 n-1$.
Proof. We prove this by contradiction. Suppose G is such an (n, m) graph in $\operatorname{SAT}\left(n, P_{6}\right)$ with $2 n-m \in\{1,2\}$. Then $h_{1} \geq 2$. If $h_{1}=2$, then $2 n-m=3+2 b+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|-2\right)+3 \beta \geq 3$, a contradiction. Hence we may assume that $h_{1} \geq 3$. Arguing as we did in the previous lemma we have

$$
2 n-m=3 a+2 b+\sum_{i=1}^{\alpha}\left(\left|V\left(F_{i}\right)\right|-2\right)+\sum_{j=1}^{\beta_{1}} \frac{\left|V\left(T_{j}\right)\right|+3}{2}+\sum_{j^{\prime}=1}^{\beta_{2}}\left(\frac{\left|V\left(T_{j^{\prime}}^{\prime}\right)\right|}{2}+2\right)+\sum_{k=1}^{\gamma}\left(\left|V\left(T^{(k)}\right)\right|+1\right)+3 \delta
$$

The constraint $2 n-m \in\{1,2\}$ implies that $b=1, a=\alpha=\beta_{1}=\beta_{2}=\gamma=\delta=0$ and hence G is the union of K_{4} and some $K_{5}^{\prime} s$. Therefore we have $n=4+5 c$, contradicting the fact that $5 \mid n$.

Lemma 4.5. Let n be an integer that is at least (15); then there is a P_{6}-saturated (n, m) graph for all $\left\lceil\frac{9 n}{10}\right\rceil \leq m \leq n+5$.
Proof. For those values of m in $[n, n+5]$, we can construct P_{6}-saturated graphs as follows: $T_{2}^{\prime} \cup T_{2,2, n-14}, K_{2} \cup F_{n-6}, F_{n-4}, K_{2} \cup$ $K_{4} \cup F_{n-10}, K_{4} \cup F_{n-8}, B_{4} \cup F_{n-10}$.

Let $n=10 k+i$, where $i=0,1, \ldots, 9$. We can construct an (n, m) graph in $\operatorname{SAT}\left(n, P_{6}\right)$ as follows: $G_{0}=(k-$ 1) $T_{2,2,2} \cup T_{2,2,2+i}$, and then $m=|E(G)|=9(k-1)+9+i=9 k+i=\left\lceil\frac{9 n}{10}\right\rceil$. Next we shall define an operation as follows: $T_{a, b, c}+T_{x, y, z} \Rightarrow T_{x, y, z+a+b+c+4}$. Under this operation we build a new P_{6}-saturated graph $T_{x, y, z+a+b+c+4}$ from a given P_{6}-saturated graph $T_{a, b, c} \cup T_{x, y, z}$ with one more edge. Continuing this process starting from G_{0}, we can end this process with $T_{2,2, n-8}$, which has $n-1$ edges. Hence we find P_{6}-saturated graphs with m edges for $\left\lceil\frac{9 n}{10}\right\rceil \leq m \leq n-1$.

Combining Lemma 4.1 through 4.5 we shall get the next main theorem concerning the edge spectrum of P_{6}. But this time we jump five steps at each induction process stage.

Theorem 4.1. Let $n \geq 10$ be an integer. There is a P_{6}-saturated (n, m) graph with $(n, m) \neq(11,14)$ if and only if m is in the following interval:

where the triangle " \triangle " means the existence of a P_{6}-saturated (n, n) graph only for $n \geq 15$, and a blue dot stands for a missing value.
Proof. The proof is by induction on n based on the following table, where $A=\operatorname{sat}\left(n, P_{6}\right)$ and $B=e x\left(n, P_{6}\right)$. The initial results for $10 \leq n \leq 14$ are listed in the table. One exception in this table is $n=11, m=14$. There is no such kinds of P_{6}-saturated graphs, but for the next induction set we do have a $(16,24)$-graph $4 K_{4}$, which is a P_{6}-saturated graph. For the base case of the induction process, it is easy to check the graph listed in the table, while for those not listed in the table we can count all possible combinations of basic structures of P_{6}-saturated graphs for the corresponding (n, m)-values.

