A note on Berge-Fulkerson coloring

Rongxia Hao ${ }^{\text {a }}$, Jianbing Niu ${ }^{\text {b }}$, Xiaofeng Wang ${ }^{\text {c }}$, Cun-Quan Zhang ${ }^{\text {c,* }}$, Taoye Zhang ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
${ }^{\mathrm{b}}$ Department of Mathematics, Tennessee Wesleyan College, Athens, TN 37371 , United States
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States
${ }^{\text {d }}$ Department of Mathematics, Penn State University, Worthington, PA 18512, United States

ARTICLE INFO

Article history:

Received 3 February 2008
Received in revised form 29 December 2008
Accepted 30 December 2008
Available online 20 January 2009

Keywords:

Fulkerson coloring
Snark
Edge-coloring
Cubic graph
Perfect matching

Abstract

The Berge-Fulkerson Conjecture states that every cubic bridgeless graph has six perfect matchings such that every edge of the graph is contained in exactly two of these perfect matchings. In this paper, a useful technical lemma is proved that a cubic graph G admits a Berge-Fulkerson coloring if and only if the graph G contains a pair of edge-disjoint matchings M_{1} and M_{2} such that (i) $M_{1} \cup M_{2}$ induces a 2-regular subgraph of G and (ii) the suppressed graph $\overline{G \backslash M_{i}}$, the graph obtained from $G \backslash M_{i}$ by suppressing all degree-2-vertices, is 3-edge-colorable for each $i=1,2$. This lemma is further applied in the verification of Berge-Fulkerson Conjecture for some families of non-3-edge-colorable cubic graphs (such as, Goldberg snarks, flower snarks).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Proper 3-edge-coloring of cubic graphs has been extensively studied due to its equivalency to the 4-color problem of planar graphs. However, not every cubic graph is 3-edge-colorable. The following is one of the most famous conjectures in graph theory.

Conjecture 1.1 (Berge, Fulkerson, [9], or see [13,1,5]). Every 2-connected cubic graph has a collection of six perfect matchings that together cover every edge exactly twice.

Although the statement of the conjecture is very simple, the solution has eluded many mathematicians over four decades and remains beyond the horizon. Due to the lack of appropriate techniques, not many partial results have been proved. In this paper, we would like to introduce some techniques for this problem and verify the conjecture for some families of cubic graphs.

The problem of matching covering is one of the major subjects in graph theory because of its close relation with problems of cycle cover, integer flow and other problems. Many generalizations and variations of the Berge-Fulkerson Conjecture have already received extensive attention, and some partial results have been achieved.

An r-graph G is an r-regular graph such that $\left|(X, V(G) \backslash X)_{G}\right| \geq r$, for every non-empty vertex subset $X \subseteq V(G)$ of odd order where $(X, V(G) \backslash X)_{G}=\{e=u v \in E(G): u \in X, v \notin X\}$. It was proved by Edmonds [6] (also see [13]) that, for a given r-graph G, there is an integer k (a function of G) such that G has a family of perfect matchings which covers each edge precisely k times. Motivated by this result, Seymour [13] further conjectured that every r-graph has a Berge-Fulkerson coloring.

[^0]Note that the complement of a perfect matching in a cubic graph is a 2-factor. The Berge-Fulkerson Conjecture is equivalent to the conjecture that every bridgeless cubic graph has a family of six cycles such that every edge is covered precisely four times. It was proved by Bermond, Jackson and Jaeger [2] that every bridgeless graph has a family of seven cycles such that every edge is covered precisely four times; and Fan [7] proved that every bridgeless graph has a family of ten cycles such that every edge is covered precisely six times.

The relation between Berge-Fulkerson coloring and shortest cycle cover problems has been investigated by Fan and Raspaud [8]. They proved that if the Berge-Fulkerson Conjecture is true, then every bridgeless graph has a family of cycles that covers all edges and has the total length at most $\frac{22}{15}|E(G)|$. The famous cycle double cover conjecture (Szekeres [15], Seymour [14]) would be verified if one could find a cycle cover of every cubic graph with total length at most $\frac{21}{15}|E(G)|$ (Jamshy and Tarsi [12]).