By the induction hypothesis, suppose we have the result for $n \leq 14$. By adding a complete graph K_{5}, we may get some partial results for $n+5$. For the missing values on the interval $[A, B]$, we shall refer to Lemma 4.3 up to Lemma 4.5. So far we have covered the interval $\left[\operatorname{sat}\left(n, P_{6}\right)+10, B\right]$ since $\operatorname{ex}\left(n, P_{6}\right)+10=B$. The remaining interval $\left[A, \operatorname{sat}\left(n, P_{6}\right)+9\right]$ will be covered by Lemma 4.6 since $\operatorname{sat}\left(n, P_{6}\right)+9 \leq(n+5)+5=n+10$ for any integer n.

n	[AB]	$\operatorname{SAT}\left(n, P_{6}\right)$	n	$[A, B]$	SAT (n, P_{6})
10	[9, 20]	9: $T_{2,2,2}$	11	[10, 20]	10: $T_{2,2,3}$
		10: \emptyset			11: \emptyset
		11: $K_{2} \cup F_{4}$			12: $K_{2} \cup F_{5}$
		12: F_{6}			13: F_{7}
		13: T_{4}^{\prime}			14: \emptyset
		14: $K_{2} \cup B_{6}$			15: $K_{3} \cup 2 K_{4}$
		15: $K_{4} \cup B_{4}$			16: $2 K_{3} \cup K_{5}$
		16: \emptyset			17: $T_{2}^{\prime} \cup K_{5}$
		17: B_{8}			18: $K_{5} \cup F_{2}$
		18-19: \emptyset			19: B_{9}
		20: $2 K_{5}$			20: $2 K_{5} \cup K_{1}$
12	[11, 21]	11: $T_{2,3,3}$	13	[12, 23]	12: $T_{3,3,3}$
		12: $4 K_{3}$			13: \emptyset
		13: $F_{6} \cup K_{2}$			14: $K_{2} \cup F_{7}$
		14: F_{8}			15: F_{9}
		15: $F_{2} \cup K_{4} \cup K_{2}$			16: $F_{3} \cup K_{4} \cup K_{2}$
		16: $K_{4} \cup F_{4}$			17: $K_{4} \cup F_{5}$
		17: $F_{2} \cup B_{4}$			18: T_{6}
		18: $K_{2} \cup B_{8}$			19: $F_{2} \cup B_{5}$
		19: $K_{3} \cup K_{4} \cup K_{5}$			20: $K_{2} \cup B_{9}$
		20: \emptyset			21: $K_{4} \cup B_{7}$
		21: $2 K_{5} \cup K_{2}$			22: $2 K_{4} \cup K_{5}$
					23: $K_{3} \cup 2 K_{5}$
14	[13, 19]	13: $T_{3,3,4}$	14	[20, 26]	20: $F_{3} \cup B_{5}$
		14: \emptyset			21: $F_{5} \cup K_{5}$
		15: $K_{2} \cup F_{8}$			22: $K_{2} \cup B_{10}$
		16: F_{10}			23: $K_{4} \cup B_{8}$
		17: $T_{2}^{\prime} \cup F_{4}$			24: \emptyset
		18: $K_{3} \cup T_{5}$			25: B_{12}
		19: T_{6}^{\prime}			26: $2 K_{5} \cup K_{4}$

References

[1] Kinnari P. Amin, The Edge Spectrum of K_{t}-Saturated Graphs, Ph.D. Thesis, Emory University, August, 2010.
2] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh, Size in maximal triangle-free graphs and minimal graphs of diameter 2, Dis. Math. 138 (1995) 93-99.
[3] G. Chartand, L. Lesniak, Graphs and Digraphs, third ed., Chapman and Hall, 1996.
[4] P. Erdős, A. Hajnal, J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107-1110.
[5] R.J. Faudree, R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory, Ser. B 19 (1975) 150-160.
[6] L. Kászonyi, Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (2) (1986) 203-210.
[7] Oleg Pikhurko, Results and open problems on minimum saturated hypergraphs, Ars. Combin. 72 (2004) 111-127.
[8] Z. Shao, X. Xu, X. Shi, L. Pan, Some three-color Ramsey numbers, European J. Combin. 30 (2009) 396-403.
[9] Paul Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941) 436-452.

[^0]: * Project sponsored by the National Security Agency under Grant H98230-12-1-D233.
 * Corresponding author.

 E-mail address: cqzhang@math.wvu.edu (C.-Q. Zhang).