A non-3-edge-colorable, bridgeless, cyclically 4-edge-connected, cubic graph is called a snark. In this paper, we verify the conjecture for the families of Goldberg snarks and flower snarks.

2. Notation

Most standard terminology and notation can be found in [3] or [16].
Let G be a cubic graph. The graph $2 G$ is obtained from G by duplicating every edge to become a pair of parallel edges.
For a cubic graph G, a Berge-Fulkerson coloring is a mapping $c: E(2 G) \mapsto\{1,2, \ldots, 6\}$ such that every vertex of $2 G$ is incident with edges colored with all six colors.

A circuit is a connected 2-regular subgraph. A cycle is the union of a set of edge-disjoint circuits. An edge is called a bridge if it is not contained in any circuit of the graph.

Let $G=(V, E)$ be a graph. The suppressed graph, denote by \bar{G}, is the graph obtained from G by suppressing all degree-2vertices. In this paper, it is possible that some graph G may contain a 2 -regular component C, and therefore, the 2 -regular subgraph C corresponds to a vertexless loop in the suppressed graph \bar{G}.

A vertexless loop is a special case in this paper that is not usually seen in most literature. For graphs with vertexless loops, we may further extend some popularly used terminology. For example, the degree of a vertex is defined the same as usual. Therefore, a graph is cubic if the degree of every vertex is 3 while vertexless loops are allowed. A 3-edge-coloring of a cubic graph is a mapping $c: E(G) \mapsto\{1,2,3\}$ such that every vertex is incident with edges colored with all three colors. Hence, those vertexless loops may be colored with any color.

3. A technical lemma

In this section, we provide a useful technical lemma. This lemma is further applied in the proofs of other results of the paper.

Lemma 3.1 ([17]). Given a cubic graph G admits a Berge-Fulkerson coloring if and only if there are two edge-disjoint matchings M_{1} and M_{2} such that each $\overline{G \backslash M_{i}}$ is 3-edge-colorable for $i=1,2$ and $M_{1} \cup M_{2}$ forms a cycle in G.

Remark 1. For each $\{i, j\}=\{1,2\}$, the suppressed graph $\overline{G \backslash M_{i}}$ may contain some trivial components (vertexless loops). As we discussed in the previous section, every vertexless loop of $\overline{G \backslash M_{i}}$ corresponds to a 2-regular component C of $G \backslash M_{i}$. Since $M_{i} \bigcup M_{j}$ is a cycle, every vertex of C must be incident with edges of both M_{i} and M_{j}. Hence, the edges of the circuit C must be alternately in M_{j} and $E(G) \backslash\left\{M_{i} \bigcup M_{j}\right\}$. It is easy to see that every 2-regular component of $G \backslash M_{i}$ must be an even length circuit.
Proof. " \Rightarrow ": We only pay attention to non-3-edge-colorable graphs, since every 3-edge-colorable cubic graph trivially satisfies the conjecture with $M_{1} \bigcup M_{2}=\emptyset$. Suppose G admits a Berge-Fulkerson coloring $c: E(2 G) \mapsto\left\{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\}$. Let G_{1} be the cubic subgraph of $2 G$ induced by edges colored with $\left\{a_{1}, b_{1}, c_{1}\right\}$ and let G_{2} be the subgraph of $2 G$ induced by edges colored with $\left\{a_{2}, b_{2}, c_{2}\right\}$. If there is no parallel edge in both G_{1} and G_{2}, then each of G_{1} and G_{2} is isomorphic to G. Hence G is 3-edge-colorable, so we may assume that there are parallel edges in G_{1} and G_{2} and let E_{p} be the set of edges of G corresponding to parallel edges in either G_{1} or G_{2}.

Let M_{j} be the set of edges e of G such that e corresponds to a parallel edge of G_{j} for each $j=1,2$ and $E_{p}=M_{1} \cup M_{2}$. Since G_{j} is cubic, M_{j} is a matching and $M_{1} \cap M_{2}=\emptyset$. Furthermore, each vertex incident with an edge of M_{i} must be incident with an edge of M_{j}. Hence, E_{p} is a set of edge-disjoint even circuits.

Now, for each $\{i, j\}=\{1,2\}$, we may color each edge $e \in M_{j}$ with the color $\left\{a_{j}, b_{j}, c_{j}\right\}-\left\{x_{j}, y_{j}\right\}$ where x_{j}, y_{j} are colors used for the parallel edges corresponding to e in the cubic graph G_{j}. So, the resulting coloring is a proper 3-edge-coloring of the suppressed cubic graph $\overline{G \backslash M_{i}}$ for each $\{i, j\}=\{1,2\}$. (Note that the cubic graph $\overline{G \backslash M_{i}}$ is also obtained from G_{j} by replacing every pair of parallel edges with a single edge and suppressing all resulting degree-2-vertices.)
" \Leftarrow ": For the sufficiency part, suppose that each nontrivial component of $\overline{G \backslash M_{1}}$ is 3-edge-colorable with colors $\left\{a_{1}, b_{1}, c_{1}\right\}$, and each nontrivial component of $\overline{G \backslash M_{2}}$ is colored with $\left\{a_{2}, b_{2}, c_{2}\right\}$, and edges of the trivial components (vertexless loops, if they exist) of $\overline{G \backslash M_{i}}$ are colored by a_{i} for $i=1,2$. A coloring $G \backslash M_{i}$ is obtained by inserting those

Fig. 1. Two small Goldberg snarks.

Fig. 2. The internal structure of a block and inter-block adjacency relation between blocks.
suppressed degree-2-vertices for $i=1,2$ and coloring each edge incident with degree-2-vertex with the same color of the edge before the vertex insertion.

A proper 6-edge-coloring of $2 G$ is obtained as follows. Let e_{1}, e_{2} be a pair of parallel edges with end-vertices u, v in $2 G$.
Case 1: If there is a corresponding edge in each $G \backslash M_{1}$ and $G \backslash M_{2}$ with end-vertices u, v, then each e_{i} is colored the same color of the corresponding edge with end-vertices u, v in $G \backslash M_{i}$ for $i=1,2$.

Case 2: If there is only one corresponding edge with end-vertices u, v in one of $G \backslash M_{1}$ and $G \backslash M_{2}$ (not both), then e_{1}, e_{2} are colored with colors of $\left\{a_{i}, b_{i}, c_{i}\right\} \backslash\left\{x_{i}\right\}$ where x_{i} is the color of the corresponding edge in $G \backslash M_{i}$.

This completes the proof of the lemma.

4. Goldberg snarks

Goldberg [10] constructed an infinite family of snarks, $G_{3}, G_{5}, G_{7}, \ldots$, which can be used to give infinitely many counterexamples to the critical graph conjecture [4]. Small examples G_{3} and G_{5} are illustrated in Fig. 1.

For every odd $k \geq 3$, the vertex set of the Goldberg snark G_{k} is: $V\left(G_{k}\right)=\left\{v_{j}^{t}: 1 \leq t \leq k, 1 \leq j \leq 8\right\}$, where the superscript t is read modulo k. The subgraph B_{t} induced by $\left\{v_{1}^{t}, v_{2}^{t}, \ldots, v_{8}^{t}\right\}$ is a basic block. The Goldberg snark is constructed by joining each basic block B_{t} with B_{t-1} and $B_{t+1}(\bmod k)$. The internal adjacency relation of B_{t} and the inter-block adjacency relation between B_{t}, B_{t-1} and B_{t+1} is illustrated in Fig. 2

Theorem 4.1. The Goldberg snark graph G_{k} admits a Berge-Fulkerson coloring.

Proof. By Lemma 3.1, it is sufficient to show that G_{k} has a pair of edge-disjoint matchings M_{1}, M_{2} such that $M_{1} \cup M_{2}$ is a cycle C of G_{k}, and for $i=1,2$, each nontrivial component of $G_{k} \backslash M_{i}$ is 3-edge-colorable.

Let $C=C_{1} \cup C_{2}: C_{1}$ is the circuit $v_{1}^{1} v_{2}^{1} v_{1}^{2} v_{2}^{2} \cdots v_{1}^{k} v_{2}^{k} v_{1}^{1}$ of length $2 k$ and C_{2}, the circuit $v_{3}^{1} v_{4}^{1} v_{3}^{2} v_{8}^{2} v_{6}^{2} v_{7}^{2} v_{4}^{2} \cdots v_{3}^{k} v_{8}^{k} v_{6}^{k} v_{7}^{k} v_{4}^{k} v_{3}^{1}$ of length $5 k-3$. (Note: C_{2} passes through only two vertices in the block B_{1}, while it passes through five vertices in all other blocks G_{i} with $i \neq 1$.) Since k is odd, each C_{i} is an even length circuit of G_{k} (see Fig. 3)

Let M_{1}, M_{2} be the two perfect matchings of C as follows:

$$
\begin{aligned}
& M_{1}=\left\{v_{2}^{1} v_{1}^{2}, v_{2}^{2} v_{1}^{3}, \ldots, v_{2}^{k} v_{1}^{1}\right\} \cup\left\{v_{3}^{1} v_{4}^{1}, v_{3}^{2} v_{8}^{2}, v_{6}^{2} v_{7}^{2}, v_{4}^{2} v_{3}^{3}, \ldots, v_{8}^{k} v_{6}^{k}, v_{7}^{k} v_{4}^{k}\right\}, \\
& M_{2}=\left\{v_{1}^{1} v_{2}^{1}, v_{1}^{2} v_{2}^{2}, \ldots, v_{1}^{k} v_{2}^{k}\right\} \cup\left\{v_{4}^{1} v_{3}^{2}, v_{8}^{2} v_{6}^{2}, v_{7}^{2} v_{4}^{2}, \ldots, v_{3}^{k} v_{8}^{k}, v_{6}^{k} v_{7}^{k}, v_{4}^{k} v_{3}^{1}\right\}
\end{aligned}
$$

Here, $C=M_{1} \cup M_{2}$.
Note that the edges of M_{1} and M_{2} are selected differently in B_{1} than in other B_{i} 's $(i=2,3, \ldots, k)$. In order to distinguish the difference, in Fig. 3, blocks B_{2}, \ldots, B_{k} are lined up in the top row while B_{1} is placed in the lower row, and edges of C_{1} and C_{2} are highlighted.

Fig. 3. $C=M_{1} \cup M_{2}$.

Fig. 4. $G_{k} \backslash M_{1}$.

Fig. 5. $G_{k} \backslash M_{2}$.
For the suppressed graph $\overline{G_{k} \backslash M_{1}}$, there is a Hamilton circuit

$$
v_{5}^{1} v_{6}^{1} v_{8}^{1} v_{7}^{1} v_{5}^{2} v_{5}^{3} \cdots v_{5}^{k}=v_{5}^{1} v_{6}^{1} v_{8}^{1}\left(v_{2}^{1} v_{1}^{1}\right) v_{7}^{1}\left(v_{4}^{1} v_{3}^{2} v_{4}^{2} v_{7}^{2} v_{1}^{2} v_{2}^{2} v_{8}^{2} v_{6}^{2}\right) v_{5}^{2} v_{5}^{3} \cdots v_{5}^{k}
$$

(note that vertices listed in parenthesis are degree-2-vertices of $G_{k} \backslash M_{1}$, while all others are degree-3-vertices in both $G_{k} \backslash M_{1}$ and $\overline{G_{k} \backslash M_{1}}$). Thus $\overline{G_{k} \backslash M_{1}}$ is edge-3-colorable (see Fig. 4).

The suppressed graph $\overline{G_{k} \backslash M_{2}}$ is the union of a cubic component and $\frac{k-1}{2}$ trivial components (vertexless loops). The only cubic component has a Hamilton circuit

$$
v_{5}^{1} v_{6}^{1} v_{7}^{1} v_{8}^{1} v_{5}^{2} v_{5}^{3} \cdots v_{5}^{k}=v_{5}^{1} v_{6}^{1} v_{7}^{1}\left(v_{4}^{1} v_{3}^{1}\right) v_{8}^{1}\left(v_{2}^{1} v_{1}^{2} v_{7}^{2} v_{6}^{2}\right) v_{5}^{2} v_{5}^{3} \cdots v_{5}^{k}
$$

(note that vertices listed in parenthesis are degree-2-vertices of $G_{k} \backslash M_{2}$, while all others are degree-3-vertices in both $G_{k} \backslash M_{2}$ and $\overline{G_{k} \backslash M_{2}}$). Thus $\overline{G_{k} \backslash M_{2}}$ is also 3-edge-colorable (see Fig. 5).

5. The flower snark

Definition 5.1. For an odd integer $k \geq 3$, the flower snark J_{k} is constructed as following [11]: the vertex set of J_{k} consists of $4 k$ vertices:

$$
\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cup\left\{u_{1}^{1}, u_{1}^{2}, u_{1}^{3}, u_{2}^{1}, u_{2}^{2}, u_{2}^{3}, \ldots, u_{k}^{1}, u_{k}^{2}, u_{k}^{3}\right\}
$$

The graph is comprised of a circuit $u_{1}^{1} u_{2}^{1} \cdots u_{k}^{1} u_{1}^{1}$ of length k and a circuit $u_{1}^{2} u_{2}^{2} \cdots u_{k}^{2} u_{1}^{3} u_{2}^{3} \cdots u_{k}^{3} u_{1}^{2}$ of length $2 k$, and in addition, each vertex $v_{i}(i=1,2, \ldots, k)$ is adjacent to u_{i}^{1}, u_{i}^{2} and u_{i}^{3} (see Fig. 6).

Fig. 6. Flower snarks.

Fig. 7. Two small flower snarks.

Fig. 8. (a) \bar{H}; (b) $\overline{G \backslash M_{j}}$.
The first flower snark J_{3} can be obtained from the Peterson graph, with a vertex replaced by a triangle (or, equivalently, the Petersen graph can be obtained from J_{3} by contracting the center triangle $u_{1}^{1} u_{2}^{1} u_{3}^{1} u_{1}^{1}$). In Fig. 7, we illustrate the first two flower snarks J_{3} and J_{5}.

Theorem 5.2. The flower snark graph J_{k} admits a Berge-Fulkerson coloring.

Proof. By the definition of flower snark, for the odd number k, the vertex set of J_{k} consists of $4 k$ vertices $v_{1}, v_{2}, \ldots, v_{k}$ and $u_{1}^{1}, u_{1}^{2}, u_{1}^{3}, u_{2}^{1}, u_{2}^{2}, u_{2}^{3}, \ldots, u_{k}^{1}, u_{k}^{2}, u_{k}^{3}$. The graph is comprised of a circuit $C^{\prime}=u_{1}^{1} u_{2}^{1} \cdots u_{k}^{1} u_{1}^{1}$ of length k and a circuit $C^{\prime \prime}=u_{1}^{2} u_{2}^{2} \cdots u_{k}^{2} u_{1}^{3} u_{2}^{3} \cdots u_{k}^{3} u_{1}^{2}$ of length $2 k$, and in addition, each vertex $v_{i}(i=1,2, \ldots, k)$ is adjacent to u_{i}^{1}, u_{i}^{2} and u_{i}^{3}.

By Lemma 3.1, it is sufficient to show that J_{k} has a pair of edge-disjoint matchings M_{1}, M_{2} such that $M_{1} \cup M_{2}$ is a cycle of J_{k}, and for each $i=1,2, \overline{J_{k} \backslash M_{i}}$ contains a Hamilton circuit.

Let M_{1}, M_{2} be the two perfect matchings of $C^{\prime \prime}$ as follows:

$$
\begin{aligned}
& M_{1}=\left\{u_{1}^{2} u_{2}^{2}, u_{3}^{2} u_{4}^{2}, \ldots, u_{k}^{2} u_{1}^{3}, u_{2}^{3} u_{3}^{3}, u_{4}^{3} u_{5}^{3}, \ldots, u_{k-1}^{3} u_{k}^{3}\right\} \\
& M_{2}=\left\{u_{2}^{2} u_{3}^{2}, u_{4}^{2} u_{5}^{2}, \ldots, u_{k-1}^{2} u_{k}^{2}, u_{1}^{3} u_{2}^{3}, u_{3}^{3} u_{4}^{3}, \ldots, u_{k-2}^{3} u_{k-1}^{3}, u_{k}^{3} u_{1}^{2}\right\}
\end{aligned}
$$

Here $C^{\prime \prime}=M_{1} \cup M_{2}$.
Let H be the subgraph of J_{k} induced by the vertex subset $\left\{v_{i}, u_{i}^{2}, u_{i}^{3} \mid i=1,2, \ldots, k\right\}$ (Fig. 8(a)). Here, in the suppressed graph \bar{H}, the circuit $C^{\prime \prime}=u_{1}^{2} u_{2}^{2} \cdots u_{k}^{2} u_{1}^{3} u_{2}^{3} \cdots u_{k}^{3} u_{1}^{2}$ becomes a Hamilton circuit and $\left\{u_{i}^{2} v_{i} u_{i}^{3} \mid i=1,2, \ldots, k\right\}$ is the set of chords of the circuit $C^{\prime \prime}$ (note that each v_{i} is a degree-2-vertex in H).

Note that matchings M_{1} and M_{2} form a decomposition of the circuit $C^{\prime \prime}$. Since k is odd, $H \backslash M_{j}$ is a circuit passing through the vertices $v_{1}, v_{2}, \ldots, v_{k}$ in this order, for each $j=1$, 2 (see Fig. 8(a)). Hence, $G \backslash M_{j}$ is the graph consisting of two circuits: $H \backslash M_{j}$ and $C^{\prime}=u_{1}^{1} u_{2}^{1} \cdots u_{k}^{1} u_{1}^{1}$, which are joined by the set of edges $\left\{v_{i} u_{i}^{1} \mid i=1,2, \ldots, k\right\}$. It is easy to see that $\overline{G \backslash M_{j}}$ is a planar prism, and therefore contains a Hamilton circuit and furthermore is 3-edge-colorable (see Fig. 8(b)).

Fig. 9. Different drawings of the flower J_{7}.

Fig. 10.

In Figs. 9 and 10, different drawings of a flower snark J_{7} are presented. Together with matchings M_{1} and M_{2}, these traditional drawings may help some readers with a different view for the structures of these matchings and Hamilton circuits in the proof of Theorem 5.2.

Acknowledgements

The first author was supported by the Natural Science Foundation of China (under the Grant Number 10871021).
The fourth author was partially supported by the National Security Agency under Grant MSPR-03G-023.

References

[1] D. Archdeacon, Double Covering Edges by Perfect Matchings. Web address: http://www.cems.uvm.edu/~archdeac/problems/fulker.htm.
[2] J.C. Bermond, B. Jackson, F. Jaeger, Shortest coverings of graphs with cycles, J. Combin. Theory Ser. B. 35 (1983) 297-308.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[4] A.G. Chetwynd, R.J. Wilson, The rise and fall of the critical graph conjecture, J. Graph Theory 7 (1983) 154-157.
[5] M. DeVos, The Berge-Fulkerson conjecture. Web address: http://garden.irmacs.sfu.ca/?q=op/the_berge_fulkerson_conjecture.
[6] J. Edmonds, Maximum matching and a polyhedron with (0, 1)-vertices, J. Res. Nat. Bur. Standards B. 69 (1965) 125-130.
[7] G. Fan, Covering graphs by cycles, SIAM J. Discrete Math. 5 (4) (1992) 491-496.
[8] G. Fan, A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory Ser. B. 61 (1994) 133-138.
[9] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971) 168-194.
[10] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory Ser. B 31 (1981) 282-291.
[11] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239.
[12] U. Jamshy, M. Tarsi, Shortest cycle covers and the cycle double cover conjecture, J. Combin. Theory Ser. B. 56 (1992) 197-204.
[13] P.D. Seymour, On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 38 (1979) $423-460$.
[14] P.D. Seymour, Sums of circuits, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 342-355.
[15] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Austral. Math. Soc. 8 (1973) 367-387.
[16] C.-Q. Zhang, Integer flows and cycle covers of graphs, Marcel Dekker, New York, 1997.
[17] C.-Q. Zhang, Lecture Notes WVU 1997 (unpublished).

[^0]: * Corresponding author.

 E-mail address: cqzhang@math.wvu.edu (C.-Q. Zhang).

